留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳观尺度沥青相态力学特性老化行为

王明 刘黎萍

王明, 刘黎萍. 纳观尺度沥青相态力学特性老化行为[J]. 交通运输工程学报, 2019, 19(6): 1-13. doi: 10.19818/j.cnki.1671-1637.2019.06.001
引用本文: 王明, 刘黎萍. 纳观尺度沥青相态力学特性老化行为[J]. 交通运输工程学报, 2019, 19(6): 1-13. doi: 10.19818/j.cnki.1671-1637.2019.06.001
WANG Ming, LIU Li-ping. Aging behaviors of nanoscale mechanical properties of asphalt phases[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 1-13. doi: 10.19818/j.cnki.1671-1637.2019.06.001
Citation: WANG Ming, LIU Li-ping. Aging behaviors of nanoscale mechanical properties of asphalt phases[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 1-13. doi: 10.19818/j.cnki.1671-1637.2019.06.001

纳观尺度沥青相态力学特性老化行为

doi: 10.19818/j.cnki.1671-1637.2019.06.001
基金项目: 

国家自然科学基金项目 51778483

中央高校基本科研业务费专项资金项目 3122018C018

详细信息
    作者简介:

    王明(1987-), 女, 河北衡水人, 中国民航大学讲师, 工学博士, 从事机场与道路工程材料研究

    通讯作者:

    刘黎萍(1968-), 女, 山东菏泽人, 同济大学教授, 工学博士

  • 中图分类号: U414

Aging behaviors of nanoscale mechanical properties of asphalt phases

More Information
  • 摘要: 选取原样、短期老化和长期老化的基质沥青与SBS改性沥青为研究对象, 利用原子力显微技术的定量纳米力学(QNM)性质功能模块测试了沥青纳观相态的力学性质; 利用Nano Scope Analysis软件对沥青相态力学图像进行量化分析, 重点分析了相态模量和黏附力这2个指标; 采用细观力学领域中的Halpin-Tsai模型研究了沥青多相态力学性质的复合行为, 并探究了纳观尺度沥青相态力学特性的老化行为。分析结果表明: 基质沥青中蜂形相态和基质相态的纳观模量分别集中在600.0和18.3 MPa, 纳观黏附力分别集中在10.3和18.6 nN; SBS改性沥青中蜂形相态和基质相态的纳观模量分别集中在899和35 MPa, 纳观黏附力分别集中在30.2和38.4 nN; 对于基质沥青, 原样、短期老化和长期老化沥青的复合模量分别为111、138和187 MPa, 复合黏附力分别为16.7、14.3和4.2 nN; 对于SBS改性沥青, 原样、短期老化和长期老化沥青的复合模量分别为158、313和547 MPa, 复合黏附力分别为32.2、35.0和15.8 nN; 沥青纳观相态结构中, 蜂形相态属于高模量、低黏附力相态, 而基质相态属于低模量、高黏附力相态; SBS改性沥青的相态模量与黏附力显著高于基质沥青; 随着老化程度的增加, 沥青相态的力学性质发生变化, 且不同相态的老化行为存在显著差异; 采用QNM技术可有效辨别纳观尺度沥青相态的力学特性, Halpin-Tsai模型可用于量化沥青相态力学性质的复合行为。

     

  • 图  1  Dimension Icon原子力显微镜

    Figure  1.  Dimension Icon atomic force microscopy

    图  2  AFM-QNM工作原理

    Figure  2.  Operating principle of AFM-QNM

    图  3  AFM样本

    Figure  3.  AFM samples

    图  4  样品的测试区域

    Figure  4.  Measuring area of sample

    图  5  沥青形貌与蜂形相态

    Figure  5.  Topography and bee phase of asphalt

    图  6  沥青相态力学图像

    Figure  6.  Mechanical images of asphalt phases

    图  7  基质沥青相态力学图像

    Figure  7.  Mechanical images of base asphalt phases

    图  8  基质沥青相态力学统计

    Figure  8.  Mechanical statistics of base asphalt phases

    图  9  SBS改性沥青相态力学图像

    Figure  9.  Mechanical images of SBS modified asphalt phases

    图  10  SBS改性沥青相态力学统计

    Figure  10.  Mechanical statistics of SBS modified asphalt phases

    图  11  原样基质沥青相态力学图像

    Figure  11.  Mechanical images of original base asphalt phases

    图  12  短期老化基质沥青相态力学图像

    Figure  12.  Mechanical images of short-term aging base asphalt phases

    图  13  长期老化基质沥青相态力学图像

    Figure  13.  Mechanical images of long-term aging base asphalt phases

    图  14  原样SBS改性沥青相态力学图像

    Figure  14.  Mechanical images of original SBS modified asphalt phases

    图  15  短期老化SBS改性沥青相态力学图像

    Figure  15.  Mechanical images of short-term aging SBS modified asphalt phases

    图  16  长期老化SBS改性沥青相态力学图像

    Figure  16.  Mechanical images of long-term aging SBS modified asphalt phases

    图  17  老化对沥青相态模量的影响

    Figure  17.  Effect of aging on phase modulus of asphalt

    图  18  老化对沥青相态黏附力的影响

    Figure  18.  Effect of aging on phase adhesion force of asphalt

    表  1  沥青材料主要性能指标

    Table  1.   Main property indices of asphalt materials

    测试指标 测试结果 技术标准限值
    基质沥青 SBS改性沥青
    针入度(25 ℃, 100 g, 5 s)/0.1 mm 73.0 60.1 60~80
    软化点(环球法)/℃ 47.5 72.0 ≥55
    延度(5 ℃, 5 cm·min-1)/cm > 100 41 ≥30
    运动黏度(135 ℃)/(Pa·s) 1.3 ≤3
    弹性恢复(25 ℃)/% 81 ≥65
    离析, 48 h软化点差/℃ 0.7 ≤2.5
    旋转薄膜老化后 质量损失/% 0.2 0.2 ≤1.0
    残留针入度比/% 61 72 ≥60
    残留延度(5 ℃)/cm 18.6 23.0 ≥20
    下载: 导出CSV

    表  2  沥青相态力学性质复合量化结果

    Table  2.   Composite quantitative results of asphalt phase mechanical properties

    力学性质 沥青类型 原样沥青 短期老化 长期老化
    分散相的相位分数 基质沥青 20 22 0
    改性沥青 48 51 37
    分散相形态因子 基质沥青 2.4 2.6 1.0
    改性沥青 4.4 4.8 6.1
    复合模量/MPa 基质沥青 111 138 187
    改性沥青 158 313 547
    复合黏附力/nN 基质沥青 16.7 14.3 4.2
    改性沥青 32.2 35.0 15.8
    下载: 导出CSV
  • [1] 王明, 刘黎萍, 罗东. 纳米尺度沥青微观结构特征演化分析[J]. 中国公路学报, 2017, 30(1): 10-16. doi: 10.3969/j.issn.1001-7372.2017.01.002

    WANG Ming, LIU Li-ping, LUO Dong. Analysis of nanoscale evolution features of microstructure of asphalt[J]. China Journal of Highway and Transport, 2017, 30(1): 10-16. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.01.002
    [2] REBELO L M, DE SOUSA J S, ABREU A S, et al. Aging of asphaltic binders investigated with atomic force microscopy[J]. Fuel, 2014, 117: 15-25. doi: 10.1016/j.fuel.2013.09.018
    [3] GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate[J]. Frontiers of Structural and Civil Engineering, 2018, 12(2): 248-259. doi: 10.1007/s11709-017-0422-x
    [4] 王子仪, 张荣君, 郑玉祥, 等. AFM扫描参数对样品粗糙度测量的影响[J]. 实验室研究与探索, 2013, 32(2): 5-7. doi: 10.3969/j.issn.1006-7167.2013.02.002

    WANG Zi-yi, ZHANG Rong-jun, ZHENG Yu-xiang, et al. Influence of AFM scanning parameters on surface roughness measurement[J]. Research and Exploration in Laboratory, 2013, 32(2): 5-7. (in Chinese). doi: 10.3969/j.issn.1006-7167.2013.02.002
    [5] XING Cheng-wei, LIU Li-ping, WANG Ming. A new preparation method and imaging parameters of asphalt binder samples for atomic force microscopy[J]. Construction and Building Materials, 2019, 205: 622-632. doi: 10.1016/j.conbuildmat.2019.02.027
    [6] HE Hong-sen, ZHANG En-hao, FATOKOUN S, et al. Effect of the softer binder on the performance of repeated RAP binder[J]. Construction and Building Materials, 2018, 178: 280-287. doi: 10.1016/j.conbuildmat.2018.05.106
    [7] 崔亚楠, 赵琳, 韩吉伟, 等. 盐冻融循环条件下沥青高温流变性能及微观结构[J]. 复合材料学报, 2017, 34(8): 1839-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201708027.htm

    CUI Ya-nan, ZHAO Lin, HAN Ji-wei, et al. High temperature rheological properties and microstructures of asphalt under salt freezing cycles[J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1839-1846. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201708027.htm
    [8] LOEBER L, SUTTON O, MOREL J, et al. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy[J]. Journal of Microscopy, 1996, 182(1): 32-39. doi: 10.1046/j.1365-2818.1996.134416.x
    [9] PAULI A T, GRIMES W. Surface morphological stability modeling of SHRP asphalts: stability and compatibility of heavy oils and residual[J]. American Chemical Society: Division of Petroleum Chemistry, 2003, 48(1): 19-23.
    [10] DE MORAES M B, PEREIRA R B, SIMAO R A, et al. High temperature AFM study of CAP 30/45 pen grade bitumen[J]. Journal of Microscopy, 2010, 239(1): 46-53. doi: 10.1111/j.1365-2818.2009.03354.x
    [11] NAHAR S N, SCHMETS A J M, SCARPAS A, et al. Temperature and thermal history dependence of the microstructure in bituminous materials[J]. European Polymer Journal, 2013, 49(8): 1964-1974. doi: 10.1016/j.eurpolymj.2013.03.027
    [12] WU Shao-peng, PANG Ling, MO Lian-tong, et al. Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen[J]. Construction and Building Materials, 2009, 23(2): 1005-1010. doi: 10.1016/j.conbuildmat.2008.05.004
    [13] WU Shao-peng, ZHU Guo-jun, CHEN Zheng, et al. Laboratory research on rheological behavior and characterization of ultraviolet aged asphalt[J]. Journal of Central South University of Technology, 2008, 15(S1): 369-373. doi: 10.1007/s11771-008-0382-3
    [14] YANG Jun, GONG Ming-hui, WANG Xiao-ting, et al. Observation and characterization of asphalt microstructure based on atomic force microscope[J]. Journal of Southeast University (English Edition), 2014, 30(3): 353-357.
    [15] 易军艳, 庞骁奕, 姚冬冬, 等. 基于原子力显微镜技术的沥青与矿料表面粗糙度及黏附特性[J]. 复合材料学报, 2017, 34(5): 1111-1121. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201705025.htm

    YI Jun-yan, PANG Xiao-yi, YAO Dong-dong, et al. Characterization of surface roughness and adhesive mechanism of asphalt and mineral aggregate based on atomic microscopy method[J]. Acta Materiae Compositae Sinica, 2017, 34(5): 1111-1121. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201705025.htm
    [16] 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    GUO Meng. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese).
    [17] 龚明辉. 生物质再生沥青混合料微观特性研究[D]. 南京: 东南大学, 2017.

    GONG Ming-hui. Investigation on micro-properties of bio-rejuvenated asphalt mixture[D]. Nanjing: Southeast University, 2017. (in Chinese).
    [18] JÄGER A, LACKNER R, EISENMENGER-SITTNER C, et al. Identification of four material phases in bitumen by atomic force microscopy[J]. Road Materials and Pavement Design, 2004, 5(S1): 9-24.
    [19] ALLEN R G. Structural characterization of micromechanical properties in asphalt using atomic force microscopy[D]. College Station: Texas A & amp; amp; M University, 2010.
    [20] GONG Ming-hui, YANG Jun, WEI Jian-ming, et al. Characterization of adhesion and healing at the interface between asphalt binders and aggregate using atomic force microscopy[J]. Transportation Research Record, 2015(2506): 100-106.
    [21] 解赛楠. 常温域沥青表面纳观构造及粘附特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    XIE Sai-nan. Study on nanostructure and adhesion of asphalt surface in normal temperature range[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese).
    [22] DAS P K, KRINGOS N, BIRGISSON B. Microscale investigation of thin film surface ageing of bitumen[J]. Journal of Microscopy, 2014, 254(2): 95-107. doi: 10.1111/jmi.12122
    [23] LYNE A L, WALLQVIST V, BIRGISSON B. Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy[J]. Fuel, 2013, 113: 248-256. doi: 10.1016/j.fuel.2013.05.042
    [24] RASHID F, HOSSAIN Z, BHASIN A. Nanomechanistic properties of reclaimed asphalt pavement modified asphalt binders using an atomic force microscope[J]. International Journal of Pavement Engineering, 2019, 20(3): 357-365. doi: 10.1080/10298436.2017.1293268
    [25] FILIPPELLI L, DE SANTO M P, GENTILE L, et al. Quantitative evaluation of the restructuring effect of a warm mix additive on bitumen recycling production[J]. Road Materials and Pavement Design, 2015, 16(3): 741-749. doi: 10.1080/14680629.2015.1028969
    [26] PAULI A T, GRIMES R W, BEEMER A G, et al. Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy[J]. International Journal of Pavement Engineering, 2011, 12(4): 291-309. doi: 10.1080/10298436.2011.575942
    [27] VELANKAR S, COOPER S L. Microphase separation and rheological properties of polyurethane melts. 3. Effect of block incompatibility on the viscoelastic properties[J]. Macromolecules, 2000, 33(2): 395-403. doi: 10.1021/ma9908189
    [28] 刘黎萍, 邢成炜, 王明. 基于原子力显微技术的混合料中沥青微尺度性能测试方法[J]. 同济大学学报(自然科学版), 2018, 46(9): 1218-1224. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809009.htm

    LIU Li-ping, XING Cheng-wei, WANG Ming. A method of determination of micro scale properties of asphalt components in mixtures based on atomic force microscopy[J]. Journal of Tongji University (Natural Science), 2018, 46(9): 1218-1224. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201809009.htm
    [29] 邢成炜, 刘黎萍, 刘威. 线型SBS改性沥青不同时程老化流变特征及阶段判别[J]. 东南大学学报(自然科学版), 2019, 49(2): 380-387. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201902026.htm

    XING Cheng-wei, LIU Li-ping, LIU Wei. Rheological characteristics and phase discrimination of linear SBS modified asphalt under different time aging[J]. Journal of Southeast University (Natural Science), 2019, 49(2): 380-387. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201902026.htm
    [30] 祁文洋, 李立寒, 张明杰, 等. SBS改性沥青的阶段性老化特征与机理[J]. 同济大学学报(自然科学版), 2016, 44(1): 95-99. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201601014.htm

    QI Wen-yang, LI Li-han, ZHANG Ming-jie, et al. Characteristics and mechanism of SBS modified asphalt's phased aging[J]. Journal of Tongji University (Natural Science), 2016, 44(1): 95-99. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201601014.htm
    [31] ARIFUZZAMAN M, ISLAM M S, HOSSAIN M I. Moisture damage evaluation in SBS and lime modified asphalt using AFM and artificial intelligence[J]. Neural Computing and Applications, 2017, 28(1): 125-134. doi: 10.1007/s00521-015-2041-6
    [32] 张恒龙, 徐国庆, 朱崇政, 等. 长期老化对基质沥青与SBS改性沥青化学组成、形貌及流变性能的影响[J]. 长安大学学报(自然科学版), 2019, 39(2): 10-18, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902003.htm

    ZHANG Heng-long, XU Guo-qing, ZHU Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(2): 10-18, 56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902003.htm
    [33] RAAB C, CAMARGO I, PARTL M N. Ageing and performance of warm mix asphalt pavements[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(4): 388-394. doi: 10.1016/j.jtte.2017.07.002
    [34] 王朝辉, 陈谦, 高志伟, 等. 浇注式沥青混凝土现状与发展[J]. 材料导报, 2017, 31(9): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201709021.htm

    WANG Chao-hui, CHEN Qian, GAO Zhi-wei, et al. Review on status and development of gussasphalt concrete[J]. Materials Review, 2017, 31(9): 135-145. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201709021.htm
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  868
  • HTML全文浏览量:  129
  • PDF下载量:  601
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回