留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多聚磷酸改性沥青流变性能

魏建国 时松 周育名 李平 陈致远 关阳

魏建国, 时松, 周育名, 李平, 陈致远, 关阳. 多聚磷酸改性沥青流变性能[J]. 交通运输工程学报, 2019, 19(6): 14-26. doi: 10.19818/j.cnki.1671-1637.2019.06.002
引用本文: 魏建国, 时松, 周育名, 李平, 陈致远, 关阳. 多聚磷酸改性沥青流变性能[J]. 交通运输工程学报, 2019, 19(6): 14-26. doi: 10.19818/j.cnki.1671-1637.2019.06.002
WEI Jian-guo, SHI Song, ZHOU Yu-ming, LI Ping, CHEN Zhi-yuan, GUAN Yang. Rheological property of polyphosphoric acid modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 14-26. doi: 10.19818/j.cnki.1671-1637.2019.06.002
Citation: WEI Jian-guo, SHI Song, ZHOU Yu-ming, LI Ping, CHEN Zhi-yuan, GUAN Yang. Rheological property of polyphosphoric acid modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 14-26. doi: 10.19818/j.cnki.1671-1637.2019.06.002

多聚磷酸改性沥青流变性能

doi: 10.19818/j.cnki.1671-1637.2019.06.002
基金项目: 

国家自然科学基金项目 51878075

广西科技计划项目 桂科AC16380111

湖南省教育厅科学研究项目 19B032

湖南省研究生科研创新项目 CX2018B543

长沙理工大学公路养护技术国家工程实验室开放基金项目 kfj150108

详细信息
    作者简介:

    魏建国(1972-), 男, 河南信阳人, 长沙理工大学教授, 工学博士, 从事路面结构与材料研究

    通讯作者:

    周育名(1985-), 女, 山东威海人, 长沙理工大学讲师, 工学博士

  • 中图分类号: U414

Rheological property of polyphosphoric acid modified asphalt

More Information
  • 摘要: 为研究多聚磷酸(PPA)对沥青性能的影响规律与作用机理, 采用四组分分析试验和沥青三大指标试验研究了PPA对不同基质沥青化学组分的影响, 基于动态剪切流变仪(DSR)开展了沥青温度扫描试验与频率扫描试验, 分析了不同配比的PPA改性沥青、PPA/SBS改性沥青与PPA/橡胶粉改性沥青在不同温度、不同动态频率加载条件下的流变性能变化趋势。分析结果表明: 随着PPA含量(质量分数, 后同)的增加, 沥青质含量逐渐提高, 油分(饱和分与芳香分)含量减小, 沥青逐渐由溶胶结构转变成溶-凝胶结构, 沥青高温性能逐渐增强; PPA改性沥青的高温性能与基质沥青的沥青质含量相关, 沥青质含量大的基质沥青经PPA改性后其沥青质含量提升最大, 针入度降低最多, 具备更好的高温性能; 基质沥青、SBS改性沥青与橡胶粉改性沥青掺入PPA后, 其抗车辙因子分别提高了1.0~8.2、0.8~13.9与2.9~19.7 kPa, 表明PPA可有效改善基质沥青、SBS改性沥青和橡胶粉改性沥青的高温、感温及流变性能, 增强沥青的弹性特征, 提高其抵抗剪切变形能力; 与单一改性沥青相比, PPA复合改性沥青的流变性能改善效果更为明显, PPA与聚合物改性沥青之间存在良好的相容性; 随着PPA含量的增加, 沥青10℃延度逐渐降低, 当PPA含量为1.5%时, 基质沥青、SBS改性沥青与橡胶粉改性沥青10℃延度分别下降77%、64%与39%, 表明PPA对沥青的低温性能存在一定负面作用, 建议PPA含量不宜超过1.0%;PPA/SBS改性沥青最佳复配比为1.0%PPA复配3%SBS, PPA/橡胶粉改性沥青最佳复配比为0.75%PPA复配15%橡胶粉。

     

  • 图  1  高速剪切乳化机

    Figure  1.  High-speed shear emulsifier

    图  2  动态剪切流变仪

    Figure  2.  Dynamic shear rheometer

    图  3  PPA含量与沥青质含量的关系

    Figure  3.  Relationship between PPA and asphaltene contents

    图  4  PPA含量与油分含量的关系

    Figure  4.  Relationship between PPA and maltene contents

    图  5  PPA含量与胶质含量的关系

    Figure  5.  Relationship between PPA and resin contents

    图  6  PPA含量对沥青残留软化点的影响

    Figure  6.  Effect of PPA content on residual softening point of asphalt

    图  7  PPA含量对沥青残留针入度比的影响

    Figure  7.  Effect of PPA content on residual penetration ratio of asphalt

    图  8  PPA含量对沥青残留延度的影响

    Figure  8.  Effect of PPA content on residual ductility of asphalt

    图  9  PPA单一改性沥青的抗车辙因子

    Figure  9.  Rutting resistance factors of PPA single modified asphalts

    图  10  PPA/橡胶粉改性沥青的抗车辙因子

    Figure  10.  Rutting resistance factors of PPA/rubber powder modified asphalts

    图  11  PPA/SBS改性沥青的抗车辙因子

    Figure  11.  Rutting resistance factors of PPA/SBS modified asphalts

    图  12  PPA改性沥青在不同频率下的损失模量与复数剪切模量比

    Figure  12.  Ratios of loss modulus to complex shear modulus of PPA modified asphalts with different frequencies

    图  13  PPA改性沥青在不同频率下的储存模量与复数剪切模量比

    Figure  13.  Ratios of storage modulus to complex shear modulus of PPA modified asphalts with different frequencies

    图  14  PPA/橡胶粉改性沥青在不同频率下的损失模量与复数剪切模量比

    Figure  14.  Ratios of loss modulus to complex shear modulus of PPA/ rubber powder modified asphalts with different frequencies

    图  15  PPA/橡胶粉改性沥青在不同频率下的储存模量与复数剪切模量比

    Figure  15.  Ratios of storage modulus to complex shear modulus of PPA/rubber powder modified asphalts with different frequencies

    图  16  PPA/SBS改性沥青在不同频率下的损失模量与复数剪切模量比

    Figure  16.  Ratios of loss modulus to complex shear modulus of PPA/SBS modified asphalts with different frequencies

    图  17  PPA/SBS改性沥青在不同频率下的储存模量与复数剪切模量比

    Figure  17.  Ratios of storage modulus to complex shear modulus of PPA/SBS modified asphalts with different frequencies

    图  18  PPA改性沥青的复数模量指数绝对值

    Figure  18.  Absolute values of complex modulus index of PPA modified asphalts

    图  19  PPA/SBS改性沥青复数模量指数绝对值

    Figure  19.  Absolute values of complex modulus index of PPA/SBS modified asphalts

    图  20  PPA/橡胶粉改性沥青复数模量指数绝对值

    Figure  20.  Absolute values of complex modulus index of PPA/rubber powder modified asphalts

    图  21  PPA改性沥青的延度

    Figure  21.  Ductilities of PPA modified asphalts

    图  22  PPA/SBS改性沥青的延度

    Figure  22.  Ductilities of PPA/SBS modified asphalts

    图  23  PPA/橡胶粉改性沥青的延度

    Figure  23.  Ductilities of PPA/rubber powder modified asphalts

    表  1  基质沥青技术指标

    Table  1.   Technical indices of matrix asphalts

    技术指标 试验结果 规范限值 试验方法
    路畅牌 壳牌 东海牌
    针入度(25 ℃, 5 s, 100 g)/0.1 mm 65.0 71.0 62.0 60~80 T 0604
    延度(10 ℃, 5 cm·min-1)/cm 24.6 47.2 31.2 ≥20 T 0605
    软化点/℃ 49.5 49.8 47.7 ≥46 T 0606
    闪点/℃ 306 283 322 ≥260 T 0611
    溶解度/% 99.6 99.7 99.7 ≥99.5 T 0607
    旋转薄膜烘箱试验后残留物 残留针入度比(25 ℃)/% 68 69 68 ≥61 T 0604
    残留延度(10 ℃)/cm 11 13 11 ≥6 T 0605
    质量变化/% -0.47 -0.41 -0.43 ≤±0.8 T 0609
    下载: 导出CSV

    表  2  PPA技术参数

    Table  2.   Technical parameters of PPA

    技术参数 试验结果 试验方法
    P2O5含量/% ≥76 HG/T 3696—2011
    SO42-含量/% ≤0.02 HG/T 3696.2—2011
    重金属含量/% ≤0.001 GB/T 23950—2009
    Fe含量/% GB/T 3049—2006
    As含量/% ≤0.005 GB/T 23947.1—2009
    下载: 导出CSV

    表  3  橡胶粉技术指标

    Table  3.   Technical indices of rubber powder

    技术指标 检测结果 技术要求 试验方法
    筛余/% 5 < 10 GB/T 19208
    相对密度 1.11 1.10~1.30 JT/T 797
    含水率/% 0.5 < 1.0 GB/T 19208
    金属含量/% 0.029 < 0.030 JT/T 797
    纤维含量/% 0 < 0.1 GB/T 19208
    天然橡胶含量/% 41.95 ≥30
    丙酮抽出物/% 7 ≤16 GB/T 3516
    炭黑含量/% 29 ≥28 GB/T 14837
    橡胶烃含量/% 54 ≥48 GB/T 14837
    下载: 导出CSV

    表  4  791-H型SBS改性剂技术指标

    Table  4.   Technical indices of 791-H SBS modifier

    技术指标 扯断拉伸率/% 挥发分/% 嵌段比 拉伸强度/MPa 分子结构 300%定伸应力/MPa 邵氏硬度/HA 熔体流动率/10 min 扯断永久变形/% 灰分/%
    试验结果 ≥700 ≤0.7 30/70 ≥16 线型 ≥2 ≥68 0.5~2.5 ≤40 ≤0.2
    下载: 导出CSV

    表  5  PPA改性沥青制备工艺参数

    Table  5.   Preparation technological parameters of PPA modified asphalts

    沥青类型 融化温度/℃ 溶胀温度/℃ 溶胀时间/min 剪切温度/℃ 剪切转速/(r·min-1) 剪切时间/min
    PPA单一改性沥青 150 150 3 500 6
    PPA/橡胶粉改性沥青 180 180 60 180 5 000 45
    PPA/SBS改性沥青 170 170 4 500 45
    下载: 导出CSV

    表  6  沥青四组分分析结果

    Table  6.   Four-component analysis results of asphalts

    沥青类型 PPA含量/% 软化点/℃ 针入度/0.1 mm 10 ℃延度/mm 沥青质含量/% 饱和分含量/% 芳香分含量/% 胶质含量/%
    路畅牌70#沥青 0.0 49.5 65.0 246 13.57 22.90 44.70 18.83
    0.5 50.5 52.8 129 16.49 18.88 43.25 21.38
    1.0 57.7 47.3 101 19.96 18.33 46.26 15.44
    壳牌70#沥青 0.0 49.8 71.0 472 12.33 27.37 46.90 13.40
    0.5 52.8 63.2 278 15.11 26.56 43.44 14.89
    1.0 58.1 57.0 194 17.00 24.10 42.29 16.61
    东海牌70#沥青 0.0 47.7 62.0 312 9.47 28.58 40.34 21.61
    0.5 51.2 56.4 258 11.38 26.06 41.00 21.56
    1.0 54.3 49.8 211 12.11 24.38 42.56 20.95
    下载: 导出CSV

    表  7  PPA改性沥青DSR温度扫描试验结果

    Table  7.   DSR temperature scanning test results of PPA modified asphalts

    方案编号 不同温度(℃)下的复数剪切模量/kPa
    60 66 72
    B 2.37 1.09 0.51
    P-0.5 3.34 1.64 0.79
    P-1.0 6.92 3.86 1.86
    P-1.5 9.86 5.29 2.64
    S-3 9.92 5.82 3.18
    P-0.5+S-3 8.21 4.52 2.32
    P-1.0+S-3 14.30 8.22 4.35
    P-1.5+S-3 18.20 10.70 6.03
    R-15 12.20 7.31 4.66
    P-0.5+R-15 12.80 7.89 4.52
    P-1.0+R-15 15.40 9.81 5.81
    P-1.5+R-15 24.00 15.60 9.59
    下载: 导出CSV

    表  8  PPA改性沥青的复数模量指数

    Table  8.   Complex modulus indices of PPA modified asphalts

    方案编号 复数模量指数 拟合优度
    B -6.331 4 0.999 9
    P-0.5 -5.465 7 1.000 0
    P-1.0 -4.667 5 0.996 4
    P-1.5 -4.470 4 0.999 5
    S-5 -3.189 3 0.992 5
    P-0.5+S-3 -4.402 4 0.999 8
    P-1.0+S-3 -3.869 8 0.999 6
    P-1.5+S-3 -2.869 8 0.999 2
    R-18 -3.127 2 0.997 4
    P-0.5+R-15 -3.402 4 0.999 7
    P-1.0+R-15 -3.068 1 0.999 9
    P-1.5+R-15 -2.736 7 0.999 9
    下载: 导出CSV
  • [1] 黄彬, 马丽萍, 许文娟. 改性沥青的研究进展[J]. 材料导报, 2010, 24(1): 137-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201001033.htm

    HUANG Bin, MA Li-ping, XU Wen-jian. Research development of modified asphalt[J]. Materials Review, 2010, 24(1): 137-141. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201001033.htm
    [2] BAUMGARDNER G L, MASSON J F, HARDEE J R, et al. Polyphosphoric acid modified asphalt: proposed mechanisms[J]. Journal of the Association of Asphalt Paving Technologists, 2005, 74: 283-305.
    [3] AJIDEH H, RANGEL A, BAHIA H. Can chemical modification of paving asphalts be equated to polymer modification?A laboratory study[J]. Transportation Research Record, 2004(1875): 56-69.
    [4] KODRAT I, SOHN D, HESP S A M. Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified materials[J]. Transportation Research Record, 2007(1998): 47-55.
    [5] BENNERT T, MARTIN J V. Polyphosphoric acid in combination with styrene-butadiene-styrene block copolymer[R]. Washington DC: Transportation Research Board, 2012.
    [6] BALDINO N, GABRIELE D, LUPI F R, et al. Rheological effects on bitumen of polyphosphoric acid (PPA) addition[J]. Construction and Building Materials, 2013, 40: 397-404. doi: 10.1016/j.conbuildmat.2012.11.001
    [7] NUNEZ J Y M, DOMINGOS M D I, FAXINA A L. Susceptibility of low-density polyethylene and polyphosphoric acid modified asphalt binders to rutting and fatigue cracking[J]. Construction and Building Materials, 2014, 73: 509-514. doi: 10.1016/j.conbuildmat.2014.10.002
    [8] JAFARI M, BABAZADEH A. Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep tests[J]. Road Materials and Pavement Design, 2016, 17(4): 859-876. doi: 10.1080/14680629.2015.1132631
    [9] BEHNOOD A, OLEK J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA)[J]. Construction and Building Materials, 2017, 151: 464-478. doi: 10.1016/j.conbuildmat.2017.06.115
    [10] SOENEN H, HEYRMAN S, LU Xiao-hui, et al. The interaction of polyphosphoric acid with bituminous binders[C]∥Springer. 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. Berlin: Springer, 2016: 103-114.
    [11] LIANG Peng, LIANG Ming, FAN Wei-yu, et al. Improving thermo-rheological behavior and compatibility of SBR modified asphalt by addition of polyphosphoric acid (PPA)[J]. Construction and Building Materials, 2017, 139: 183-192. doi: 10.1016/j.conbuildmat.2017.02.065
    [12] JASSO M, HAMPL R, VACIN O, et al. Rheology of conventional asphalt modified with SBS, Elvaloy and polyphosphoric acid[J]. Fuel Processing Technology, 2015, 140: 172-179. doi: 10.1016/j.fuproc.2015.09.002
    [13] 李超, 邬迪, 王子豪, 等. 多聚磷酸改性沥青结合料高低温流变特性[J]. 功能材料, 2016, 47(6): 6022-6028. doi: 10.3969/j.issn.1001-9731.2016.06.005

    LI Chao, WU Di, WANG Zi-hao, et al. High and low temperature rheological properties of polyphosphoric acid modified asphalt binder[J]. Journal of Functional Materials, 2016, 47(6): 6022-6028. (in Chinese). doi: 10.3969/j.issn.1001-9731.2016.06.005
    [14] 刘斌清, 仵江涛, 陈华鑫, 等. 多聚磷酸改性沥青的路用性能及机理分析[J]. 深圳大学学报(理工版), 2018, 35(3): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htm

    LIU Bin-qing, WU Jiang-tao, CHEN Hua-xin, et al. Road performance and mechanism analysis of polyphosphoric acid modified asphalt[J]. Journal of Shenzhen University (Science and Engineering), 2018, 35(3): 292-298. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201803008.htm
    [15] 曹晓娟, 张振兴, 郝培文, 等. 多聚磷酸对沥青混合料高低温性能影响研究[J]. 武汉理工大学学报, 2014, 36(6): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406010.htm

    CAO Xiao-juan, ZHANG Zhen-xing, HAO Pei-wen, et al. Effect of polyphosphoric acid on the high-and-low temperature property of matrix asphalt mixture[J]. Journal of Wuhan University of Technology, 2014, 36(6): 47-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201406010.htm
    [16] 周育名, 魏建国, 时松, 等. 多聚磷酸及橡胶粉复合改性沥青性能[J]. 长安大学学报(自然科学版), 2018, 38(5): 9-17. doi: 10.3969/j.issn.1671-8879.2018.05.002

    ZHOU Yu-ming, WEI Jian-guo, SHI Song, et al. Properties of composite-modified asphalt with polyphosphoric acid and rubber powder[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 9-17. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.05.002
    [17] 刘红瑛, 张铭铭, 黄凌辉, 等. 多聚磷酸复合SBS改性沥青流变性能及抗老化特性[J]. 东南大学学报(自然科学版), 2016, 46(6): 1290-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201606030.htm

    LIU Hong-ying, ZHANG Ming-ming, HUANG Ling-hui, et al. Rheological and anti-aging properties of polyphosphoric acid composite styrene butadiene styrene modified asphalt[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(6): 1290-1295. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201606030.htm
    [18] 王永宁, 李波, 李鹏, 等. 外加剂对多聚磷酸复配SBS改性沥青性能的影响[J]. 中外公路, 2018, 38(3): 264-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201803055.htm

    WANG Yong-ning, LI Bo, LI Peng, et al. Effect of admixture on properties of polyphosphoric acid compounded SBS modified asphalt[J]. Journal of China and Foreign Highway, 2018, 38(3): 264-268. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201803055.htm
    [19] 董刚. 多聚磷酸及多聚磷酸/聚合物复合改性沥青的性能和机理分析[D]. 西安: 长安大学, 2018.

    DONG Gang. Performance and mechanism of asphalt modified with polyphosphoric acid and polyphosphoric acid/polymer[D]. Xi'an: Chang'an University, 2018. (in Chinese).
    [20] 许实. 多聚磷酸/胶粉复合改性沥青的制备与性能研究[D]. 武汉: 武汉理工大学, 2015.

    XU Shi. Preparation and properties of polyphosphoric acid/crumb rubber modified bitumen[D]. Wuhan: Wuhan University of Technology, 2015. (in Chinese).
    [21] 王岚, 王子豪, 李超. 多聚磷酸改性沥青老化前后高温流变性能[J]. 复合材料学报, 2017, 34(7): 1610-1616. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201707029.htm

    WANG Lan, WANG Zi-hao, LI Chao. High temperature rheological properties of polyphosphoric acid modified asphalt[J]. Acta Materiae Compositae Sinica, 2017, 34(7): 1610-1616. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201707029.htm
    [22] 张文武. 废胎胶粉改性沥青机理研究[D]. 重庆: 重庆交通大学, 2009.

    ZHANG Wen-wu. Study on mechanism of crumb rubber modified asphalt[D]. Chongqing: Chongqing Jiaotong University, 2009. (in Chinese).
    [23] 颜可珍, 陈明, 胡玥. 废胶粉/APAO复合改性沥青性能[J]. 长安大学学报(自然科学版), 2018, 38(2): 1-8. doi: 10.3969/j.issn.1671-8879.2018.02.001

    YAN Ke-zhen, CHEN Ming, HU Yue. Performance of composite modified asphalt by waste rubber powder and amorphous poly alpha olefin[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(2): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.02.001
    [24] 丁海波. 多聚磷酸改性沥青及其复配技术研究[D]. 重庆: 重庆交通大学, 2015.

    DING Hai-bo. Polyphosphoric acid modified asphalt and composite modified technology[D]. Chongqing: Chongqing Jiaotong University, 2015. (in Chinese).
    [25] 付国志. 多聚磷酸改性沥青改性机理及混合料性能研究[D]. 大连: 大连理工大学, 2017.

    FU Guo-zhi. Research on modification mechanisms of polyphosphoric acid on asphalt and the performance of polyphosphoric acid modified asphalt mixture[D]. Dalian: Dalian University of Technology, 2017. (in Chinese).
    [26] 于水泳. TLA沥青和北美岩沥青改性沥青性能研究[D]. 长沙: 长沙理工大学, 2017.

    YU Shui-yong. Research on performance of modified asphalt of TLA and North American rock bitumen[D]. Changsha: Changsha University of Science and Technology, 2017. (in Chinese).
    [27] 陈华鑫, 贺孟霜, 纪鑫和, 等. 沥青性能与沥青组分的灰色关联分析[J]. 长安大学学报(自然科学版), 2014, 34(3): 1-6. doi: 10.3969/j.issn.1671-8879.2014.03.001

    CHEN Hua-xin, HE Meng-shuang, JI Xin-he, et al. Gray correlation analysis of asphalt performance and four fractions[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(3): 1-6. (in Chinese). doi: 10.3969/j.issn.1671-8879.2014.03.001
    [28] FINI E H, AL-QADI I L, YOU Zhan-ping, et al. Partial replacement of asphalt binder with bio-binder: characterisation and modification[J]. International Journal of Pavement Engineering, 2012, 13(6): 515-522. doi: 10.1080/10298436.2011.596937
    [29] 王笑风, 曹荣吉. 橡胶沥青的改性机理[J]. 长安大学学报(自然科学版), 2011, 31(2): 6-11. doi: 10.3969/j.issn.1671-8879.2011.02.002

    WANG Xiao-feng, CAO Rong-ji. Rubber asphalt modification mechanism[J]. Journal of Chang'an University (Natural Science Edition), 2011, 31(2): 6-11. (in Chinese). doi: 10.3969/j.issn.1671-8879.2011.02.002
    [30] 张晓亮, 陈华鑫, 张奔, 等. 不同来源橡胶粉对橡胶沥青性能影响[J]. 长安大学学报(自然科学版), 2018, 38(5): 1-8. doi: 10.3969/j.issn.1671-8879.2018.05.001

    ZHANG Xiao-liang, CHEN Hua-xin, ZHANG Ben, et al. Performance of asphalt binders modified by different crumb rubbers[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-8879.2018.05.001
    [31] 王杰, 秦永春, 曾蔚, 等. 厂拌热再生SBS改性沥青混合料抗裂性能[J]. 长安大学学报(自然科学版), 2019, 39(4): 27-34, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201904005.htm

    WANG Jie, QIN Yong-chun, ZENG Wei, et al. Crack resistance of mixture with reclaimed SBS modified asphalt pavement from central mixing plant[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(4): 27-34, 51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201904005.htm
    [32] 陈华鑫, 周燕, 王秉纲. SBS改性沥青老化后的动态力学性能[J]. 长安大学学报(自然科学版), 2009, 29(1): 1-5. doi: 10.3321/j.issn:1671-8879.2009.01.001

    CHEN Hua-xin, ZHOU Yan, WANG Bing-gang. Dynamic mechanics performance of aged SBS modified-asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2009, 29(1): 1-5. (in Chinese). doi: 10.3321/j.issn:1671-8879.2009.01.001
    [33] 陈华鑫, 王秉纲. SBS改性沥青车辙因子的改进[J]. 同济大学学报(自然科学版), 2008, 36(10): 1384-1387, 1403. doi: 10.3321/j.issn:0253-374X.2008.10.014

    CHEN Hua-xin, WANG Bing-gang. Modification of rutting factor of styrene butadiene styrene block copolymer modified-asphalt[J]. Journal of Tongji University (Natural Science), 2008, 36(10): 1384-1387, 1403. (in Chinese). doi: 10.3321/j.issn:0253-374X.2008.10.014
    [34] 何亮, 李冠男, 熊汉江, 等. 钢砂SBS改性沥青混凝土裂纹的感应加热自修复性能[J]. 交通运输工程学报, 2018, 18(3): 11-18. http://transport.chd.edu.cn/article/id/201803002

    HE Liang, LI Guan-nan, XIONG Han-jiang, et al. Induction heating activated self-healing of cracks in SBS modified asphalt concrete adding steel grits[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 11-18. (in Chinese). http://transport.chd.edu.cn/article/id/201803002
    [35] 周庆华, 贾渝. 沥青胶结料高温性能试验方法的评价[J]. 长安大学学报(自然科学版), 2008, 28(2): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200802004.htm

    ZHOU Qing-hua, JIA Yu. Evaluation on test methods for high temperature performance of asphalt binders[J]. Journal of Chang'an University (Natural Science Edition), 2008, 28(2): 9-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200802004.htm
    [36] 郝飞. 多聚磷酸改性沥青及其混合料技术性能研究[D]. 西安: 长安大学, 2012.

    HAO Fei. Research on the technical characteristic of the polyphosphoric acid modified asphalt and asphalt mixture[D]. Xi'an: Chang'an University, 2012. (in Chinese).
    [37] BAHIA H U, HANSON D I, ZENG M, et al. Characterization of modified asphalt binders in superpave mix design[R]. Washington DC: Transportation Research Board, 2001.
    [38] AASHTO-T315-10: 2006, standard method of test for determining the rheological properties of asphalt binder[S].
    [39] 张恒龙, 史才军, 余剑英, 等. 多聚磷酸对不同沥青的改性及改性机理研究[J]. 建筑材料学报, 2013, 16(2): 255-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201302015.htm

    ZHANG Heng-long, SHI Cai-jun, YU Jian-ying, et al. Modification and its mechanism of different asphalts by polyphosphoric acid[J]. Journal of Building Materials, 2013, 16(2): 255-260. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201302015.htm
    [40] 张恒龙, 徐国庆, 朱崇政, 等. 长期老化对基质沥青与SBS改性沥青化学组成、形貌及流变性能的影响[J]. 长安大学学报(自然科学版), 2019, 39(2): 10-18, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902003.htm

    ZHANG Heng-long, XU Guo-qing, ZHU Chong-zheng, et al. Influence of long-term aging on chemical constitution, morphology and rheology of base and SBS modified asphalt[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(2): 10-18, 56. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201902003.htm
    [41] 党燕妮. 基于流变的生物炭改性沥青性能研究[D]. 西安: 长安大学, 2017.

    DANG Yan-ni. Research on the properties of bio-char modified asphalt based on rheology[D]. Xi'an: Chang'an University, 2017. (in Chinese).
    [42] 孙敏, 郑木莲, 毕玉峰, 等. 聚氨酯改性沥青改性机理和性能[J]. 交通运输工程学报, 2019, 19(2): 49-58. http://transport.chd.edu.cn/article/id/201902005

    SUN Min, ZHENG Mu-lian, BI Yu-feng, et al. Modification mechanism and performance of polyurethane modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 49-58. (in Chinese). http://transport.chd.edu.cn/article/id/201902005
  • 加载中
图(23) / 表(8)
计量
  • 文章访问数:  1133
  • HTML全文浏览量:  308
  • PDF下载量:  518
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-22
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回