留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理参数的转向架定位橡胶节点动力学建模

刘诗慧 石怀龙 王玮 刘洪涛 谭富星

刘诗慧, 石怀龙, 王玮, 刘洪涛, 谭富星. 基于物理参数的转向架定位橡胶节点动力学建模[J]. 交通运输工程学报, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009
引用本文: 刘诗慧, 石怀龙, 王玮, 刘洪涛, 谭富星. 基于物理参数的转向架定位橡胶节点动力学建模[J]. 交通运输工程学报, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009
LIU Shi-hui, SHI Huai-long, WANG Wei, LIU Hong-tao, TAN Fu-xing. Dynamics modelling of positioning rubber joint of a bogie based on physical parameters[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009
Citation: LIU Shi-hui, SHI Huai-long, WANG Wei, LIU Hong-tao, TAN Fu-xing. Dynamics modelling of positioning rubber joint of a bogie based on physical parameters[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009

基于物理参数的转向架定位橡胶节点动力学建模

doi: 10.19818/j.cnki.1671-1637.2019.06.009
基金项目: 

国家自然科学基金项目 51805451

国家自然科学基金项目 11790282

中央高校基本科研业务费专项资金项目 2682019CX43

详细信息
    作者简介:

    刘诗慧(1988-), 吉林长春人, 女, 中车长春轨道客车股份有限公司工程师, 从事机车车辆试验测试技术研究

    通讯作者:

    石怀龙(1986-), 吉林公主岭人, 男, 西南交通大学助理研究员, 工学博士

  • 中图分类号: U270.3

Dynamics modelling of positioning rubber joint of a bogie based on physical parameters

More Information
  • 摘要: 针对高速列车转向架悬挂系统中的弹性橡胶件, 开展了基于物理参数的橡胶件非线性动力学建模方法研究; 为准确模拟其非线性刚度与阻尼的硬度相关性、结构尺寸相关性、激励频率相关性和激励位移幅值相关性, 采用有限元软件ABAQUS中的Mooney-Rivlin橡胶本构模型表征橡胶件的刚度与其结构尺寸和胶料硬度之间的相关性, 采用包括分数导数阻尼力元、摩擦力元和弹簧力元的动力学模型表征橡胶件刚度和阻尼的频变、幅变特性, 采用最小二乘法实现基于台架试验的模型参数识别; 对橡胶垫和定位橡胶节点的非线性特性进行仿真和台架试验, 验证了动力学模型的有效性; 在SIMPACK软件中定义自编力元, 进行车辆动力学性能分析, 有限元模型为动力学模型提供了基础的模型参数。分析结果表明: 橡胶垫和定位橡胶节点的刚度与胶料邵氏硬度基本呈正比关系, 硬度80 HA对应的刚度约为60 HA时的2倍; 载荷作用方向的胶料越少其对应方向的刚度越大; 橡胶垫的轴向和径向刚度解耦, 分别受高度和内外径尺寸影响, 橡胶垫轴向刚度随高度的下降率为0.2~0.6 MN·m-1·mm-1; 定位橡胶节点的芯轴尺寸改变引起其轴向和径向刚度同时变化, 定位橡胶节点径向刚度随内径的增长率为3.1~5.2 MN·m-1·mm-1; 采用非线性橡胶件动力学模型的车辆动力学仿真结果与传统等效力元模型结果差异为20%, 说明橡胶垫和定位橡胶节点动态参数的非线性对车辆动力学性能有显著影响。

     

  • 图  1  转向架一系悬挂的弹性橡胶件

    Figure  1.  Elastic rubber components in primary suspension of bogie

    图  2  基于物理参数的橡胶件动力学建模方法

    Figure  2.  Modelling method of rubber component's dynamics based on physical parameters

    图  3  橡胶垫和定位橡胶节点的有限元模型

    Figure  3.  Finite element models of rubber bearing and positioning rubber joint

    图  4  橡胶垫轴向刚度与胶料硬度的相关性

    Figure  4.  Correlation between axial stiffness of rubber bearing and rubber material hardness

    图  5  橡胶垫轴向刚度与结构高度的相关性

    Figure  5.  Correlation between axial stiffness of rubber bearing and structural height

    图  6  定位橡胶节点径向刚度与胶料硬度的相关性

    Figure  6.  Correlation between radial stiffness of positioning rubber joint and rubber material hardness

    图  7  定位橡胶节点径向刚度与内径的相关性

    Figure  7.  Correlation between radial stiffness of positioning rubber joint and inner diameter

    图  8  橡胶件动力学模型输出力组成

    Figure  8.  Output force components of rubber component's dynamics model

    图  9  分数导数阻尼力元

    Figure  9.  Fractional derivative damping force element

    图  10  正弦信号sin(2πt)及其不同阶数的分数导数

    Figure  10.  Sinewave sin(2πt) and its different orders' fractional derivative

    图  11  摩擦力元

    Figure  11.  Frictional force element

    图  12  线性弹簧力元

    Figure  12.  Linear spring force element

    图  13  定位橡胶节点动态参数的仿真与试验结果对比(频率6 Hz)

    Figure  13.  Comparison of dynamic parameters of positioning rubber joint between simulation and experimental results (at frequency 6 Hz)

    图  14  定位橡胶节点动态参数的仿真与试验结果对比(频率12 Hz)

    Figure  14.  Comparison of dynamic parameters of positioning rubber joint between simulation and experimental results (at frequency 12 Hz)

    图  15  含橡胶件的转向架动力学模型

    Figure  15.  Dynamics model of bogie with rubber components

    图  16  车辆横向平稳性指标曲线

    Figure  16.  Curves of lateral sperling index of vehicle

    图  17  车辆运行安全性指标曲线

    Figure  17.  Curves of operation safety index of vehicle

    表  1  橡胶件非线性力元的输入参数

    Table  1.   Input parameters for nonlinear force element of rubber component

    参数 单位
    构架上的力元标记点
    转臂上的力元标记点
    初始载荷(纵向、横向和垂向) N
    线性弹簧刚度(纵向、横向和垂向) N·m-1
    分数导数阶数(纵向、横向和垂向)
    迭代步数
    等效阻尼系数(纵向、横向和垂向) N·s·m-1
    最大摩擦力(纵向、横向和垂向) N
    最大摩擦力之半位移(纵向、横向和垂向) mm
    下载: 导出CSV

    表  2  橡胶件非线性力元的输出参数

    Table  2.   Output parameters for nonlinear force element of rubber component

    参数 单位
    标记点相对位移(纵向、横向和垂向) m
    标记点相对速度(纵向、横向和垂向) m·s-1
    弹簧力(纵向、横向和垂向) N
    阻尼力(纵向、横向和垂向) N
    摩擦力(纵向、横向和垂向) N
    总输出力(纵向、横向和垂向) N
    下载: 导出CSV
  • [1] SJÖBERG M, KARI L. Non-linear behavior of a rubber isolator system using fractional derivatives[J]. Vehicle System Dynamics, 2002, 37(3): 217-236. doi: 10.1076/vesd.37.3.217.3532
    [2] BERG M. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle System Dynamics, 1998, 30(3/4): 197-212.
    [3] 吴杰, 上官文斌. 采用黏弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200801028.htm

    WU Jie, SHANGGUAN Wen-bin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model[J]. Engineering Mechanics, 2008, 25(1): 161-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200801028.htm
    [4] 吴杰, 上官文斌, 潘孝勇. 采用超弹性-黏弹性-弹塑性本构模型的橡胶隔振器动态特性计算方法[J]. 机械工程学报, 2010, 46(14): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014020.htm

    WU Jie, SHANGGUAN Wen-bin, PAN Xiao-yong. Computational method for dynamic properties of rubber isolators using hyperelastic-viscoelastic-plastoelastic constitutive model[J]. Journal of Mechanical Engineering, 2010, 46(14): 109-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201014020.htm
    [5] SINGH M P, CHANG T S. Seismic analysis of structures with viscoelastic dampers[J]. Journal of Engineering Mechanics, 2009, 135(6): 571-580. doi: 10.1061/(ASCE)0733-9399(2009)135:6(571)
    [6] YAJIMA T, NAGAHAMA H. Differential geometry of viscoelastic models with fractional-order derivatives[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(38): 1-9.
    [7] MIEHE C, KECK J. Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers, experiments, modeling and algorithmic implementation[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 323-365. doi: 10.1016/S0022-5096(99)00017-4
    [8] CHANG T S, SINGH M P. Mechanical model parameters for viscoelastic dampers[J]. Journal of Engineering Mechanics, 2009, 135(6): 581-584. doi: 10.1061/(ASCE)0733-9399(2009)135:6(581)
    [9] 柯维, 郑建华. 基于橡胶硬度的隔振器性能判定[J]. 船海工程, 2008, 37(4): 142-144. doi: 10.3963/j.issn.1671-7953.2008.04.044

    KE Wei, ZHENG Jian-hua. Judge mount's performance of vibration isolation based on the rubber's stiffness[J]. Ship and Ocean Engineering, 2008, 37(4): 142-144. (in Chinese). doi: 10.3963/j.issn.1671-7953.2008.04.044
    [10] 王锐, 李世其, 宋少云. 隔振橡胶本构建模研究[J]. 振动与冲击, 2007, 26(1): 77-79, 83. doi: 10.3969/j.issn.1000-3835.2007.01.021

    WANG Rui, LI Shi-qi, SONG Shao-yun. Study on constitutive modelling of vibration isolation rubber[J]. Journal of Vibration and Shock, 2007, 26(1): 77-79, 83. (in Chinese). doi: 10.3969/j.issn.1000-3835.2007.01.021
    [11] 赵广, 刘健, 刘占生. 橡胶隔振器非线性动力学模型理论与实验研究[J]. 振动与冲击, 2010, 29(1): 173-177. doi: 10.3969/j.issn.1000-3835.2010.01.038

    ZHAO Guang, LIU Jian, LIU Zhan-sheng. Theoretical and experimental study on nonlinear dynamic model of a rubber isolator[J]. Journal of Vibration and Shock, 2010, 29(1): 173-177. (in Chinese). doi: 10.3969/j.issn.1000-3835.2010.01.038
    [12] 陈莲, 周海亭. 计算橡胶隔振器静态特性的数值分析方法[J]. 振动与冲击, 2005, 24(3): 120-123. doi: 10.3969/j.issn.1000-3835.2005.03.035

    CHEN Lian, ZHOU Hai-ting. Numerical methods for analyzing static characteristics of rubber isolator[J]. Journal of Vibration and Shock, 2005, 24(3): 120-123. (in Chinese). doi: 10.3969/j.issn.1000-3835.2005.03.035
    [13] 王晓侠, 刘德立, 周海亭. 橡胶隔振器参数计算与分析[J]. 噪声与振动控制, 2008, 28(4): 9-12. doi: 10.3969/j.issn.1006-1355.2008.04.004

    WANG Xiao-xia, LIU De-li, ZHOU Hai-ting. Calculation and analysis of the parameter of rubber isolator[J]. Noise and Vibration Control, 2008, 28(4): 9-12. (in Chinese). doi: 10.3969/j.issn.1006-1355.2008.04.004
    [14] 姚利锋, 周海亭, 陶杰. 有限元在大载荷橡胶隔振器设计中的应用研究[J]. 噪声与振动控制, 2006, 26(6): 16-18. doi: 10.3969/j.issn.1006-1355.2006.06.005

    YAO Li-feng, ZHOU Hai-ting, TAO Jie. Application of finite element in design of large load rubber isolator[J]. Noise and Vibration Control, 2006, 26(6): 16-18. (in Chinese). doi: 10.3969/j.issn.1006-1355.2006.06.005
    [15] 韩德宝, 宋希庚. 橡胶隔振器刚度和阻尼本构关系的试验研究[J]. 振动与冲击, 2009, 28(1): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200901036.htm

    HAN De-bao, SONG Xi-geng. Experimental study on constitutive model for damping and stiffness of a rubber isolator[J]. Journal of Vibration and Shock, 2009, 28(1): 156-160. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200901036.htm
    [16] 刘文玺, 周其斗. 基于非线性有限元法的橡胶隔振器构型优化[J]. 船舶力学, 2014, 18(4): 434-440. doi: 10.3969/j.issn.1007-7294.2014.04.011

    LIU Wen-xi, ZHOU Qi-dou. Study on configuration optimization of rubber isolator by nonlinear FEM[J]. Journal of Ship Mechanics, 2014, 18(4): 434-440. (in Chinese). doi: 10.3969/j.issn.1007-7294.2014.04.011
    [17] GIL-NEGRETE N, VINOLAS J, KARI L. A non-linear rubber material model combining fractional order viscoelasticity and amplitude dependent effects[J]. Journal of Applied Mechanics, 2009, 76(1): 1-30.
    [18] BERG M. A model for rubber springs in the dynamic analysis of rail vehicles[J]. Journal of Rail and Rapid Transit, 1997, 211(2): 95-108. doi: 10.1243/0954409971530941
    [19] 潘孝勇, 上官文斌, 柴国钟, 等. 基于超弹性、分数导数和摩擦模型的碳黑填充橡胶隔振器动态建模[J]. 振动与冲击, 2007, 26(10): 6-10, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200710003.htm

    PAN Xiao-yong, SHANGGUAN Wen-bin, CHAI Guo-zhong, et al. Dynamic modeling for carbon-filled rubber isolators based on hyperelasticity, fractional derivative and a generalized frictional model[J]. Journal of Vibration and Shock, 2007, 26(10): 6-10, 15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200710003.htm
    [20] 唐振寰, 罗贵火, 陈伟, 等. 橡胶隔振器黏弹性5参数分数导数并联动力学模型[J]. 航空动力学报, 2013, 28(2): 275-282. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201302007.htm

    TANG Zhen-huan, LUO Gui-huo, CHEN Wei, et al. Parallel dynamic model of rubber isolator about five-parameter fractional derivative[J]. Journal of Aerospace Power, 2013, 28(2): 275-282. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201302007.htm
    [21] SHI Huai-long, WU Ping-bo. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Journal of Rail and Rapid Transit, 2016, 230(7): 1745-1759. doi: 10.1177/0954409715614871
    [22] 谭富星, 石怀龙, 王玮, 等. 转向架橡胶件动态参数的高低温特性[J]. 交通运输工程学报, 2019, 19(4): 104-114. http://transport.chd.edu.cn/article/id/201904010

    TAN Fu-xing, SHI Huai-long, WANG Wei, et al. High and low temperature characteristics of rubber component dynamic parameters of a bogie[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 104-114. (in Chinese). http://transport.chd.edu.cn/article/id/201904010
    [23] 刘迪辉, 范迪, 欧阳雁峰, 等. 温度对橡胶隔振器力学性能的影响[J]. 噪声与振动控制, 2014, 34(3): 203-206, 210. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201403045.htm

    LIU Di-hui, FAN Di, OUYANG Yan-feng, et al. Temperature effect on mechanical properties of rubber isolators[J]. Noise and Vibration Control, 2014, 34(3): 203-206, 210. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201403045.htm
    [24] 宋春元, 罗仁. 低温条件悬挂参数变化对动力学性能的影响研究[C]//中国智能交通协会. 第八届中国智能交通年会论文. 合肥: 电子工业出版社, 2013: 309-314. SONG Chun-yuan, LUO Ren. Study on the effects of parameters on the dynamic performance of the low temperature suspension[C]∥ITS China. Proceedings of 8th Chinese Technological Transportation. Hefei: Publishing House of Electronics Industry, 2013: 309-314. (in Chinese).
    [25] 孙琳, 林化强, 林鹏, 等. 北方高寒地区轨道车辆橡胶材料的力学特性分析[J]. 材料开发与应用, 2016, 31(6): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY201606020.htm

    SUN Lin, LIN Hua-qiang, LIN Peng, et al. Mechanical properties analysis of rubber materials for rail vehicles in the North China[J]. Development and Application of Materials, 2016, 31(6): 88-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLKY201606020.htm
    [26] 孙德伟, 张广玉. 橡胶隔振器迟滞阻尼特性识别的新方法[J]. 振动与冲击, 2010, 29(4): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201004039.htm

    SUN De-wei, ZHANG Guang-yu. A new approach to identify hysteretic damping of a rubber isolator[J]. Journal of Vibration and Shock, 2010, 29(4): 164-168. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201004039.htm
    [27] 孙伟, 李以农, 刘万里, 等. 橡胶隔振器非线性动态特性建模及实验研究[J]. 振动与冲击, 2012, 31(23): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201223015.htm

    SUN Wei, LI Yi-nong, LIU Wan-li, et al. Dynamic modeling and test for a nonlinear rubber damper[J]. Journal of Vibration and Shock, 2012, 31(23): 71-76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201223015.htm
    [28] LUO Ren, SHI Huai-long, GUO Jin-ying, et al. A nonlinear rubber spring model for the dynamics simulation of a high-speed train[J]. Vehicle System Dynamics, 2019: 1-18.
    [29] HORGAN C O, MURPHY J G. Compression tests and constitutive models for the slight compressibility of elastic rubber-like materials[J]. International Journal of Engineering Science, 2009, 47(11/12): 1232-1239.
    [30] 滕万秀, 罗仁, 石怀龙, 等. 高寒动车组-40 ℃环境下动力学性能[J]. 机械工程学报, 2019, 55(4): 148-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904020.htm

    TENG Wan-xiu, LUO Ren, SHI Huai-long, et al. Dynamics behaviour of high-speed train at the low temperature of -40 ℃[J]. Journal of Mechanical Engineering, 2019, 55(4): 148-153. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904020.htm
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  664
  • HTML全文浏览量:  231
  • PDF下载量:  491
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-27
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回