留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于颗粒阻尼的矿用自卸车振动舒适性

肖望强 卢大军 宋黎明 杨哲 李泽光

肖望强, 卢大军, 宋黎明, 杨哲, 李泽光. 基于颗粒阻尼的矿用自卸车振动舒适性[J]. 交通运输工程学报, 2019, 19(6): 111-124. doi: 10.19818/j.cnki.1671-1637.2019.06.011
引用本文: 肖望强, 卢大军, 宋黎明, 杨哲, 李泽光. 基于颗粒阻尼的矿用自卸车振动舒适性[J]. 交通运输工程学报, 2019, 19(6): 111-124. doi: 10.19818/j.cnki.1671-1637.2019.06.011
XIAO Wang-qiang, LU Da-jun, SONG Li-ming, YANG Zhe, LI Ze-guang. Vibration comfort of mining dump truck based on particle damping[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 111-124. doi: 10.19818/j.cnki.1671-1637.2019.06.011
Citation: XIAO Wang-qiang, LU Da-jun, SONG Li-ming, YANG Zhe, LI Ze-guang. Vibration comfort of mining dump truck based on particle damping[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 111-124. doi: 10.19818/j.cnki.1671-1637.2019.06.011

基于颗粒阻尼的矿用自卸车振动舒适性

doi: 10.19818/j.cnki.1671-1637.2019.06.011
基金项目: 

国家自然科学基金项目 51875490

厦门市科技计划项目 3202Z20173021

厦门市交通基础设施智能管养工程技术研究中心开放基金项目 TCIMI201813

中央高校基本科研业务费专项资金项目 20720180063

详细信息
    作者简介:

    肖望强(1981-), 男, 河北邢台人, 厦门大学副教授, 工学博士, 从事减振降噪研究

  • 中图分类号: U463.83

Vibration comfort of mining dump truck based on particle damping

More Information
    Author Bio:

    XIAO Wang-qiang(1981-), male, associate professor, PhD, wqxiao@xmu.edu.cn

  • 摘要: 采用颗粒阻尼技术对驾驶室座椅进行减振, 提高其振动舒适性; 选择与驾驶室底板和座椅连接的基座作为颗粒阻尼器, 建立了基座阻尼器的离散元模型; 模拟整车在发动机最高转速下的振动环境, 针对不同阻尼器方案(颗粒材质、阻尼器分层数、颗粒粒径和颗粒填充率), 通过离散元仿真计算逐一进行耗能分析, 得到了最优方案; 对实物模型进行试验, 对比原结构与增加阻尼颗粒后基座的加速度均方根, 确认减振效果, 将试验与仿真计算结果进行趋势对比, 验证了离散元模型的可行性; 在实际样车试验中应用最优方案, 采集了座椅在发动机不同转速下的响应, 进行了数据分析; 针对最高转速的工况, 进行了人体振动暴露的舒适性分析。研究结果表明: 从频域图的单峰最大值来看, 减振前座椅最大加速度响应出现在425 Hz处的0.643 4 m·s-2, 安装颗粒阻尼器后最大值为25 Hz处的0.087 5 m·s-2; 从时域图来看, 当发动机转速分别为750、1 110、1 470、1 830、2 200 r·min-1时, 安装颗粒阻尼器后座椅加速度均方根综合减幅分别达到24.2%、29.6%、34.7%、39.2%、46.0%, 发动机转速越高, 颗粒阻尼器的减振效果越好; 安装颗粒阻尼器后各频段舒适性界限时长均有大幅度增加, 频段为3.1和4.0 Hz时, 安装颗粒阻尼器后舒适性界限时长均提升了1.50倍, 为20 Hz时, 安装颗粒阻尼器后舒适性界限时长提升了1.57倍。

     

  • 图  1  整车振动传递路径

    Figure  1.  Vibration transmission path of complete truck

    图  2  测点1~5的位置

    Figure  2.  Positions of measuring points 1-5

    图  3  测点5处纵向时域与频域信号

    Figure  3.  Time domain and frequency domain signals in longitudinal direction at measuring point 5

    图  4  测点5处横向时域与频域信号

    Figure  4.  Time domain and frequency domain signals in lateral direction at measuring point 5

    图  5  测点5处垂向时域与频域信号

    Figure  5.  Time domain and frequency domain signals in vertical direction at measuring point 5

    图  6  颗粒接触模型

    Figure  6.  Particle contact model

    图  7  座椅基座模型

    Figure  7.  Seat plinth model

    图  8  基座离散元模型

    Figure  8.  Discrete element model of plinth

    图  9  耗能计算流程

    Figure  9.  Calculation flow of energy dissipation

    图  10  不同阻尼颗粒的耗能

    Figure  10.  Energy dissipations of different damping particles

    图  11  3种不锈钢颗粒的耗能

    Figure  11.  Energy dissipations of three different stainless steel particles

    图  12  阻尼器不同分层数方案

    Figure  12.  Schemes of dampers with different layer numbers

    图  13  阻尼器不同分层数方案的耗能

    Figure  13.  Energy dissipations of damper schemes with different layer numbers

    图  14  不同阻尼器直径与颗粒粒径比值方案

    Figure  14.  Different ratio schemes of damper diameter to particle size

    图  15  不同阻尼器直径与颗粒粒径比值方案力链结构

    Figure  15.  Force chain structures with different ratio schemes of damper diameter to particle size

    图  16  不同阻尼器直径与颗粒粒径比值方案B值的趋势

    Figure  16.  Trend of B values for different ratio schemes of damper diameter to particle size

    图  17  不同颗粒粒径的耗能

    Figure  17.  Energy dissipations of different particle sizes

    图  18  不同颗粒填充率的耗能

    Figure  18.  Energy dissipations of different particle filling rates

    图  19  试验装置与测试原理

    Figure  19.  Experimental installation and test theory

    图  20  模型振动试验

    Figure  20.  Model vibration experiment

    图  21  仿真计算与模型试验结果对比

    Figure  21.  Comparison between simulation calculation and model experiment results

    图  22  试验样车

    Figure  22.  Sample truck in experiment

    图  23  座椅测点位置

    Figure  23.  Measuring point of seat

    图  24  驾驶室内试验现场

    Figure  24.  Experimental site in cab

    图  25  样车怠速至最高转速的时域信号与最高转速下的频谱

    Figure  25.  Time domain signals of sample truck from idle speed to maximum speed and frequency spectrum of highest speed

    图  26  垂直方向座椅舒适性界限时长对比

    Figure  26.  Comparison of comfort durations of seat in vertical direction

    表  1  各测点位置加速度均方根

    Table  1.   Acceleration root mean squares of each measuring point positions

    测点 位置 加速度均方根/(m·s-2)
    纵向 横向 垂向
    1 发动机下方 42.6 147.2 232.4
    2 发动机支撑架前方 38.5 66.5 29.3
    3 车架后支梁 11.2 12.9 11.3
    4 车架后方驾驶室旁 10.3 11.6 9.0
    5 驾驶室底板 4.2 4.5 2.3
    下载: 导出CSV

    表  2  颗粒材质属性

    Table  2.   Particle material properties

    颗粒材质 密度/(g·mm-3) 弹性模量/GPa 泊松比 恢复系数
    不锈钢1 7.78 200 0.28 0.65
    不锈钢2 7.80 206 0.30 0.74
    不锈钢3 7.80 228 0.30 0.79
    下载: 导出CSV

    表  3  不同阻尼器直径与颗粒粒径比值方案的B

    Table  3.   B values of different ratio schemes of damper diameter to particle size

    A 颗粒平均接触力/N 颗粒接触数 B/N
    6.0 0.770 3 30 23.109 0
    8.0 0.233 6 61 14.249 6
    9.0 0.142 8 52 7.425 6
    10.0 0.116 6 91 10.610 6
    10.5 0.102 7 162 16.637 4
    11.0 0.174 1 236 41.087 6
    11.5 0.088 0 254 22.352 0
    12.0 0.084 8 286 24.252 8
    14.0 0.047 8 384 18.355 2
    15.0 0.026 5 541 14.336 5
    下载: 导出CSV

    表  4  颗粒不同材质下基座模型加速度均方根

    Table  4.   Acceleration root mean squares of plinth model with different particle materials

    方案 各方向加速度均方根/(m·s-2)
    纵向 横向 垂向
    无阻尼颗粒 7.889 2.386 5.911
    不锈钢1颗粒 5.148 1.794 5.047
    不锈钢2颗粒 4.726 1.447 4.635
    不锈钢3颗粒 4.427 1.324 4.257
    下载: 导出CSV

    表  5  阻尼器不同分层方案基座模型加速度均方根

    Table  5.   Acceleration root mean squares of plinth model with different damper layer number schemes

    方案 各方向加速度均方根/(m·s-2)
    纵向 横向 垂向
    无阻尼颗粒 7.889 2.386 5.911
    阻尼器不分层 5.148 1.794 5.047
    阻尼器分2层 4.548 1.584 4.574
    阻尼器分3层 4.046 1.476 3.957
    阻尼器分4层 4.125 1.504 4.087
    阻尼器分5层 5.274 1.814 5.157
    下载: 导出CSV

    表  6  安装颗粒阻尼器前后座椅加速度均方根对比

    Table  6.   Comparison of acceleration root mean squares of seat before and after installing particle damper

    下载: 导出CSV

    表  7  垂直方向各频段舒适性界限时长

    Table  7.   Comfort durations at each frequency in vertical direction

    方案 3.15 Hz 4.00 Hz 20.00 Hz
    加速度有效值/(m·s-2) 舒适性界限时长/h 加速度有效值/(m·s-2) 舒适性界限时长/h 加速度有效值/(m·s-2) 舒适性界限时长/h
    未安装颗粒阻尼器 0.28 2 0.24 2 0.26 7
    安装颗粒阻尼器 0.18 5 0.15 5 0.14 18
    下载: 导出CSV
  • [1] 张瑞, 樊新宇, 冯贤平, 等. 现代工程机械驾驶室中的人性化设计[J]. 建筑机械, 2013(9): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201309019.htm

    ZHANG Rui, FAN Xin-yu, FENG Xian-ping, et al. Humanity design on the cab of modern construction machinery[J]. Construction Machinery, 2013(9): 77-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJX201309019.htm
    [2] FRIMPONG S, GALECKI G, CHANG Zong-yu. Dump truck operator vibration control in high-impact shovel loading operations[J]. International Journal of Mining Reclamation Environment, 2011, 25(3): 213-225. doi: 10.1080/17480930.2011.595090
    [3] 张沙, 谷正气, 徐亚, 等. 行驶于矿山软土路面的自卸车的减振系统协同优化[J]. 汽车工程, 2017, 39(6): 702-709. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201706017.htm

    ZHANG Sha, GU Zheng-qi, XU Ya, et al. Collaborative optimization on the vibration attenuation system of dump truck driving on mine soil road[J]. Automotive Engineering, 2017, 39(6): 702-709. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201706017.htm
    [4] 杜明龙. 工程机械驾驶室减振分析及研究[D]. 济南: 山东大学, 2011.

    DU Ming-long. Vibration reduction research of construction machinery's cab[D]. Jinan: Shandong University, 2011. (in Chinese).
    [5] 张伟, 张文明, 郭苗苗. 矿用自卸车发动机减振橡胶垫的隔振设计[J]. 矿山机械, 2013, 41(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201306015.htm

    ZHANG Wei, ZHANG Wen-ming, GUO Miao-miao. Vibration isolation design on rubber damping in engine of mining dump truck[J]. Mining Processing Equipment, 2013, 41(5): 41-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201306015.htm
    [6] 史正文, 孙小娟. 工程机械驾驶室液阻橡胶隔振器动力学仿真与试验研究[J]. 工程机械, 2014, 45(11): 24-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201411006.htm

    SHI Zheng-wen, SUN Xiao-juan. Dynamic simulation and test study on hydraulically damped rubber mount for construction machinery cabs[J]. Construction Machinery and Equipment, 2014, 45(11): 24-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201411006.htm
    [7] 王勇, 李舜酩, 程春. 基于准零刚度隔振器的车-座椅-人耦合模型动态特性研究[J]. 振动与冲击, 2016, 35(15): 190-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201615033.htm

    WANG Yong, LI Shun-ming, CHENG Chun. Dynamic characteristics of a vehicle-seat-human coupled model with quasi-zero-stiffness isolators[J]. Journal of Vibration and Shock, 2016, 35(15): 190-196. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201615033.htm
    [8] WANG Yong, LI Shun-ming, CHENG Chun, et al. Adaptive control of a vehicle-seat-human coupled model using quasi-zero-stiffness vibration isolator as seat suspension[J]. Journal of Mechanical Science Technology, 2018, 32(7): 2973-2985. doi: 10.1007/s12206-018-0601-2
    [9] 刘杉, 孙琪, 侯力文, 等. 基于加速粒子群算法的车辆座椅悬架最优控制研究[J]. 噪声与振动控制, 2018, 38(3): 49-54, 59. doi: 10.3969/j.issn.1006-1355.2018.03.009

    LIU Shan, SUN Qi, HOU Li-wen, et al. Optimal control of active seat suspension systems using acceleration based particle swarm optimization[J]. Noise and Vibration Control, 2018, 38(3): 49-54, 59. (in Chinese). doi: 10.3969/j.issn.1006-1355.2018.03.009
    [10] 寇发荣. 车辆磁流变半主动座椅悬架的研制[J]. 振动与冲击, 2016, 35(8): 239-244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608038.htm

    KOU Fa-rong. Development of vehicle semi-active seat suspension with magneto-rheological damper[J]. Journal of Vibration and Shock, 2016, 35(8): 239-244. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608038.htm
    [11] 赵强, 冯海生, 李昌. 车辆磁流变座椅悬架模糊控制的研究[J]. 森林工程, 2011, 27(1): 51-55. doi: 10.3969/j.issn.1001-005X.2011.01.014

    ZHAO Qiang, FENG Hai-sheng, LI Chang. Study on fuzzy control of vehicle magneto-rheological seat suspension[J]. Forest Engineering, 2011, 27(1): 51-55. (in Chinese). doi: 10.3969/j.issn.1001-005X.2011.01.014
    [12] 胡国良, 刘前结, 李刚, 等. 磁流变阻尼器参数对座椅悬架系统减振效果的影响[J]. 交通运输工程学报, 2018, 18(1): 101-110. doi: 10.3969/j.issn.1671-1637.2018.01.010

    HU Guo-liang, LIU Qian-jie, LI Gang, et al. Influence of parameters of magnetorheological damper on vibration attenuation effect of seat suspension system[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.010
    [13] NING Dong-hong, SUN Shuai-shuai, DU Hai-ping, et al. Integrated active and semi-active control for seat suspension of a heavy duty vehicle[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(1): 9-100.
    [14] POPPLEWELL N, SEMERCIGIL S E. Performance of the beanbag impact damper for a sinusoidal external force[J]. Journal of Sound and Vibration, 1989, 133(2): 193-223. doi: 10.1016/0022-460X(89)90922-X
    [15] TOMLINSON G R, LIU W. The phenomenological behaviour of particle dampers[J]. Materials Science Forum, 2003, 440/441: 279-286. doi: 10.4028/www.scientific.net/MSF.440-441.279
    [16] 鲁正, 吕西林, 闫维明. 颗粒阻尼技术研究综述[J]. 振动与冲击, 2013, 32(7): 1-7. doi: 10.3969/j.issn.1000-3835.2013.07.001

    LU Zheng, LYU Xi-lin, YAN Wei-ming. A survey of particle damping technology[J]. Journal of Vibration and Shock, 2013, 32(7): 1-7. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.07.001
    [17] YAO Bing, CHEN Qian, XIANG Hong-ying, et al. Experimental and theoretical investigation on dynamic properties of tuned particle damper[J]. International Journal of Mechanical Sciences, 2014, 80: 122-130. doi: 10.1016/j.ijmecsci.2014.01.009
    [18] SHAH B M, NUDELL J J, KAO K R, et al. Semi-active particle-based damping systems controlled by magnetic fields[J]. Journal of Sound and Vibration, 2011, 330(2): 182-193. doi: 10.1016/j.jsv.2010.08.009
    [19] KAPUR P C, GUTSCHE O, FUERSTENAU D W. Comminution of single particles in a rigidly-mounted roll mill. Part 3: particle interaction and energy dissipation[J]. Powder Technology, 1993, 76(3): 271-276. doi: 10.1016/S0032-5910(05)80008-7
    [20] DRAGOMIR S C, SINNOTT M, SEMERCIGIL E S, et al. Energy dissipation characteristics of particle sloshing in a rotating cylinder[J]. Journal of Sound Vibration, 2012, 331(5): 963-973.
    [21] 李健, 刘璐, 严颖, 等. 基于离散单元法的颗粒阻尼耗能减振特性研究[J]. 计算力学学报, 2013, 30(5): 664-670. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305012.htm

    LI Jian, LIU Lu, YAN Ying, et al. Study on energy dissipation and vibration reduction characteristics of particle based on DEM[J]. Chinese Journal of Computational Mechanics, 2013, 30(5): 664-670. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201305012.htm
    [22] 方江龙, 王小鹏, 陈天宁, 等. 动理论在预测非阻塞性颗粒阻尼能量耗散中的应用[J]. 西安交通大学学报, 2015, 49(4): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201504003.htm

    FANG Jiang-long, WANG Xiao-peng, CHEN Tian-ning, et al. Application of kinetic theory to quantitative analysis model of non-obstructive particle damping[J]. Journal of Xi'an Jiaotong University, 2015, 49(4): 12-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201504003.htm
    [23] LEI Xiao-fei, WU Cheng-jun. Investigating the optimal damping performance of a composite dynamic vibration absorber with particle damping[J]. Journal of Vibration Engineering Technologies, 2018, 6(6): 503-511.
    [24] SANCHEZ M, CARLEVARO C M. Nonlinear dynamic analysis of an optimal particle damper[J]. Journal of Sound Vibration, 2013, 332(8): 2070-2080.
    [25] 夏兆旺, 单颖春, 刘献栋. 基于悬臂梁的颗粒阻尼实验[J]. 航空动力学报, 2007, 22(10): 1737-1741. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200710025.htm

    XIA Zhao-wang, SHAN Ying-chun, LIU Xian-dong. Experimental research on particle damping of cantilever beam[J]. Journal of Aerospace Power, 2007, 22(10): 1737-1741. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200710025.htm
    [26] LU Zheng, CHEN Xiao-yi, ZHANG Ding-chang, et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation[J]. Earthquake Engineering Structural Dynamics, 2016, 46: 697-714.
    [27] 闫维明, 王瑾, 许维炳. 基于单自由度结构的颗粒阻尼减振机理试验研究[J]. 土木工程学报, 2014, 47(增1): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S1014.htm

    YAN Wei-ming, WANG Jin, XU Wei-bing. Experimental research on the control mechanism of particle damping based on a single degree of freedom structure[J]. China Civil Engineering Journal, 2014, 47(S1): 76-82. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2014S1014.htm
    [28] SALUENA C, POSCHEL T, ESIPOV S E. Dissipative properties of vibrated granular materials[J]. Physical Review E, 1999, 59(4): 4422-4425.
    [29] MAO Kuan-min, WANG M Y, XU Zhi-wei, et al. DEM simulation of particle damping[J]. Powder Technology, 2004, 142(2/3): 154-165.
    [30] XIAO Wang-qiang, CHEN Zhi-wei, PAN Tian-long, et al. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load[J]. Mechanical Systems Signal Processing, 2018, 98: 1116-1131.
    [31] LU Zheng, LU Xi-lin, MASRI S F. Studies of the performance of particle dampers under dynamic loads[J]. Journal of Sound Vibration, 2010, 329(26): 5415-5433.
    [32] 支开印, 周军, 李连刚, 等. 装载机座椅振动舒适性分析与评价方法[J]. 工程机械, 2010, 41(8): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201008005.htm

    ZHI Kai-yin, ZHOU Jun, LI Lian-gang, et al. Method to analysis and evaluate vibration comfort for loaders seats[J]. Construction Machinery and Equipment, 2010, 41(8): 13-17. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCJA201008005.htm
  • 加载中
图(26) / 表(7)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  190
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回