留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化模糊C均值算法的锚泊船聚集特性

周世波 唐基宏 熊振南

周世波, 唐基宏, 熊振南. 基于优化模糊C均值算法的锚泊船聚集特性[J]. 交通运输工程学报, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013
引用本文: 周世波, 唐基宏, 熊振南. 基于优化模糊C均值算法的锚泊船聚集特性[J]. 交通运输工程学报, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013
ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013
Citation: ZHOU Shi-bo, TANG Ji-hong, XIONG Zhen-nan. Aggregation characteristics of anchored vessels based on optimized FCM algorithm[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 137-148. doi: 10.19818/j.cnki.1671-1637.2019.06.013

基于优化模糊C均值算法的锚泊船聚集特性

doi: 10.19818/j.cnki.1671-1637.2019.06.013
基金项目: 

国家自然科学基金项目 61672002

福建省自然科学基金项目 2019J01325

福建省自然科学基金项目 2019J01326

集美大学博士科研启动经费 ZQ2019012

详细信息
    作者简介:

    周世波(1978-), 男, 湖北随州人, 集美大学副教授, 工学博士, 从事海事大数据挖掘研究

    通讯作者:

    熊振南(1965-), 男, 福建光泽人, 集美大学教授

  • 中图分类号: U675.92

Aggregation characteristics of anchored vessels based on optimized FCM algorithm

More Information
  • 摘要: 针对模糊C均值算法随机选择初始聚类中心导致聚类结果对噪声样本点敏感性的不足, 采用局部密度加权的方法, 将初始聚类中心的选择范围限制在局部密度较高样本点区域, 优化初始聚类中心的选择方法; 利用样本点的局部密度改进目标函数, 提高局部密度较高的样本点在目标函数迭代过程中的影响力, 从而提升模糊C均值算法的聚类性能, 并采用人造数据集和鸢尾花真实数据集验证优化的局部密度模糊C均值算法的聚类效果; 通过计算锚泊船位置数据的局部密度, 分析了船舶锚泊偏好。试验结果表明: 对比模糊C均值算法, 优化的局部密度模糊C均值算法聚类精准率提高了2.9%, 召回率提高了3.8%, F度量值提高了3.9%, 说明优化的局部密度模糊C均值算法的性能优于模糊C均值算法; 在锚泊船位置数据上的聚类结果正确反映了天津港锚泊船的聚集特点和锚泊偏好, 其结果与船舶的常规做法一致, 说明优化的局部密度模糊C均值聚类算法是一种分析锚泊船聚集特性和锚泊偏好的有效方法。

     

  • 图  1  算法流程

    Figure  1.  Process of algorithm

    图  2  人造数据集

    Figure  2.  Artificial datasets

    图  3  核心样本点数据集

    Figure  3.  Datasets of core sample points

    图  4  聚类结果

    Figure  4.  Clustering results

    图  5  研究水域范围及锚地位置

    Figure  5.  Research water area and anchorage positions

    图  6  锚泊船原始位置数据

    Figure  6.  Raw location data of anchored vessels

    图  7  锚泊船聚集特点和偏好分析流程

    Figure  7.  Analysis process of aggregate characteristics and preferences of anchored vessel

    图  8  锚泊船位置聚类效果

    Figure  8.  Clustering effect of anchored vessel locations

    图  9  天津港锚泊船聚集特征

    Figure  9.  Aggregation characteristics of anchored vessels in Tianjin Port

    表  1  鸢尾花上的聚类结果

    Table  1.   Clustering results on iris

    鸢尾花种类 精准率/% 精准率的增长率/% 召回率/% 召回率的增长率/% F度量值/% F度量值的增长率/%
    FCM LD-FCM FCM LD-FCM FCM LD-FCM
    山鸢尾 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0
    变色鸢尾 78.3 93.3 19.2 94.0 84.0 -10.6 85.4 88.4 3.5
    维吉尼亚鸢尾 92.5 85.6 -7.5 74.0 94.0 27.0 82.2 89.6 9.0
    平均值 90.3 92.9 2.9 89.3 92.7 3.8 89.2 92.7 3.9
    下载: 导出CSV

    表  2  聚类中心准确性

    Table  2.   Accuracies of clustering centers

    聚类算法 聚类中心矩阵 E
    FCM [5.0043.4021.4870.2535.9152.7704.4021.4176.8083.0615.6862.067] 0.849
    LD-FCM [4.9703.3481.4720.2375.8342.7144.2471.3216.5302.9885.3361.971] 0.591
    下载: 导出CSV
  • [1] KROODSMA D A, MAYORGA J, HOCHBERG T, et al. Tracking the global footprint of fisheries[J]. Science, 2018, 359: 904-908. doi: 10.1126/science.aao5646
    [2] XIAO Fang-liang, LIGTERINGEN H, VAN GULIJK C, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95: 84-93. doi: 10.1016/j.oceaneng.2014.11.020
    [3] ZHANG Wei-bin, GOERLANDT F, KUJALA P, et al. An advanced method for detecting possible near miss ship collisions from AIS data[J]. Ocean Engineering, 2016, 124: 141-156. doi: 10.1016/j.oceaneng.2016.07.059
    [4] CHEN Zhi-jun, XUE Jie, WU Chao-zhong, et al. Classification of vessel motion pattern in inland waterways based on automatic identification system[J]. Ocean Engineering, 2018, 161: 69-76. doi: 10.1016/j.oceaneng.2018.04.072
    [5] TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(5): 1559-1582. doi: 10.1109/TITS.2017.2724551
    [6] KIM J H, CHOI J H, YOO K H, et al. AA-DBSCAN: an approximate adaptive DBSCAN for finding clusters with varying densities[J]. The Journal of Supercomputing, 2019, 75(1): 142-169. doi: 10.1007/s11227-018-2380-z
    [7] 丁兆颖, 姚迪, 吴琳, 等. 一种基于改进的DBSCAN的面向海量船舶位置数据码头挖掘算法[J]. 计算机工程与科学, 2015, 37(11): 2061-2067. doi: 10.3969/j.issn.1007-130X.2015.11.011

    DING Zhao-ying, YAO Di, WU Lin, et al. A dock mining algorithm for massive vessel location data based on improved DBSCAN[J]. Computer Engineering and Science, 2015, 37(11): 2061-2067. (in Chinese). doi: 10.3969/j.issn.1007-130X.2015.11.011
    [8] 刘涛, 胡勤友, 杨春. 水上交通拥挤区域的聚类分析与识别[J]. 中国航海, 2010, 33(4): 75-78. doi: 10.3969/j.issn.1000-4653.2010.04.018

    LIU Tao, HU Qin-you, YANG Chun. Clustering analysis and identification of traffic congested waters[J]. Navigation of China, 2010, 33(4): 75-78. (in Chinese). doi: 10.3969/j.issn.1000-4653.2010.04.018
    [9] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a frame work for anomaly detection and route prediction[J]. Entropy, 2013, 15: 2218-2245. doi: 10.3390/e15062218
    [10] 赵梁滨, 史国友, 杨家轩. 基于DBSCAN算法的船舶轨迹自适应层次聚类[J]. 中国航海, 2018, 41(3): 53-58. doi: 10.3969/j.issn.1000-4653.2018.03.011

    ZHAO Liang-bin, SHI Guo-you, YANG Jia-xuan. Adaptive hierarchical clustering of ship trajectory with DBSCAN algorithm[J]. Navigation of China, 2018, 41(3): 53-58. (in Chinese). doi: 10.3969/j.issn.1000-4653.2018.03.011
    [11] WU Lin, XU Yong-jun, WANG Qi, et al. Mapping global shipping density from AIS data[J]. The Journal of Navigation, 2017, 70: 67-81. doi: 10.1017/S0373463316000345
    [12] Marine Management Organisation. Mapping UK shipping density and routes technical annex[R]. Welsh: Marine Management Organisation, 2014.
    [13] 肖潇, 赵强, 邵哲平, 等. 基于AIS的特定船舶会遇实况分布[J]. 中国航海, 2014, 37(3): 50-53. doi: 10.3969/j.issn.1000-4653.2014.03.012

    XIAO Xiao, ZHAO Qiang, SHAO Zhe-ping, et al. Specific ship's encounter live distribution based on AIS[J]. Navigation of China, 2014, 37(3): 50-53. (in Chinese). doi: 10.3969/j.issn.1000-4653.2014.03.012
    [14] 宁建强, 黄涛, 刁博宇, 等. 一种基于海量船舶轨迹数据的细粒度网格海上交通密度计算方法[J]. 计算机工程与科学, 2015, 37(12): 2242-2249. doi: 10.3969/j.issn.1007-130X.2015.12.008

    NING Jian-qiang, HUANG Tao, DIAO Bo-yu, et al. A fine grained grid-based maritime traffic density algorithm for mass ship trajectory data[J]. Computer Engineering and Science, 2015, 37(12): 2242-2249. (in Chinese). doi: 10.3969/j.issn.1007-130X.2015.12.008
    [15] LIU Chun-fang, HUANG Wen-bin, SUN Fu-chun, et al. LDS-FCM: a linear dynamical system based fuzzy C-means method for tactile recognition[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(1): 72-83. doi: 10.1109/TFUZZ.2018.2859184
    [16] 徐超, 詹天明, 孔令成, 等. 基于学生t分布的鲁棒分层模糊算法及其在图像分割中的应用[J]. 电子学报, 2017, 45(7): 1695-1700. doi: 10.3969/j.issn.0372-2112.2017.07.020

    XU Chao, ZHAN Tian-ming, KONG Ling-cheng, et al. A robust hierarchical fuzzy algorithm with student's t-distribution for image segmentation application[J]. Acta Electronica Sinica, 2017, 45(7): 1695-1700. (in Chinese). doi: 10.3969/j.issn.0372-2112.2017.07.020
    [17] DING Yi, FU Xian. Kernel-based fuzzy C-means clustering algorithm based on genetic algorithm[J]. Neurocomputing, 2016, 188: 233-238. doi: 10.1016/j.neucom.2015.01.106
    [18] LU Wei-jia, YAN Zhuang-zhi. Improved FCM algorithm based on K-means and granular computing[J]. Journal of Intelligent Systems, 2015, 24(2): 215-222. doi: 10.1515/jisys-2014-0119
    [19] 李锵, 张琦珺, 关欣, 等. 基于改进模糊C均值算法的颈动脉超声图像分割[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(1): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201801014.htm

    LI Qiang, ZHANG Qi-jun, GUAN Xin, et al. Segmentation of carotid intima media in ultrasound images using improved fuzzy C-means algorithm[J]. Journal of Tianjin University (Science and Technology), 2018, 51(1): 95-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201801014.htm
    [20] WU Zi-heng, WU Zhong-cheng, ZHANG Jun. An improved FCM algorithm with adaptive weights based on SA-PSO[J]. Neural Computing and Applications, 2017, 28(10): 3113-3118. doi: 10.1007/s00521-016-2786-6
    [21] 于德新, 田秀娟, 杨兆升. 基于改进FCM聚类的交通控制时段划分[J]. 华南理工大学学报(自然科学版), 2016, 44(12): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201612008.htm

    YU De-xin, TIAN Xiu-juan, YANG Zhao-sheng. Division of traffic control periods based on improved FCM clustering[J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(12): 53-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201612008.htm
    [22] 席亮, 王勇, 张凤斌. 基于自适应人工鱼群FCM的异常检测算法[J]. 计算机研究与发展, 2019, 56(5): 1048-1059. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201905015.htm

    XI Liang, WANG Yong, ZHANG Feng-bin. Anomaly detection algorithm based on FCM with adaptive artificial fish-swarm[J]. Journal of Computer Research and Development, 2019, 56(5): 1048-1059. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ201905015.htm
    [23] 周开乐, 杨善林, 王晓佳, 等. 基于自适应模糊度参数选择改进FCM算法的负荷分类[J]. 系统工程理论与实践, 2014, 34(5): 1283-1289. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201405024.htm

    ZHOU Kai-le, YANG Shan-lin, WANG Xiao-jia, et al. Load classification based on improved FCM algorithm with adaptive fuzziness parameter selection[J]. System Engineering—Theory and Practice, 2014, 34(5): 1283-1289. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201405024.htm
    [24] 宫改云, 高新波, 伍忠东. FCM聚类算法中模糊加权指数m的优选方法[J]. 模糊系统与数学, 2005, 19(1): 143-148. https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200501024.htm

    GONG Gai-yun, GAO Xin-bo, WU Zhong-dong. An optimal choice method of parameter m in FCM clustering algorithm[J]. Fuzzy Systems and Mathematics, 2005, 19(1): 143-148. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MUTE200501024.htm
    [25] 王骏, 王士同. 基于混合距离学习的双指数模糊C均值算法[J]. 软件学报, 2010, 21(8): 1878-1888. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201008012.htm

    WANG Jun, WANG Shi-tong. Double indices FCM algorithm based on hybrid distance metric learning[J]. Journal of Software, 2010, 21(8): 1878-1888. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201008012.htm
    [26] 王纵虎, 刘志镜, 陈东辉. 基于粒子群优化的模糊C-均值聚类算法研究[J]. 计算机科学, 2012, 39(9): 166-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201209039.htm

    WANG Zong-hu, LIU Zhi-jing, CHEN Dong-hui. Research of PSO-based fuzzy C-means clustering algorithm[J]. Computer Science, 2012, 39(9): 166-169. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201209039.htm
    [27] 周世波, 徐维祥, 柴田. 基于数据加权策略的模糊C均值聚类算法[J]. 系统工程与电子技术, 2014, 36(11): 2314-2319. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201411033.htm

    ZHOU Shi-bo, XU Wei-xiang, CHAI Tian. Data-weighted fuzzy C-means clustering algorithm[J]. Systems Engineering and Electronic, 2014, 36(11): 2314-2319. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201411033.htm
    [28] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344: 1492-1496.
    [29] PAL N R, BEZDEK J C. On cluster validity for the fuzzy C-mean model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.
    [30] XIE Juan-ying, GAO Hong-chao, XIE Wei-xin, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
    [31] 江克勤, 施培蓓. 优化初始中心的模糊C-均值(FCM)算法[J]. 合肥工业大学学报(自然科学版), 2009, 32(5): 762-764, 768. https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200905037.htm

    JIANG Ke-qin, SHI Pei-bei. Optimized initial centers for fuzzy C-means algorithm[J]. Journal of Hefei University of Technology, 2009, 32(5): 762-764, 768. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200905037.htm
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  174
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-11
  • 刊出日期:  2019-12-25

目录

    /

    返回文章
    返回