留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬索桥初始内力与几何非线性对梁轨相互作用的影响

谢铠泽 赵维刚 蔡小培 刘浩 张浩

谢铠泽, 赵维刚, 蔡小培, 刘浩, 张浩. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2020.01.006
引用本文: 谢铠泽, 赵维刚, 蔡小培, 刘浩, 张浩. 悬索桥初始内力与几何非线性对梁轨相互作用的影响[J]. 交通运输工程学报, 2020, 20(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2020.01.006
XIE Kai-ze, ZHAO Wei-gang, CAI Xiao-pei, LIU Hao, ZHANG Hao. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2020.01.006
Citation: XIE Kai-ze, ZHAO Wei-gang, CAI Xiao-pei, LIU Hao, ZHANG Hao. Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2020.01.006

悬索桥初始内力与几何非线性对梁轨相互作用的影响

doi: 10.19818/j.cnki.1671-1637.2020.01.006
基金项目: 

国家重点研发计划项目 2016YFC0802202-3

国家重点研发计划项目 51778050

河北省高等学校科学技术研究项目 QN2019124

北京市轨道交通线路安全与防灾工程技术研究中心开放研究基金课题 RRC201901

详细信息
    作者简介:

    谢铠泽(1988-), 男, 河南焦作人, 石家庄铁道大学讲师, 工学博士, 从事跨区间无缝线路设计理论研究

    通讯作者:

    赵维刚(1973-), 男, 陕西蓝田人, 石家庄铁道大学教授, 工学博士

  • 中图分类号: U213.9

Impacts of initial internal force and geometric nonlinearity of suspension bridge on bridge-rail interaction

More Information
  • 摘要: 依据梁轨相互作用原理, 提出了基于悬索桥成桥变形状态重构道床纵向阻力位移-力曲线的方法, 并从存在初始位移的5×32 m简支梁桥上无缝线路钢轨受力和变形两方面验证了重构方法的可行性; 结合多单元建模方法与U.L.列式法, 建立了考虑悬索桥初始内力和几何非线性的线-梁-索-缆-塔空间计算模型, 以某(2×84+1 092+2×84) m大跨悬索桥为例, 对比分析了不同工况下悬索桥初始内力与几何非线性对梁轨相互作用的影响。分析结果表明: 提出的道床纵向阻力重构方法能够避免桥梁初始变形对梁轨相互作用的影响, 使悬索桥上无缝线路计算模型能考虑初始内力的影响; 主缆垂度效应对各工况下梁轨相互作用的影响不足1%, 计算中可忽略该因素; 悬索桥初始内力主要影响挠曲、制动及断轨工况, 可使挠曲力、制动力及断缝值分别降低22.4%、12.7%和9.3%;大变形效应不仅可以改变挠曲力分布规律, 还可大幅减小断缝值, 降幅达22.4%;建议悬索桥上无缝线路在挠曲、制动及断轨工况下应考虑初始内力与大变形效应的影响, 伸缩工况下可将悬索桥简化为同等跨度的跨中纵向约束、梁端自由的连续梁桥进行计算; 建立的计算模型可为悬索桥上无缝线路设计提供精确的仿真结果。

     

  • 图  1  道床纵向阻力D-F曲线

    Figure  1.  D-F curves of ballast longitudinal resistance

    图  2  单元模型

    Figure  2.  Element model

    图  3  可行性验证结果

    Figure  3.  Results of feasibility verification

    图  4  线-梁-索-缆-塔空间计算模型

    Figure  4.  Rail-girder-hanger-cable-pylon spatial calculation model

    图  5  悬索桥概况(单位: m)

    Figure  5.  Profile of suspension bridge (unit: m)

    图  6  钢轨纵向力分布

    Figure  6.  Distributions of rail longitudinal forces

    图  7  伸缩工况结果

    Figure  7.  Results of expansion and contraction condition

    图  8  钢轨挠曲力

    Figure  8.  Rail bending forces

    图  9  制动工况结果

    Figure  9.  Results of braking condition

    图  10  断轨工况结果

    Figure  10.  Results of rail breaking condition

    表  1  恒载结果

    Table  1.   Results of dead loads

    拉力类别 主缆拉力 吊索平均拉力
    最大 最小
    设计值/kN 730 513.0 668 219.0 5 501.5
    仿真值/kN 696 727.1 638 347.1 5 350.5
    相对误差/% 4.6 4.5 2.7
    下载: 导出CSV

    表  2  分析状态

    Table  2.   Analysis states

    工况编号 状态介绍
    FCD 考虑初始内力、主缆垂度效应及大变形效应
    CD 考虑主缆垂度效应及大变形效应
    D 仅考虑大变形效应
    N 按线性理论计算
    下载: 导出CSV

    表  3  断轨及伸缩工况结果

    Table  3.   Results of rail breaking condition and expansion and contraction condition

    对比项目 伸缩工况(降温) FCD CD D N
    相对伸缩工况左侧位移/mm 17.5 35.8 35.8 76.7
    钢轨纵向力峰值/kN 左侧梁缝 2 311.7 2 233.2 2 137.4 2 137.4 1 877.0
    右侧梁缝 2 314.6 2 485.0 2 577.3 2 577.3 2 775.6
    下载: 导出CSV
  • [1] 郭俊峰. 大跨度钢箱梁悬索桥涡振与颤振可靠度研究[D]. 成都: 西南交通大学, 2018.

    GUO Jun-feng. The reliability of vortex vibration and flutter of a long span suspension bridge with steel box girder[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese).
    [2] 唐贺强, 徐恭义, 刘汉顺. 悬索桥用于铁路桥梁的可行性分析[J]. 桥梁建设, 2017, 47(2): 13-18. doi: 10.3969/j.issn.1003-4722.2017.02.003

    TANG He-qiang, XU Gong-yi, LIU Han-shun. Feasibility analysis of applying of suspension bridge type to railway bridges[J]. Bridge Construction, 2017, 47(2): 13-18. (in Chinese). doi: 10.3969/j.issn.1003-4722.2017.02.003
    [3] 覃勇刚, 肖颉, 涂满明. 五峰山长江特大桥铁路二期恒载加载时机方案比选[J]. 桥梁建设, 2018, 48(2): 111-115. doi: 10.3969/j.issn.1003-4722.2018.02.020

    QIN Yong-gang, XIAO Jie, TU Man-ming. Comparison and selection of time schemes for applying second phase railway dead load to Wufengshan Changjiang River Bridge[J]. Bridge Construction, 2018, 48(2): 111-115. (in Chinese). doi: 10.3969/j.issn.1003-4722.2018.02.020
    [4] RUGE P, WIDARDA D R, SCHMALZLIN G, et al. Longitudinal track-bridge interaction due to sudden change of coupling interface[J]. Computers and Structures, 2009, 87(1/2): 47-58.
    [5] SMIRNOV V N, DYACHENKO A O, DYACHENKO L K, et al. The soil effect to efforts in rails of continuous welded rail track on bridges[J]. Procedia Engineering, 2017, 189: 610-615. doi: 10.1016/j.proeng.2017.05.097
    [6] STRAUSS A, ŜOMOSÍKOVÁ M, LEHK D, et al. Nonlinear finite element analysis of continuous welded rail-bridge interaction: monitoring-based calibration[J]. Journal of Civil Engineering and Management, 2018, 24(4): 344-354. doi: 10.3846/jcem.2018.3050
    [7] LIU Wen-shuo, DAI Gong-lian, HE Xu-hui. Sensitive factors research for track-bridge interaction of long-span X-style steel-box arch bridge on high-speed railway[J]. Journal of Central South University, 2013, 20(11): 3314-3323. doi: 10.1007/s11771-013-1855-6
    [8] 蔡成标. 高速铁路特大桥上无缝线路纵向附加力计算[J]. 西南交通大学学报, 2003, 38(5): 609-614. doi: 10.3969/j.issn.0258-2724.2003.05.030

    CAI Cheng-biao. Calculation of additional longitudinal forces in continuously welded rails on supper-large bridges of high-speed railways[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 609-614. (in Chinese). doi: 10.3969/j.issn.0258-2724.2003.05.030
    [9] 徐庆元, 周小林, 杨晓宇. 桥上无缝线路附加力计算模型[J]. 交通运输工程学报, 2004, 4(1): 25-28. doi: 10.3321/j.issn:1671-1637.2004.01.007

    XU Qing-yuan, ZHOU Xiao-lin, YANG Xiao-yu. Computation model of additional longitudinal forces of continuously welded rails on bridges[J]. Journal of Traffic and Transportation Engineering, 2004, 4(1): 25-28. (in Chinese). doi: 10.3321/j.issn:1671-1637.2004.01.007
    [10] 蔡小培, 高亮, 孙汉武, 等. 桥上纵连板式无砟轨道无缝线路力学性能分析[J]. 中国铁道科学, 2011, 32(6): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htm

    CAI Xiao-pei, GAO Liang, SUN Han-wu, et al. Analysis on the mechanical properties of longitudinally connected ballastless track continuously welded rail on bridge[J]. China Railway Science, 2011, 32(6): 28-33. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201106006.htm
    [11] 张鹏飞, 桂昊, 雷晓燕, 等. 列车荷载下桥上CRTS Ⅲ型板式无砟轨道挠曲力与位移[J]. 交通运输工程学报, 2018, 18(6): 61-72. doi: 10.3969/j.issn.1671-1637.2018.06.007

    ZHANG Peng-fei, GUI Hao, LEI Xiao-yan, et al. Deflection force and displacement of CRTS Ⅲ slab track on bridge under train load[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 61-72. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.007
    [12] 向俊, 林士财, 余翠英, 等. 路基不均匀沉降下无砟轨道受力与变形传递规律及其影响[J]. 交通运输工程学报, 2019, 19(2): 69-81. doi: 10.3969/j.issn.1671-1637.2019.02.007

    XIANG Jun, LIN Shi-cai, YU Cui-ying, et al. Transfer rules and effect of stress and deformation of ballastless track under uneven subgrade settlement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 69-81. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.007
    [13] 谢铠泽, 王平, 汪力, 等. 地震动作用对桥上钢轨伸缩调节器的影响分析[J]. 铁道学报, 2016, 38(3): 111-118. doi: 10.3969/j.issn.1001-8360.2016.03.016

    XIE Kai-ze, WANG Ping, WANG Li, et al. Impact of seismic effects on rail expansion joints on bridge[J]. Journal of the China Railway Society, 2016, 38(3): 111-118. (in Chinese). doi: 10.3969/j.issn.1001-8360.2016.03.016
    [14] 王平, 谢铠泽. 连续刚构桥上无缝线路计算模型及方法的简化[J]. 中南大学学报(自然科学版), 2015, 46(7): 2735-2743. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201507048.htm

    WANG Ping, XIE Kai-ze. Simplification for calculation model and method of CWR on continuous rigid frame bridge[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2735-2743. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201507048.htm
    [15] FLEMING J F. Nonlinear static analysis of cable-stayed bridge structures[J]. Computers and Structures, 1979, 10(4): 621-635. doi: 10.1016/0045-7949(79)90006-3
    [16] WANG P H, YANG C G. Parametric studies on cable-stayed bridges[J]. Computers and Structures, 1996, 60(2): 243-260. doi: 10.1016/0045-7949(95)00382-7
    [17] PETRANGELI M P. The Italian experience: two case studies[M]//CALCADA R, DELGADO R, MATOS A C E, et al. Track Bridge Interaction on High-Speed Railways. London: CRC Press, 2009: 139-148.
    [18] WANG Ping, ZHAO Wei-hua, CHEN Rong, et al. Bridge-rail interaction for continuous welded rail on cable-stayed bridge due to temperature change[J]. Advances in Structural Engineering, 2013, 16(8): 1347-1354. doi: 10.1260/1369-4332.16.8.1347
    [19] 赵卫华, 王平, 曹洋. 大跨度钢桁斜拉桥上无缝线路制动力的计算[J]. 西南交通大学学报, 2012, 47(3): 361-366. doi: 10.3969/j.issn.0258-2724.2012.03.002

    ZHAO Wei-hua, WANG Ping, CAO Yang. Calculation of braking force of continuous welded rail on large-span steel truss cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2012, 47(3): 361-366. (in Chinese). doi: 10.3969/j.issn.0258-2724.2012.03.002
    [20] 王平, 刘浩, 魏贤奎, 等. 铁路斜拉桥上无缝线路纵向力规律分析[J]. 交通运输工程学报, 2013, 13(5): 27-32. doi: 10.3969/j.issn.1671-1637.2013.05.004

    WANG Ping, LIU Hao, WEI Xian-kui, et al. Analysis of longitudinal force regulation for CWR on railway cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2013, 13(5): 27-32. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.05.004
    [21] 徐浩, 刘浩, 林红松, 等. 大跨斜拉桥上无缝线路伸缩力影响因素分析[J]. 铁道工程学报, 2015, 32(12): 34-39, 110. doi: 10.3969/j.issn.1006-2106.2015.12.008

    XU Hao, LIU Hao, LIN Hong-song, et al. Influence factors analysis of expansion and contraction force of continuous welded rails on long-span cable-stayed bridge[J]. Journal of Railway Engineering Society, 2015, 32(12): 34-39, 110. (in Chinese). doi: 10.3969/j.issn.1006-2106.2015.12.008
    [22] DAI Gong-lian, YAN Bin. Longitudinal force of continuously welded track on high-speed railway cable-stayed bridge considering impact of adjacent bridges[J]. Journal of Central South University, 2012, 19(8): 2348-2353. doi: 10.1007/s11771-012-1281-1
    [23] 闫斌, 戴公连. 考虑加载历史的高速铁路梁轨相互作用分析[J]. 铁道学报, 2014, 36(6): 75-80. doi: 10.3969/j.issn.1001-8360.2014.06.012

    YAN Bin, DAI Gong-lian. Analysis of interaction between continuously-welded rail and high-speed railway bridge considering loading-history[J]. Journal of the China Railway Society, 2014, 36(6): 75-80. (in Chinese). doi: 10.3969/j.issn.1001-8360.2014.06.012
    [24] 郑鹏飞, 闫斌, 戴公连. 高速铁路斜拉桥上无缝线路断缝值研究[J]. 华中科技大学学报(自然科学版), 2012, 40(9): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201209020.htm

    ZHENG Peng-fei, YAN Bin, DAI Gong-lian. Rail broken gap study on continuous welded rail on cable-stayed bridge of high-speed railway[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(9): 85-88. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201209020.htm
    [25] 戴公连, 闫斌. 高速铁路斜拉桥与无缝线路相互作用研究[J]. 土木工程学报, 2013, 46(8): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201308015.htm

    DAI Gong-lian, YAN Bin. Interaction between cable-stayed bridge traveled by high-speed trains and continuously welded rail[J]. China Civil Engineering Journal, 2013, 46(8): 90-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201308015.htm
    [26] ZHANG J, LI Q, WU D J. Nonlinear analysis of track-bridge interaction on the cable-stayed bridge[C]//FABIO B, DAN F. Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks. London: CRC Press, 2016: 2265-2270.
    [27] 李艳. 大跨斜拉桥上无缝线路纵向力的变化规律研究[J]. 铁道工程学报, 2012, 29(10): 42-46. doi: 10.3969/j.issn.1006-2106.2012.10.009

    LI Yan. Study on variation rules of longitudinal force of continuous welded rails on long-span cable-stayed bridge[J]. Journal of Railway Engineering Society, 2012, 29(10): 42-46. (in Chinese). doi: 10.3969/j.issn.1006-2106.2012.10.009
    [28] 蔡小培, 苗倩, 李大成, 等. 斜拉桥上无缝线路力学分析与调节器布置研究[J]. 铁道工程学报, 2018, 35(1): 36-41. doi: 10.3969/j.issn.1006-2106.2018.01.007

    CAI Xiao-pei, MIAO Qian, LI Da-cheng, et al. Mechanical analysis and arrangement study of REJ for CWR on cable-stayed bridge[J]. Journal of Railway Engineering Society, 2018, 35(1): 36-41. (in Chinese). doi: 10.3969/j.issn.1006-2106.2018.01.007
    [29] 李乔, 杨兴旺, 卜一之. 特大跨度斜拉桥变形的几何非线性效应分析[J]. 西南交通大学学报, 2007, 42(2): 133-137. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200702001.htm

    LI Qiao, YANG Xing-wang, BU Yi-zhi. Effect of geometric nonlinearity on deformation of extra-long-span cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2007, 42(2): 133-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200702001.htm
    [30] 田启贤. 悬索桥非线性结构分析[J]. 桥梁建设, 1998, 28(2): 63-66, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS802.016.htm

    TIAN Qi-xian. The nonlinear structural analysis for suspension bridge[J]. Bridge Construction, 1998, 28(2): 63-66, 76. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS802.016.htm
    [31] 杨大海. 大跨径悬索桥空间几何非线性分析[D]. 合肥: 合肥工业大学, 2007.

    YANG Da-hai. The geometric nonlinearity analysis of long-span suspension bridges[D]. Hefei: Hefei University of Technology, 2007. (in Chinese).
    [32] 江南, 沈锐利. 矢跨比对悬索桥结构刚度的影响[J]. 土木工程学报, 2013, 46(7): 90-97. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201307014.htm

    JIANG Nan, SHEN Rui-li. Influence of rise-span ratio on structural stiffness of suspension bridge[J]. China Civil Engineering Journal, 2013, 46(7): 90-97. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201307014.htm
    [33] NAZMYA S, ABDEL-GHAFFAR A M. Non-linear earthquake-response analysis of long-span cable-stayed bridges: application[J]. Earthquake Engineering and Structural Dynamics, 1990, 19: 63-67. doi: 10.1002/eqe.4290190107
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  644
  • HTML全文浏览量:  167
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回