留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性

周生通 朱经纬 周新建 祁强

周生通, 朱经纬, 周新建, 祁强. 组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性[J]. 交通运输工程学报, 2020, 20(1): 159-170. doi: 10.19818/j.cnki.1671-1637.2020.01.013
引用本文: 周生通, 朱经纬, 周新建, 祁强. 组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性[J]. 交通运输工程学报, 2020, 20(1): 159-170. doi: 10.19818/j.cnki.1671-1637.2020.01.013
ZHOU Sheng-tong, ZHU Jing-wei, ZHOU Xin-jian, QI Qiang. Bending-torsional coupling vibration characteristics of EMU traction motor rotor system under combined loads[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 159-170. doi: 10.19818/j.cnki.1671-1637.2020.01.013
Citation: ZHOU Sheng-tong, ZHU Jing-wei, ZHOU Xin-jian, QI Qiang. Bending-torsional coupling vibration characteristics of EMU traction motor rotor system under combined loads[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 159-170. doi: 10.19818/j.cnki.1671-1637.2020.01.013

组合载荷作用下动车牵引电机转子系统弯扭耦合振动特性

doi: 10.19818/j.cnki.1671-1637.2020.01.013
基金项目: 

国家自然科学基金项目 51505146

国家自然科学基金项目 51765018

江西省自然科学基金项目 20161BAB216135

西南交通大学牵引动力国家重点实验室开放课题 TPL1806

详细信息
    作者简介:

    周生通(1984-), 男, 山东东明人, 华东交通大学讲师, 工学博士, 从事转子动力学与可靠性研究

  • 中图分类号: U270.3

Bending-torsional coupling vibration characteristics of EMU traction motor rotor system under combined loads

More Information
  • 摘要: 为了研究组合载荷作用下动车组用牵引电机转子弯扭振动机理和识别典型故障特征, 依据动车牵引电机结构特点, 将其转子结构离散化为集总质量盘轴系统, 得到了电机转子系统的10自由度弯扭力学模型; 考虑定转子静动气隙偏心引起的不平衡磁拉力、转子质量偏心引起的机械不平衡力、转子重力以及电机驱动转矩和负载转矩等径向和扭转载荷作用, 利用拉格朗日方程法建立了牵引电机转子系统弯扭耦合运动微分方程; 基于Runge-Kutta法求解和分析了不同组合载荷工况作用下的转子系统弯扭振动特性。分析结果表明: 由转子质量偏心造成的系统弯扭自由度耦合关系, 使得牵引电机转子系统的弯扭振动特性受到转子径向和扭转载荷的共同影响, 且影响规律符合转子质量偏心耦合规律; 在全部径向和扭转载荷作用下, 牵引电机转子的径向振动包含零频、转频、二倍转频、弯振固有频率、二倍供电频、二倍供电频与转频组合、脉动转矩频率与转频组合等频率成分, 其中转频成分对应的弯振幅值最大, 而脉动转矩频率与转频的组合频率的振幅非常小, 说明脉动转矩对牵引电机转子径向振动的贡献并不明显; 在全部载荷作用下牵引电机转子的扭转振动包含转频、二倍转频、弯振固有频率与转频组合、二倍供电频与转频组合、脉动转矩频率等频率成分, 其中脉动转矩频率成分对应的扭振幅值最大, 其次由重力和不平衡磁拉力引起的转频成分对应的扭振幅值也较大, 且基本具有同一数量级, 表明它们对扭振的贡献均不能忽略。

     

  • 图  1  架悬式动车牵引电机

    Figure  1.  Frame-mounted EMU traction motor

    图  2  牵引电机转子系统的离散力学模型

    Figure  2.  Lumped mechanical model of traction motor rotor system

    图  3  牵引电机转子轴心轨迹

    Figure  3.  Axes obits of traction motor rotor

    图  4  牵引电机转子径向位移幅频响应

    Figure  4.  Amplitude-frequency responses of radial displacement of traction motor rotor

    图  5  牵引电机转子扭转角时域波形

    Figure  5.  Time domain waveforms of torsion angle of traction motor rotor

    图  6  牵引电机转子扭转角幅频响应

    Figure  6.  Amplitude-frequency responses of torsion angle of traction motor rotor

    表  1  某牵引电机转子结构的离散参数

    Table  1.   Lumped parameters of a traction motor rotor structure

    变量名称 符号 参数值
    圆盘0、1、2质量/kg m0m1m2 112.55、29.20、36.62
    圆盘0、1、2、4转动惯量/(kg·m2) J0J1J2J4 1.52、0.16、0.20、964.60
    圆盘0-1、0-2间抗弯刚度/(N·m-1) k1k2 1.16×108、5.94×108
    圆盘0-1、0-2、2-4间抗扭刚度/(N·m·rad-1) K1K2K3 1.75×106、7.17×106、1.28×106
    圆盘0-1、0-2间径向阻尼/(N·s·m-1) c1c2 300、300
    圆盘0-1、0-2、2-4间扭转阻尼/(N·s·rad-1) C1C2C3 600、600、600
    圆盘1和2处的轴承支承刚度/(N·m-1) kx1ky1kx2ky2 1.5×108、1.5×108、7.0×107、7.0×107
    下载: 导出CSV

    表  2  某牵引电机的模型参数

    Table  2.   Model parameters of a traction motor

    参数 参数值 参数 参数值
    e0e1e2/m 1.0×10-4 δ0/m 2.0×10-3
    r0/m 1.0×10-4 μ0/(H·m-1) 4π×10-7
    γ0/rad 0 fe/Hz 140
    R/m 0.153 p 2
    L/m 0.295 Tf/(N·m) 621
    下载: 导出CSV

    表  3  几种典型组合载荷工况

    Table  3.   Several kinds of typical combined load cases

    组合载荷 工况1 工况2 工况3 工况4 工况5
    机械不平衡力
    不平衡磁拉力 × × ×
    转子重力 × × ×
    脉动转矩 × × ×
    阻尼负载转矩 × × ×
    径向阻尼
    扭转阻尼 × × ×
    下载: 导出CSV
  • [1] 苟军善, 侯康鹏. 交流牵引电动机的发展态势[J]. 机车电传动, 2011(3): 1-5, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201103002.htm

    GOU Jun-shan, HOU Kang-peng. Development trend of AC traction motor[J]. Electric Drive for Locomotives, 2011(3): 1-5, 27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201103002.htm
    [2] BONNETT A H, SOUKUP G C. Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors[J]. IEEE Transactions on Industry Applications, 1992, 28(4): 921-937. doi: 10.1109/28.148460
    [3] CHEN Xing, HAN Sen, LI Jun, et al. Investigation of electromechanical coupling lateral/torsional vibration in a high-speed rotating continuous flexible shaft of PMSM[J]. Applied Mathematical Modelling, 2020, 77: 506-521. doi: 10.1016/j.apm.2019.07.050
    [4] SGHAIER E, BOURDON A, RÉMOND D, et al. Coupled bending torsional vibrations of non-ideal energy source rotors under non-stationary operating conditions[J]. International Journal of Mechanical Sciences, 2019, 163: 1-16.
    [5] BRIEND Y, DAKEL M, CHATELET E, et al. Effect of multi-frequency parametric excitations on the dynamics of on-board rotor-bearing systems[J]. Mechanism and Machine Theory, 2020, 145: 1-31.
    [6] LIU Yi-qi, BAZZI A M. A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: state of the art[J]. ISA Transactions, 2017, 70: 400-409. doi: 10.1016/j.isatra.2017.06.001
    [7] MEHRJOU M R, MARIUN N, MARHABAN M H, et al. Rotor fault condition monitoring techniques for squirrel-cage induction machine—a review[J]. Mechanical Systems and Signal Processing, 2011, 25(8): 2827-2848. doi: 10.1016/j.ymssp.2011.05.007
    [8] BELMANS R, VANDENPUT A, GEYSEN W. Influence of unbalanced magnetic pull on the radial stability of flexible-shaft induction machines[J]. IEE Proceedings B—Electric Power Applications, 1987, 134(2): 101-109. doi: 10.1049/ip-b.1987.0013
    [9] GUO Dan, CHU Fu-lei, CHEN D. The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor[J]. Journal of Sound and Vibration, 2002, 254(2): 297-312. doi: 10.1006/jsvi.2001.4088
    [10] 郭丹, 何永勇, 褚福磊. 不平衡磁拉力及对偏心转子系统振动的影响[J]. 工程力学, 2003, 20(2): 116-121. doi: 10.3969/j.issn.1000-4750.2003.02.023

    GUO Dan, HE Yong-yong, CHU Fu-lei. The calculation of unbalanced magnetic pull and its effect on vibration of an eccentric rotor[J]. Engineering Mechanics, 2003, 20(2): 116-121. (in Chinese). doi: 10.3969/j.issn.1000-4750.2003.02.023
    [11] WERNER U. Theoretical rotor dynamic analysis of two-pole induction motors regarding excitation due to static rotor eccentricity[J]. Archive of Applied Mechanics, 2011, 81(2): 241-262. doi: 10.1007/s00419-010-0413-z
    [12] 徐学平, 韩勤锴, 褚福磊. 静载荷作用下偏心转子电磁振动特性[J]. 清华大学学报(自然科学版), 2016, 56(2): 176-184. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201602010.htm

    XU Xue-ping, HAN Qin-kai, CHU Fu-lei. Electromagnetic vibration characteristics of an eccentric rotor with a static load[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(2): 176-184. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201602010.htm
    [13] XU Xue-ping, HAN Qin-kai, CHU Fu-lei. Nonlinear vibration of a generator rotor with unbalanced magnetic pull considering both dynamic and static eccentricities[J]. Archive of Applied Mechanics, 2016, 86(8): 1521-1536. doi: 10.1007/s00419-016-1133-9
    [14] XU Xue-ping, HAN Qin-kai, CHU Fu-lei. Review of electromagnetic vibration in electrical machines[J]. Energies, 2018, 11(7): 1-33.
    [15] CHEN Xing, DENG Zhao-xue, HU Ji-bin, et al. An analytical model of unbalanced magnetic pull for PMSM used in electric vehicle: numerical and experimental validation[J]. International Journal of Applied Electromagnetics and Mechanics, 2017, 54(4): 583-596. doi: 10.3233/JAE-160121
    [16] CHEN Xing, WEI Han-bing, DENG Tao, et al. Investigation of electromechanical coupling torsional vibration and stability in a high-speed permanent magnet synchronous motor driven system[J]. Applied Mathematical Modelling, 2018, 64: 1-27. doi: 10.1016/j.apm.2018.07.021
    [17] ZHANG Ao, BAI Yan, YANG Bo, et al. Analysis of nonlinear vibration in permanent magnet synchronous motors under unbalanced magnetic pull[J]. Applied Sciences, 2018, 8(1): 1-9.
    [18] RAN L, YACAMINI R, SMITH K S. Torsional vibrations in electrical induction motor drives during start-up[J]. Journal of Vibration and Acoustics, 1996, 118(2): 242-251. doi: 10.1115/1.2889655
    [19] 周生通, 朱经纬, 周新建, 等. 动车牵引驱动轴系的扭转振动特性分析[J]. 机械传动, 2017, 41(7): 12-17, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201707003.htm

    ZHOU Sheng-tong, ZHU Jing-wei, ZHOU Xin-jian, et al. Analysis of the torsional vibration characteristic of traction drive shafting system of EMU[J]. Journal of Mechanical Transmission, 2017, 41(7): 12-17, 28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201707003.htm
    [20] CHEN Zai-gang, ZHAI Wan-ming, WANG Kai-yun. A locomotive-track coupled vertical dynamics model with gear transmissions[J]. Vehicle System Dynamics, 2017, 55(2): 244-267. doi: 10.1080/00423114.2016.1254260
    [21] WANG Zhi-wei, MEI Gui-ming, XIONG Qing, et al. Motor car-track spatial coupled dynamics model of a high-speed train with traction transmission systems[J]. Mechanism and Machine Theory, 2019, 137: 386-403. doi: 10.1016/j.mechmachtheory.2019.03.032
    [22] 陈聚龙, 王俊国, 陈跃威, 等. 铁路机车牵引电机临界转速和不平衡响应分析[J]. 机械强度, 2017, 39(6): 1264-1270. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201706002.htm

    CHEN Ju-long, WANG Jun-guo, CHEN Yue-wei, et al. Critical speed and unbalance response of traction motor for railway locomotive[J]. Journal of Mechanical Strength, 2017, 39(6): 1264-1270. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201706002.htm
    [23] 史德龙. 机车牵引电机滚动轴承-转子系统的非线性特性研究[D]. 成都: 西南交通大学, 2016.

    SHI De-long. Nonlinear dynamic analysis of rotor-bearing system for locomotive traction motor[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese).
    [24] 陈哲明, 曾京. 牵引电机转子振动对高速列车动力学性能的影响[J]. 工程力学, 2011, 28(1): 238-244. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101039.htm

    CHEN Zhe-ming, ZENG Jing. Effect of rotor vibration of traction motor on dynamic behavior of high speed train[J]. Engineering Mechanics, 2011, 28(1): 238-244. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101039.htm
    [25] 王文勋. 动车组牵引电机转矩脉动研究[D]. 北京: 北京交通大学, 2015.

    WANG Wen-xun. Research on torque ripple of traction motors in electric multiple units[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese).
    [26] 徐坤, 曾京, 祁亚运, 等. 牵引电机谐波转矩对高速动车动力学性能的影响[J]. 振动与冲击, 2018, 37(19): 153-158, 182. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819025.htm

    XU Kun, ZENG Jing, QI Ya-yun, et al. Influences of harmonic torque of traction motor on dynamic performance of high-speed trains[J]. Journal of Vibration and Shock, 2018, 37(19): 153-158, 182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819025.htm
    [27] 朱海燕, 尹必超, 胡华涛, 等. 谐波转矩对高速列车齿轮箱体与牵引电机振动特性的影响[J]. 交通运输工程学报, 2019, 19(6): 65-76. doi: 10.19818/j.cnki.1671-1637.2019.06.007

    ZHU Hai-yan, YIN Bi-chao, HU Hua-tao, et al. Effects of harmonic torque on vibration characteristics of gear box housing and traction motor of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 65-76. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2019.06.007
    [28] 孙湖, 陆峰, 徐龙, 等. 轨道车辆牵引电机负载模拟方法的研究[J]. 电气传动, 2011, 41(12): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ201112021.htm

    SUN Hu, LU Feng, XU Long, et al. Study on the method of traction motor load simulation on railway vehicles[J]. Electric Drive, 2011, 41(12): 87-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQCZ201112021.htm
    [29] 岳二团, 甘春标, 杨世锡. 气隙偏心下永磁电机转子系统的振动特性分析[J]. 振动与冲击, 2014, 33(8): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201408006.htm

    YUE Er-tuan, GAN Chun-biao, YANG Shi-xi. Vibration characteristics analysis of a rotor for a permanent magnet motor with air-gap eccentricity[J]. Journal of Vibration and Shock, 2014, 33(8): 29-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201408006.htm
    [30] 何成兵, 顾煜炯, 陈祖强. 质量不平衡转子的弯扭耦合振动分析[J]. 中国电机工程学报, 2006, 26(14): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200614026.htm

    HE Cheng-bing, GU Yu-jiong, CHEN Zu-qiang. Coupled flexural-torsion vibration of rotors with unbalance mass[J]. Proceedings of the CSEE, 2006, 26(14): 134-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200614026.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  176
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回