-
摘要: 基于自动识别系统分析了极地船舶航行数据, 考虑冰区船舶受力, 提出了主机功率估算模型; 选取劳氏船级社数据验证了主机功率模型的可行性与可信度; 结合3种不同的航行状态与排放因子、负荷因子建立了动态船舶废气排放模型; 选取中国远洋海运集团有限公司穿越北极地区的“永盛”轮等5艘船舶的航行数据, 使用燃油消耗法对船舶排放估算模型进行验证; 利用排放估算模型计算了北极地区船舶排放清单, 并在ArcGIS上显示排放的时空分布等特征。研究结果表明: 北极地区的各类船舶废气排放中, CO2的排放量最多, 约为69.7%, NOx和SOx次之, 分别为13.3%和12.0%, CH4最少, 为0.4%;各类船型的排放分担率最大的为集装箱船(29.3%), 其次为破冰船(28.8%), 其中集装箱船和散货船的废气排放量占比达到了50.4%;北极地区船舶废气CH4、CO2、CO、HC、NOx、SOx、PM的排放量分别为504.85、82 545.63、1 645.90、562.54、15 711.47、14 232.54、3 263.15 t, 与船舶交通流密度相符; 2016年9月散货船、集装箱船、油轮和渔船废气排放量最大, 10、11月逐渐减少, 这与该地区的冰封情况有较大关系; 一天内, 滚装船、渔船和破冰船的废气排放在11:00~18:00出现一段波峰, 这可能是由船舶的工作性质决定的。Abstract: Based on the automatic identification system(AIS), polar ship navigation data were analyzed, and the estimate model of main engine power was established by considering the ice force on the ship. The feasibility and credibility of the main engine power model were verified based on the database of the Lloyd's Register. The dynamic emission model of ship was established by taking account of three navigate states, emission factors and load factors. The navigation data of five ships, including Yongsheng Vessel, ect., which crossing the Arctic region, were selected by the China COSCO Shipping Co., Ltd., and the ship emission estimation model was validated by the fuel consumption method. The emission inventory in the Arctic region was calculated by the emission estimation model, and the temporal and spatial patterns of the emissions were demonstrated on the ArcGIS. Analysis result shows that, among all kinds of ship exhaust emissions in the Arctic region, the CO2 emission is the largest, about 69.7%, followed by NOx and SOx about 13.3% and 12.0%, respectively, and CH4 is the least, only 0.4%. The emission share ratio of container ships is the largest, reaching 29.3%, and the ratio of icebreakers is the second, reaching 28.8%. Container ships and bulk carriers account for 50.4% of exhaust emissions. The emissions of CH4, CO2, CO, HC, NOx, SOx, and PM in the Arctic region are 504.85, 82 545.63, 1 645.90, 562.54, 15 711.47, 14 232.54, and 3 263.15 t, respectively, which is generally consistent with the density of vessel traffic. In 2016, the emissions from bulk carriers, container ships, tankers, and fishing boats were the largest in September, and gradually decreased in October and November, which is more related to the icebound condition. Within a day, the emissions of ro-ro ships, fishing boats, and icebreakers have a peak range from 11:00 to 18:00, which may be caused by their work natures.
-
表 1 主机排放因子
Table 1. Main engine emission factors
废气类型 CH4 CO2 CO HC NOx SOx PM 中速机 0.012 683 1.1 0.5 13.0 10.5 1.02 低速机 0.010 620 1.4 0.6 17.0 11.5 0.96 表 2 副机排放因子
Table 2. Auxiliary engine emission factors
废气类型 CH4 CO2 CO HC NOx SOx PM 排放因子 0.005 683 1.1 0.4 13.0 12.3 1.02 表 3 散货船参数与误差
Table 3. Parameters and errors of bulk carriers
船舶序号 船长/m 船宽/m 主机功率/kW 误差/% 实际值 估算值 1 229.00 32.24 15 050 14 626 -2.82 2 288.93 45.00 25 329 24 501 -3.27 3 178.00 27.60 5 830 6 110 4.80 4 157.00 25.50 5 180 5 357 3.42 5 183.00 30.95 7 487 7 181 -4.09 表 4 船舶参数和航行信息
Table 4. Ship parameters and navigation informations
船名 船长/m 船宽/m 起程时间 结束时间 航行时间/h 永盛 160.0 23.7 7月26日08:30 8月4日23:30 231 夏之远6 195.0 41.0 8月5日17:30 8月15日15:30 238 天禧 190.0 29.0 8月15日19:00 8月26日01:00 246 祥和口 216.7 43.0 9月1日09:30 9月11日03:30 234 祥云口 216.7 43.0 9月8日01:30 9月17日06:30 221 表 5 两种方法的计算结果对比
Table 5. Calculation result comparison of two methods
船名 燃油消耗量/t 结果1/kg 结果2/kg 误差/% 永盛 261.33 1 649 632.18 1 625 712.51 -1.45 夏之远6 277.67 1 752 734.19 1 824 070.47 4.07 天禧 287.00 1 811 649.63 1 841 360.68 1.64 祥和口 273.00 1 723 276.47 1 682 434.82 -2.37 祥云口 257.83 1 627 538.89 1 682 549.71 3.38 表 6 北极地区船舶排放清单
Table 6. Ship emission inventory in Arctic region
排放类别 CH4 CO2 CO HC NOx SOx PM 散货船 111.67 18 616.71 299.83 109.03 3 543.44 3 352.64 735.95 集装箱船 149.79 24 256.35 509.69 171.81 4 616.88 4 130.22 958.89 滚装船 89.51 14 224.42 303.76 101.97 2 707.43 2 412.31 562.31 油轮 4.85 778.07 16.74 5.61 148.09 131.70 30.76 渔船 6.76 855.83 13.78 5.01 162.90 154.14 33.83 破冰船 142.27 23 814.25 502.10 169.11 4 532.73 4 051.53 941.41 排放合计 504.85 82 545.63 1 645.90 562.54 15 711.47 14 232.54 3 263.15 -
[1] EIDE M S, DALS∅REN S B, ENDRESEN ∅, et al. Reducing CO2 from shipping-do non-CO2 effects matter?[J]. Atmospheric Chemistry and Physics, 2013, 13: 4183-4201. doi: 10.5194/acp-13-4183-2013 [2] LINDSTAD H, ESKELAND G S, PSARAFTIS H, et al. Maritime shipping and emissions: a three-layered, damage-based approach[J]. Ocean Engineering, 2015, 110: 94-101. doi: 10.1016/j.oceaneng.2015.09.029 [3] LINDSTAD H E, SANDAAS I. Emission and fuel reduction for offshore support vessels through hybrid technology[J]. Journal of Ship Production and Design, 2016, 32(4): 195-205. doi: 10.5957/jspd.2016.32.4.195 [4] CHEN Lin-ying, YIP T L, MOU Jun-min. Provision of emission control area and the impact on shipping route choice and ship emissions[J]. Transportation Research Part D: Transport and Environment, 2018, 58: 280-291. doi: 10.1016/j.trd.2017.07.003 [5] 顾伟红, 徐瑞华. 中国国际海运船队温室气体排放测算研究[J]. 中国造船, 2013, 54(3): 169-176. doi: 10.3969/j.issn.1000-4882.2013.03.021GU Wei-hong, XU Rui-hua. Estimation of greenhouse gas emissions from China international shipping fleet[J]. Shipbuilding of China, 2013, 54(3): 169-176. (in Chinese). doi: 10.3969/j.issn.1000-4882.2013.03.021 [6] 牟军敏, 龚帅, 陈曦. 基于仿真数据的内河水网船舶排放清单[J]. 中国航海, 2017, 40(3): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201703021.htmMOU Jun-min, GONG Shuai, CHEN Xi. Emission inventory for ships in inland waterway network based on simulation data[J]. Navigation of China, 2017, 40(3): 98-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201703021.htm [7] 金陶胜, 殷小鸽, 许嘉, 等. 天津港运输船舶大气污染物排放清单[J]. 海洋环境科学, 2009, 28(6): 623-625. doi: 10.3969/j.issn.1007-6336.2009.06.006JIN Tao-sheng, YIN Xiao-ge, XU Jia, et al. Air pollutants emission inventory from commercial ships of Tianjin Harbor[J]. Marine Environmental Science, 2009, 28(6): 623-625. (in Chinese). doi: 10.3969/j.issn.1007-6336.2009.06.006 [8] CHEN Dong-sheng, ZHAO Na, LANG Jian-lei, et al. Contribution of ship emissions to the concentration of PM2.5: a comprehensive study using AIS data and WRF/Chem model in Bohai Rim Region, China[J]. Science of the Total Environment, 2018, 610-611: 1476-1486. doi: 10.1016/j.scitotenv.2017.07.255 [9] CHEN Dong-sheng, WANG Xiao-tong, NELSON P, et al. Ship emission inventory and its impact on the PM2.5 air pollution in Qingdao Port, North China[J]. Atmospheric Environment, 2017, 166: 351-361. doi: 10.1016/j.atmosenv.2017.07.021 [10] FAN Qian-zhu, ZHANG Yan, MA Wei-chun, et al. Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environmental influence[J]. Environmental Science and Technology, 2016, 50(3): 1322-1329. doi: 10.1021/acs.est.5b03965 [11] SONG Su. Ship emissions inventory, social cost and eco-efficiency in Shanghai Yangshan port[J]. Atmospheric Environment, 2014, 82: 288-297. doi: 10.1016/j.atmosenv.2013.10.006 [12] NG S K W, LOH C, LIN Chu-bin, et al. Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta[J]. Atmospheric Environment, 2013, 76: 102-112. doi: 10.1016/j.atmosenv.2012.07.070 [13] LI Cheng, YUAN Zi-bing, OU Jia-min, et al. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China[J]. Science of the Total Environment, 2016, 573: 1-10. doi: 10.1016/j.scitotenv.2016.07.219 [14] MOLDANOVÁ J, FRIDELL E, POPOVICHEVA O, et al. Characterization of particulate matter and gaseous emissions from a large ship diesel engine[J]. Atmospheric Environment, 2009, 43(16): 2632-2641. doi: 10.1016/j.atmosenv.2009.02.008 [15] COELLO J, WILLIAMS I, HUDSON D A, et al. An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet[J]. Atmospheric Environment, 2015, 114: 1-7. doi: 10.1016/j.atmosenv.2015.05.011 [16] HEALY R M, O'CONNOR I P, HELLEBUST S, et al. Characterization of single particles from in-port ship emissions[J]. Atmospheric Environment, 2009, 43(40): 6408-6414. doi: 10.1016/j.atmosenv.2009.07.039 [17] 季顺迎, 李紫麟, 李春花, 等. 碎冰区海冰与船舶结构相互作用的离散元分析[J]. 应用力学学报, 2013, 30(4): 520-526. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304011.htmJI Shun-ying, LI Zi-lin, LI Chun-hua, et al. Analysis of interaction between ice floe and ship hull with discrete element method in broken-ice field[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 520-526. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304011.htm [18] HANSEN E H, L∅SET S. Modelling floating offshore units moored in broken ice: model description[J]. Cold Regions Science and Technology, 1999, 29(2): 97-106. doi: 10.1016/S0165-232X(99)00023-3 [19] LEWIS J W, DE BORD F W, BULAT V A. Resistance and propulsion of ice-worthy ships[J]. The Society of Naval Architects and Marine Engineers, 1982(8): 1-20. [20] EIK K. Sea-ice management and its impact on the design of offshore structures[J]. Cold Regions Science and Technology, 2011, 65(2): 172-183. doi: 10.1016/j.coldregions.2010.10.009 [21] LUBBAD R, L∅SET S. A numerical model for real-time simulation of ship-ice interaction[J]. Cold Regions Science and Technology, 2011, 65(2): 111-127. doi: 10.1016/j.coldregions.2010.09.004 [22] KIM H S, HA M K, WILLIAMS F M, et al. Speed-power performance of 95, 000DWT arctic tanker design[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127(2): 135-140. [23] BROWNING L, BAILEY K. Current methodologies and best practices for preparing port emission inventories[R]. Fairfax: ICF International, 2006. [24] SINGH D V, PEDERSEN E. A review of waste heat recovery technologies for maritime applications[J]. Energy Conversion and Management, 2016, 111: 315-328. doi: 10.1016/j.enconman.2015.12.073 [25] 伏晴艳, 陈明华, 钱华. 上海市空气中NOx的污染现状及分担率[J]. 上海环境科学, 2001, 20(5): 224-226, 232.FU Qing-yan, CHEN Ming-hua, QIAN Hua. The status quo and share responsibility rate of NOx pollution in Shanghai[J]. Shanghai Environment Sciences, 2001, 20(5): 224-226, 232. (in Chinese). [26] JAYARAM V, KHAN Y M, MILLER W J, et al. Evaluating emission benefits of a hybrid tug boat[R]. Riverside: University of California, 2010. [27] 姚鑫. 北极航行船舶废气排放清单研究[D]. 武汉: 武汉理工大学, 2018.YAO Xin. Study on arctic shipping emissions inventories[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese). [28] SPREEN G, KALESCHKE L, HEYGSTER G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research, 2008, 113: 1-14. [29] WINTHER M, CHRISTENSEN J H, PLEJDRUP M S, et al. Emission inventories for ships in the arctic based on satellite sampled AIS data[J]. Atmospheric Environment, 2014, 91: 1-14. [30] 邢辉. 船舶废气排放量化问题研究[D]. 大连: 大连海事大学, 2017.XING Hui. Study on quantification of exhaust emissions from ships[D]. Dalian: Dalian Maritime University, 2017. (in Chinese).