留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SMILO-VTAC模型的复杂低空多机冲突解脱方法

张启钱 王中叶 张洪海 江程鹏 胡明华

张启钱, 王中叶, 张洪海, 江程鹏, 胡明华. 基于SMILO-VTAC模型的复杂低空多机冲突解脱方法[J]. 交通运输工程学报, 2019, 19(6): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.06.012
引用本文: 张启钱, 王中叶, 张洪海, 江程鹏, 胡明华. 基于SMILO-VTAC模型的复杂低空多机冲突解脱方法[J]. 交通运输工程学报, 2019, 19(6): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.06.012
ZHANG Qi-qian, WANG Zhong-ye, ZHANG Hong-hai, JIANG Cheng-peng, HU Ming-hua. SMILO-VTAC model based multi-aircraft conflict resolution method in complex low-altitude airspace[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.06.012
Citation: ZHANG Qi-qian, WANG Zhong-ye, ZHANG Hong-hai, JIANG Cheng-peng, HU Ming-hua. SMILO-VTAC model based multi-aircraft conflict resolution method in complex low-altitude airspace[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 125-136. doi: 10.19818/j.cnki.1671-1637.2019.06.012

基于SMILO-VTAC模型的复杂低空多机冲突解脱方法

doi: 10.19818/j.cnki.1671-1637.2019.06.012
基金项目: 

国家自然科学基金项目 61573181

空中交通管理系统与技术国家重点实验室开放基金项目 SKLATM201801

详细信息
    作者简介:

    张启钱(1979-), 男, 江苏南通人, 南京航空航天大学副研究员, 工学博士, 从事空中交通管理研究

    通讯作者:

    张洪海(1979-), 男, 山东菏泽人, 南京航空航天大学教授, 工学博士

  • 中图分类号: V355.2

SMILO-VTAC model based multi-aircraft conflict resolution method in complex low-altitude airspace

More Information
  • 摘要: 针对传统SMILO-VTAC模型的2种不受控情形, 提出了面向不受控情形的复杂低空多机冲突解脱模型; 在传统SMILO-VTAC模型的基础上, 考虑复杂低空空域物障限制条件, 提出了面向物障情景的低空多机冲突探测与解脱模型; 结合通用航空活动任务优先等级, 建立了基于任务优先性质的多机冲突探测与解脱规则和流程; 建立了多航空器对头汇聚场景, 基于提出的方法进行仿真验证。分析结果表明: 相比传统SMILO-VTAC模型, 提出的方法能够满足不受控情形的多机冲突探测与解脱实际需要, 并能根据任务优先等级计算方案, 解脱成本分配合理, 符合复杂低空空域航空器的特点; 提出的方法在航空器数量不大于4架次时, 求解时间略长, 但基本控制在1 s以内; 当航空器数量大于4架次时, 求解时间小于传统SMILO-VTAC模型; 当航空器数量不小于7架次时, 求解时间远低于传统SMILO-VTAC模型; 在将优先级因素加入考量后, 方法的平均解脱成本较传统SMILO-VTAC模型增加了10%~20%, 以少量增加平均解脱成本为代价, 实现了解脱成本依照优先级顺序的分配, 将高优先级航空器解脱成本向低优先级航空器传递。可见, 在多航空器运行和多优先级情景下, 改进方法具有更高的解脱效率, 在相同计算时间内具有更高的解脱架次极限。

     

  • 图  1  冲突探测的几何构型

    Figure  1.  Geometric configuration for conflict detection

    图  2  冲突解脱的几何构型

    Figure  2.  Geometric configuration for conflict resolution

    图  3  非近距特殊情形

    Figure  3.  Non-proximity pathological case

    图  4  近距特殊情形

    Figure  4.  Proximity pathological case

    图  5  冲突探测流程

    Figure  5.  Conflict detection flow

    图  6  冲突解脱组建立流程

    Figure  6.  Conflict resolution group formation flow

    图  7  优先级冲突解脱流程

    Figure  7.  Priority based conflict resolution flow

    图  8  各解脱方案平均速度调整量对比

    Figure  8.  Comparison of average velocity changes of resolution schemes

    图  9  各解脱方案平均航向调整量对比

    Figure  9.  Comparison of average turn changes of resolution schemes

    图  10  各解脱方案平均高度调整量对比

    Figure  10.  Comparison of average altitude changes of resolution scheme

    图  11  平均冲突解脱求解时间

    Figure  11.  Average solution times of conflict resolutions

    图  12  求解成本比

    Figure  12.  Solution cost ratios

    表  1  冲突情形分类

    Table  1.   Conflict situation classification

    冲突情形 判断条件 基本限制
    普通情形 tan(gij) < tan(lij) tan(lij)≤Sij/CijSij/Cij≤tan(gij)
    不受控情形(非近距特殊情形) tan(gij) > tan(lij)且tan(gij)tan(lij) < 0 tan(lij)≤Sij/Cij≤0或0≤Sij/Cij≤tan(gij)
    不受控情形(近距特殊情形) tan(gij) > tan(lij)且tan(gij)tan(lij) > 0 tan(lij)≤Sij/Cij≤tan(gij)
    下载: 导出CSV

    表  2  仿真试验基础参数

    Table  2.   Basic parameters of simulation experiment

    参数 数值
    航空器保护区半径/km 3
    航空器飞行速度/(km·h-1) 200
    航空器最大调速量/(km·h-1) 40
    航空器最大转向角/(°) 30
    高度层垂直间隔/m 300
    调速成本权重 1
    转向成本权重 40
    调高成本权重 1 200
    下载: 导出CSV

    表  3  “小鹰500”性能数据

    Table  3.   Performance data of "Kitty Hawk 500"

    乘员 驾驶员1名, 最大乘客人数4名
    尺寸 翼展9.879 m, 机长7.743 m, 机高3.044 m
    重量 有效载荷560 kg, 最大起飞质量1 400 kg
    性能 最大巡航速度300 km·h-1, 航程1 640 km
    下载: 导出CSV

    表  4  不同场景参数的求解时间

    Table  4.   Solution times under different scene parameters

    下载: 导出CSV
  • [1] WANG Lei, ZHANG Xue-jun, HAN Dong. System simulation of general aviation airborne conflict detection and resolution[J]. Advanced Materials Research, 2013, 816/817: 402-406. doi: 10.4028/www.scientific.net/AMR.816-817.402
    [2] 叶博嘉, 胡明华, 田勇. 基于多Agent技术的飞机协同飞行建模与仿真[J]. 交通运输工程学报, 2013, 13(6): 90-98. doi: 10.3969/j.issn.1671-1637.2013.06.013

    YE Bo-jia, HU Ming-hua, TIAN Yong. Modeling and simulation of collaborative flight based on multi-agent technique[J]. Journal of Traffic and Transportation Engineering, 2013, 13(6): 90-98. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.06.013
    [3] 张翔宇, 张洪海, 邱启伦. 基于Agent复杂低空飞行行为建模与仿真[J]. 航空计算技术, 2016, 46(1): 40-43, 47. doi: 10.3969/j.issn.1671-654X.2016.01.010

    ZHANG Xiang-yu, ZHANG Hong-hai, QIU Qi-lun. Modeling and simulation of complex low altitude airspace flight behaviors based on agent[J]. Aeronautical Computing Technique, 2016, 46(1): 40-43, 47. (in Chinese). doi: 10.3969/j.issn.1671-654X.2016.01.010
    [4] 张洪海, 邱启伦, 王中叶, 等. 复杂低空混合飞行态势安全特性研究[J]. 交通运输系统工程与信息, 2016, 16(5): 212-218, 226. doi: 10.3969/j.issn.1009-6744.2016.05.032

    ZHANG Hong-hai, QIU Qi-lun, WANG Zhong-ye, et al. Safety characteristics of mixed flight situation in complex low-altitude airspace[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(5): 212-218, 226. (in Chinese). doi: 10.3969/j.issn.1009-6744.2016.05.032
    [5] RONG Jie, GENG Shi-jian, VALASEK J, et al. Air traffic conflict negotiation and resolution using an onboard multiagent system[C]∥IEEE. Digital Avionics Systems Conference. New York: IEEE, 2002: 1-12.
    [6] WOLLKIND S, VALASEK J, IOERGER T R. Automated conflict resolution for air traffic management using cooperative multi agent negotiation[C]∥AIAA. 2004 AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004: 1-11.
    [7] EBY M S, KELLY W E. Free flight separation assurance using distributed algorithms[C]//IEEE. Aerospace Conference. New York: IEEE, 1999: 429-441.
    [8] INNOCENTI M, GELOSI P, POLLINI L. Air traffic management using probability function fields[C]//AIAA. 2000 AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2000: 1088-1097.
    [9] BILIMORIA K D, LEE H Q, MAO Zhi-hong, et al. Comparison of centralized and decentralized conflict resolution strategies for multiple-aircraft problems[C]∥AIAA. 18th Applied Aerodynamics Conference. Reston: AIAA, 2013: 1-10.
    [10] FRAZZOLI E, MAO Z H, OH J H, et al. Resolution of conflicts involving many aircraft via semidefinite programming[J]. Journal of Guidance Control and Dynamics, 2001, 24(1): 79-86. doi: 10.2514/2.4678
    [11] PALLOTTINO L, FERON E M, BICCHI A. Conflict resolution problems for air traffic management systems solved with mixed integer programming[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 3-11. doi: 10.1109/6979.994791
    [12] ALONSO-AYUSO A, ESCUDERO L F, MARTÍN-CAMPO F J. Collision avoidance in air traffic management: a mixed-integer linear optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 47-57. doi: 10.1109/TITS.2010.2061971
    [13] ALONSO-AYUSO A, ESCUDERO L F, MARTÍN-CAMPO F J. Exact and approximate solving of the aircraft collision resolution problem via turn changes[J]. Transportation Science, 2014, 50(1): 1-12.
    [14] ALONSO-AYUSO A, ESCUDERO L F, MARTÍN-CAMPO F J. Multiobjective optimization for aircraft conflict resolution. A metaheuristic approach[J]. European Journal of Operational Research, 2016, 248(2): 691-702. doi: 10.1016/j.ejor.2015.07.049
    [15] LIN C E, LEE C J. Conflict detection and resolution model for low altitude flights[C]//IEEE. International Conference on Methods and Models in Automation and Robotics. New York: IEEE, 2015: 406-411.
    [16] 黄洋, 汤俊, 老松杨. 基于复杂网络的无人机飞行冲突解脱算法[J]. 航空学报, 2018, 39(12): 261-273. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812023.htm

    HUANG Yang, TANG Jun, LAO Song-yang. UAV flight conflict resolution algorithm based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 261-273. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812023.htm
    [17] 周建, RAHMANI A, 刘昕, 等. 分布式MAS在飞行冲突解脱中的应用研究[J]. 交通运输系统工程与信息, 2015, 15(5): 231-238. doi: 10.3969/j.issn.1009-6744.2015.05.033

    ZHOU Jian, RAHMANI A, LIU Xin, et al. Application of distributed MAS in flight conflict avoidance[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 231-238. (in Chinese). doi: 10.3969/j.issn.1009-6744.2015.05.033
    [18] KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4): 179-189.
    [19] MIGLIACCIO G, MENGALI G, GALATOLO R. Conflict detection and resolution algorithms for UAVs collision avoidance[J]. The Aeronautical Journal, 2014, 118(1205): 828-842. doi: 10.1017/S0001924000009568
    [20] SHANDY S, VALASEK J. Intelligent agent for aircraft collision avoidance[C]∥AIAA. 2001 AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2001: 1-11.
    [21] BONGIORNO C, MICCICHÈ S, MANTEGNA R N. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management[J]. Plos One, 2017, 12(4): 1-23.
    [22] ALONSO-AYUSO A, ESCUDERO L F, MARTÍN-CAMPO F J. Collision avoidance in air traffic management: a mixed-integer linear optimization approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 47-57.
    [23] BILLINGSLEY T B, KOCHENDERFER M J, CHRYSSANT-HACOPOULOS J P. Collision avoidance for general aviation[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(7): 4-12.
    [24] FRAZZOLI E, MAO Z H, OH J H, et al. Resolution of conflicts involving many aircraft via semidefinite programming[J]. Journal of Guidance Control and Dynamics, 2001, 24(1): 79-86.
    [25] 江程鹏. 复杂低空飞行态势随机影响规律研究[D]. 南京: 南京航空航天大学, 2018.

    JIANG Cheng-peng. Research on pattern of random factor Influence to flight situation in complex low-altitude airspace[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese).
    [26] ZHANG Hong-hai, JIANG Cheng-peng, YANG Lei. Forecasting traffic congestion status in terminal areas based on support vector machine[J]. Advances in Mechanical Engineering, 2016, 8(9): 1-11.
    [27] MACAL C M, NORTH M J. Tutorial on agent-based modelling and simulation[J]. Journal of Simulation, 2010, 4(3): 151-162.
    [28] WIGGINS M W. Vigilance decrement during a simulated general aviation flight[J]. Applied Cognitive Psychology, 2011, 25(2): 229-235.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  615
  • HTML全文浏览量:  120
  • PDF下载量:  415
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回