留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑转向有轨电车线路的干线绿波优化

王昊 李昌泽

王昊, 李昌泽. 考虑转向有轨电车线路的干线绿波优化[J]. 交通运输工程学报, 2020, 20(1): 204-214. doi: 10.19818/j.cnki.1671-1637.2020.01.017
引用本文: 王昊, 李昌泽. 考虑转向有轨电车线路的干线绿波优化[J]. 交通运输工程学报, 2020, 20(1): 204-214. doi: 10.19818/j.cnki.1671-1637.2020.01.017
WANG Hao, LI Chang-ze. Optimization of arterial green-wave considering turning tram lines[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 204-214. doi: 10.19818/j.cnki.1671-1637.2020.01.017
Citation: WANG Hao, LI Chang-ze. Optimization of arterial green-wave considering turning tram lines[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 204-214. doi: 10.19818/j.cnki.1671-1637.2020.01.017

考虑转向有轨电车线路的干线绿波优化

doi: 10.19818/j.cnki.1671-1637.2020.01.017
基金项目: 

国家重点研发计划项目 2019YFB1600203

详细信息
    作者简介:

    王昊(1980-), 男, 江苏高淳人, 东南大学教授, 工学博士, 从事交通流建模与交通信号控制研究

  • 中图分类号: U482.1

Optimization of arterial green-wave considering turning tram lines

More Information
  • 摘要: 为弥补对包含有轨电车的干线绿波优化能力的不足, 提出了一种基于多路径绿波模型的干线绿波优化模型, 确保干线转向有轨电车与干线直行社会车辆的通行效率与独立运行; 确定了转向有轨电车线路的信号相位与干线社会车辆信号相位之间的协调关系, 构建了干线绿波模型的基本约束条件; 考虑有轨电车停车过程的加、减速特性, 以及通过交叉口时清空时间的要求, 建立了有轨电车补充约束条件; 设置了相位顺序控制变量, 增大解空间, 提高了干线绿波优化模型的建模能力; 设置旅行时间变量, 保证社会车辆行驶在路段规定的安全速度之内, 确保有轨电车上、下行总旅行时间一致, 保障调度运行的高效合理; 在满足有轨电车绿波带宽基本要求的条件下, 构建了社会车辆绿波带宽最大化的目标函数; 应用干线绿波优化模型对南京麒麟镇有轨电车干线路段沿线4处交叉口进行了交通信号协调优化。研究结果表明: 干线绿波优化模型能对各交叉口信号相序进行优化, 为有轨电车提供包含转弯相位的绿波; 优化后干线信号周期为142.4 s, 各交叉口相位差分别为0、116.8、52.0、5.7 s, 单方向社会车辆绿波带宽为26.6 s, 上、下行社会车辆绿信比达到37.4%, 有轨电车绿波带宽为10 s, 满足干线系统交通需求。

     

  • 图  1  两种含有轨电车的交通系统布局

    Figure  1.  Two kinds of layout of traffic system with tram

    图  2  有轨电车与社会车辆相邻交叉口间绿波关系

    Figure  2.  Green-wave relationships between adjacent intersections for trams and social vehicles

    图  3  社会车辆与有轨电车绿波周期内约束

    Figure  3.  Restrictions inside a green-wave cycle for social vehicles and trams

    图  4  路段地理信息

    Figure  4.  Geographical information of section

    图  5  案例路段有轨电车线路

    Figure  5.  Tram line in case road section

    图  6  信号相位方案

    Figure  6.  Signal phase scheme

    图  7  交叉口冲突区域

    Figure  7.  Conflicting areas at intersections

    图  8  绿波时空分布

    Figure  8.  Green-wave space-time distribution

    图  9  信号相序时空分布

    Figure  9.  Space-time distribution concerning signal phase order

    图  10  各交叉口信号相序

    Figure  10.  Signal phase orders at all intersections

    表  1  信号控制交叉口相关参数

    Table  1.   Relevant variables for signalized intersections

    交叉口 1 2 3 4
    流量/(pcu·h-1) 自东向西 843 657 648 735
    自西向东 785 697 704 761
    相位长度(与周期比值) 相位1 0.15 0.15 0.14 0.14
    相位2 0.35 0.33 0.35 0.33
    相位3 0.14 0.15 0.14 0.14
    相位4 0.19 0.18 0.19 0.20
    相位5 0.17 0.19 0.18 0.19
    下载: 导出CSV

    表  2  有轨电车与社会车辆速度

    Table  2.   Speeds of trams and social vehicles  km·h-1

    速度 vi, k vj,k¯
    最大 最小 最大 最小
    有轨电车 60 30 60 30
    社会车辆 60 45 60 45
    下载: 导出CSV

    表  3  有轨电车与社会车辆行程时间

    Table  3.   Travel times of trams and social vehicles  s

    行程时间 有轨电车 社会车辆
    最大 最小 最大 最小
    交叉口1-2 60.6 36.4 36.4 33.1
    交叉口2-3 113.4 86.5 48.2 43.9
    交叉口3-4 108.0 83.3 45.0 40.9
    下载: 导出CSV

    表  4  有轨电车清空时间

    Table  4.   Clearing times of trams  s

    交叉口 清空时间
    路径2 路径4
    1 9 9
    2 10 10
    3 10 10
    4 10 10
    下载: 导出CSV

    表  5  绿波带宽优化结果

    Table  5.   Results of green-wave bandwidth optimization s

    路径 路径1 路径2 路径3 路径4
    带宽 26.6 10.0 26.6 10.0
    下载: 导出CSV

    表  6  绿波优化结果

    Table  6.   Results of green-wave optimization s

    交叉口 1 2 3 4
    C 142.4 142.4 142.4 142.4
    θk 0.0 116.8 52.0 5.7
    t1 36.4 48.2 41.1
    t2 48.4 81.1 78.3
    t3 36.4 48.2 44.9
    t4 48.4 81.1 78.3
    下载: 导出CSV
  • [1] 谭庭浪. 现代有轨电车路口信号的相位控制策略[J]. 城市轨道交通研究, 2018(6): 146-148. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811043.htm

    TAN Ting-lang. Study on the phase control strategy for tram signal at intersection[J]. Urban Mass Transit, 2018(6): 146-148. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811043.htm
    [2] 钟吉林. 干线信号协调下的有轨电车优先研究[D]. 成都: 西南交通大学, 2014.

    ZHONG Ji-lin. Tram signal priority under arterial signal coordination[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese).
    [3] 高玉, 王洪波. 现代有轨电车道口信号控制技术研究[J]. 现代城市轨道交通, 2014(4): 1-4. doi: 10.3969/j.issn.1672-7533.2014.04.001

    GAO Yu, WANG Hong-bo. Crossing signal control technology of modern tram[J]. Modern Urban Transit, 2014(4): 1-4. (in Chinese). doi: 10.3969/j.issn.1672-7533.2014.04.001
    [4] MORGAN J T, LITTLE J D C. Synchronizing traffic signals for maximal BANDWIDTH[J]. Operations Research, 1964, 12(6): 896-912. doi: 10.1287/opre.12.6.896
    [5] LITTLE J D C. The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966, 14: 568-594. doi: 10.1287/opre.14.4.568
    [6] JEONG Y, KIM Y. Tram passive signal priority strategy based on the MAXBAND model[J]. KSCE Journal of Civil Engineering, 2014, 18(5): 1518-1527. doi: 10.1007/s12205-014-0159-1
    [7] ZHANG Li-hui, SONG Zi-qi, TANG Xiao-jun, et al. Signal coordination models for long arterials and grid networks[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 215-230. doi: 10.1016/j.trc.2016.07.015
    [8] DAI Guang-yuan, WANG Hao, WANG Wei, et al. Signal optimization and coordination for bus progression based on MAXBAND[J]. KSCE Journal of Civil Engineering, 2016, 20(2): 890-898. doi: 10.1007/s12205-015-1516-4
    [9] GARTNER N H, STAMATIADIS C. Arterial-based control of traffic flow in urban grid networks[J]. Mathematical and Computer Modelling, 2002, 35(5/6): 657-671.
    [10] GARTNER N H, STAMATIADIS C. Progression optimization featuring arterial- and route-based priority signal networks[J]. Jounal of Intelligent Transportation Systems, 2004, 8(2): 77-86. doi: 10.1080/15472450490437771
    [11] ZHANG Chao, XIE Yuan-chang, GARTNER N H, et al. AM-band: an asymmetrical multi-band model for arterial traffic signal coordination[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 515-531. doi: 10.1016/j.trc.2015.04.014
    [12] MA Wan-jing, ZOU Li, AN Kun, et al. A partition-enabled multi-mode band approach to arterial traffic signal optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 313-322. doi: 10.1109/TITS.2018.2815520
    [13] SRINIVASAN D, CHOY M C, CHEU R L. Neural networks for real-time traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(3): 261-272. doi: 10.1109/TITS.2006.874716
    [14] LIN Yong-jie, YANG Xian-feng, ZOU Nan. Passive transit signal priority for high transit demand: model formulation and strategy selection[J]. Transportation Letters, 2019, 11(3): 119-129. doi: 10.1080/19427867.2017.1295899
    [15] DOOR T S. Synchronization model of traffic light at intersection with train track[D]. Surakarta: Universitas Muhammadiyah Surakarta, 2014.
    [16] SHEN Guo-jiang, YANG Yong-yao. A dynamic signal coordination control method for urban arterial roads and its application[J]. Frontiers of Information Technology and Electronic Engineering, 2016, 17(9): 907-918. doi: 10.1631/FITEE.1500227
    [17] 路庆昌, 龙科军, 邓海龙. 被动公交优先的交叉口信号周期优化模型研究[J]. 中国市政工程, 2007(3): 9-11. doi: 10.3969/j.issn.1004-4655.2007.03.004

    LU Qing-chang, LONG Ke-jun, DENG Hai-long. Research on signal cycle optimization model of passive bus priority intersection[J]. China Municipal Engineering, 2007(3): 9-11. (in Chinese). doi: 10.3969/j.issn.1004-4655.2007.03.004
    [18] 周洋帆, 贾顺平, 陈绍宽, 等. 有轨电车信号优先时长阈值优化模型[J]. 交通运输工程学报, 2016, 16(5): 151-158. doi: 10.3969/j.issn.1671-1637.2016.05.017

    ZHOU Yang-fan, JIA Shun-ping, CHEN Shao-kuan, et al. Optimization model signal priority time threshold of tram[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 151-158. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.05.017
    [19] 江志彬, 徐瑞华. 信号被动优先条件下的有轨电车运行图编制优化[J]. 交通运输工程学报, 2016, 16(3): 100-107. doi: 10.3969/j.issn.1671-1637.2016.03.012

    JIANG Zhi-bin, XU Rui-hua. Scheduling optimization of tram operation diagram under signal passive priority condition[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 100-107. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.03.012
    [20] 罗聪. 现代有轨电车主动信号优先模型研究[J]. 城市轨道交通研究, 2019(2): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201904016.htm

    LUO Cong. Research on the active signal priority model for modern tram[J]. Urban Mass Transit, 2019(2): 56-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201904016.htm
    [21] 吴佳骐, 胡军红, 俞洋. 基于多属性决策的现代有轨电车动态信号优先控制策略[J]. 南京工业大学学报(自然科学版), 2019, 41(2): 218-223. doi: 10.3969/j.issn.1671-7627.2019.02.014

    WU Jia-qi, HU Jun-hong, YU Yang. Dynamic priority strategy for modern tram based on multiple attribute decision making[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(2): 218-223. (in Chinese). doi: 10.3969/j.issn.1671-7627.2019.02.014
    [22] 袁魁浩, 吴文亮, 汤左淦. 不同信号控制条件下的平交路口有轨电车运行策略对比研究[J]. 河南科学, 2018, 36(12): 1986-1993. doi: 10.3969/j.issn.1004-3918.2018.12.023

    YUAN Kui-hao, WU Wen-liang, TANG Zuo-gan. The comparison among different signal control schemes in at-grade intersections of the LRT[J]. Henan Science, 2018, 36(12): 1986-1993. (in Chinese). doi: 10.3969/j.issn.1004-3918.2018.12.023
    [23] 邓君, 崔梁. 基于车头时距的现代有轨电车信号控制策略[J]. 城市轨道交通研究, 2018(4): 40-44, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201808011.htm

    DENG Jun, CUI Liang. Control strategy of modern tram signal based on time headway[J]. Urban Mass Transit, 2018(4): 40-44, 50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201808011.htm
    [24] 代磊磊, 何广进, 刘东波, 等. 基于信息实时交互的现代有轨电车信号优先控制研究[J]. 城市轨道交通研究, 2018(1): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201801023.htm

    DAI Lei-lei, HE Guang-jin, LIU Dong-bo, et al. On signal priority control of modern tram based on real-time information interaction[J]. Urban Mass Transit, 2018(1): 87-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201801023.htm
    [25] 陈宁宁, 何兆成, 余志. 考虑动态红灯排队消散时间的改进MAXBAND模型[J]. 武汉理工大学学报(交通科学与工程版), 2009, 33(5): 843-847. doi: 10.3963/j.issn.1006-2823.2009.05.008

    CHEN Ning-ning, HE Zhao-cheng, YU Zhi. Revised MAXBAND model considered variable queue clearance time[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2009, 33(5): 843-847. (in Chinese). doi: 10.3963/j.issn.1006-2823.2009.05.008
    [26] 李林. 连续流绿波交通控制理论与方法研究[D]. 广州: 华南理工大学, 2011.

    LI Lin. Continuous flow progression theory and methods[D]. Guangzhou: South China University of Technology, 2011. (in Chinese).
    [27] 李佳杰. 基于被动优先的有轨电车信号控制与时刻表节能优化[D]. 北京: 北京交通大学, 2018.

    LI Jia-jie. Signal control and energy-efficient timetable optimization for tram based on passive priority strategy[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese).
    [28] 周洋帆. 半独立路权下有轨电车的信号优先策略及建模研究[D]. 北京: 北京交通大学, 2016.

    ZHOU Yang-fan. Signal priority strategies and modeling for trams with exclusive lane[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese).
    [29] 戴光远. 城市干线公交绿波优化控制方法及关键技术研究[D]. 南京: 东南大学, 2016.

    DAI Guang-yuan. Research on optimization models and key technologies for bus progressions along urban arteries[D]. Nanjing: Southeast University, 2016. (in Chinese).
    [30] YANG Xian-feng, CHENG Yao, CHANG Gang-len. A multi-path progression model for synchronization of arterial traffic signals[J]. Transportation Research Part C: Emerging Technologies, 2015, 53: 93-111.
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  693
  • HTML全文浏览量:  157
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-07
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回