留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于手机传感器数据的交通出行调查实证评估

杨飞 郭煜东 JINJ P 吴海涛

杨飞, 郭煜东, JINJ P, 吴海涛. 基于手机传感器数据的交通出行调查实证评估[J]. 交通运输工程学报, 2020, 20(1): 226-238. doi: 10.19818/j.cnki.1671-1637.2020.01.019
引用本文: 杨飞, 郭煜东, JINJ P, 吴海涛. 基于手机传感器数据的交通出行调查实证评估[J]. 交通运输工程学报, 2020, 20(1): 226-238. doi: 10.19818/j.cnki.1671-1637.2020.01.019
YANG Fei, GUO Yu-dong, JIN J P, WU Hai-tao. Empirical evaluation of travel survey based on mobile phone sensor data[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 226-238. doi: 10.19818/j.cnki.1671-1637.2020.01.019
Citation: YANG Fei, GUO Yu-dong, JIN J P, WU Hai-tao. Empirical evaluation of travel survey based on mobile phone sensor data[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 226-238. doi: 10.19818/j.cnki.1671-1637.2020.01.019

基于手机传感器数据的交通出行调查实证评估

doi: 10.19818/j.cnki.1671-1637.2020.01.019
基金项目: 

国家重点研发计划项目 2018YFB1600900

国家自然科学基金项目 51678505

国家自然科学基金项目 51605398

贵州省交通运输厅科技项目 2018-321-026

中铁二院工程集团有限责任公司科技开发计划项目 KYY2019028(19-20)

详细信息
    作者简介:

    杨飞(1980-), 男, 重庆人, 西南交通大学教授, 工学博士, 从事交通大数据与智能交通研究

  • 中图分类号: U491.1

Empirical evaluation of travel survey based on mobile phone sensor data

More Information
  • 摘要: 应用手机传感器与调查问卷, 同步采集了校园内高校学生2周的真实出行轨迹; 考虑了真实出行环境下的手机传感器数据特征, 结合高斯滤波预处理数据, 根据轨迹点的时空聚类特性, 用时空聚类算法识别了出行端点和出行时间, 结合轨迹点速度、加速度特征, 利用支持向量机识别了出行方式; 将手机传感器数据与调查问卷、查核线数据对比, 分析了手机传感器数据出行特征识别的准确程度, 验证了出行特征的提取效果。分析结果表明: 手机传感器与问卷调查识别出行链的成功匹配比例为81.66%, 说明手机传感器数据可有效记录出行轨迹; 时空聚类算法参数中核心点空间半径为26.92 m, 最小样本点为129, 时间约束为129 s时, 出行端点识别准确率为93.02%, 出行时间识别准确率为90.84%, 说明手机传感器识别出行端点和出行时间的效果较好; 当支持向量机设置类型为经典支持向量机, 核函数为径向基函数, 惩罚系数为0.797, 核参数为2.260时, 出行方式识别准确率为89.86%, 即利用手机传感器能够有效识别出行方式。可见, 手机传感器数据识别结果合理, 能为手机传感器数据应用于实际出行调查做支撑。

     

  • 图  1  调查问卷

    Figure  1.  Questionnaire

    图  2  查核线与查核点分布

    Figure  2.  Distributions of screen line and check points

    图  3  交通小区划分

    Figure  3.  Traffic zone division

    图  4  查核点1~5由西向东交通量分布

    Figure  4.  Traffic volume distributions of check points 1-5 from west to east

    图  5  查核点1~5由东向西交通量分布

    Figure  5.  Traffic volume distributions of check points 1-5 from east to west

    图  6  数据剔除

    Figure  6.  Data elimination

    图  7  高斯滤波处理前后速度曲线

    Figure  7.  Velocity curves before and after Gaussian filtering

    图  8  数据补充

    Figure  8.  Data supplement

    图  9  停留时间累计百分比

    Figure  9.  Cumulative percentage of residence time

    图  10  轨迹点间隔距离分布

    Figure  10.  Interval distance distribution of trajectory points

    图  11  不同参数下预测精度曲线

    Figure  11.  Prediction accuracy curves under different parameters

    图  12  交叉验证与遗传算法下的预测精度曲线

    Figure  12.  Prediction accuracy curves based on cross validation and genetic algorithm

    表  1  原始数据

    Table  1.   Raw data

    序号 时间 经度/°E 纬度/°N 海拔/m 速度/(km·h-1) 卫星数 横向加速度/(m·s-2) 纵向加速度/(m·s-2) 垂向加速度/(m·s-2)
    1 13:32:51 30.771 735 103.987 021 494.131 6.589 7 1.618 -9.553 -7.140
    2 13:32:52 30.771 730 103.987 016 498.212 4.428 14 -0.915 -10.918 -0.561
    3 13:32:53 30.771 755 103.987 051 492.490 4.614 14 2.600 -10.358 0.373
    4 13:32:54 30.771 762 103.987 061 492.046 4.078 14 0.982 -10.109 -2.064
    5 13:32:55 30.771 766 103.987 063 490.723 1.412 14 2.581 -6.345 -1.088
    6 13:32:56 30.771 775 103.987 075 488.814 4.028 14 2.150 -5.775 -2.764
    7 13:32:57 30.771 788 103.987 089 488.633 4.189 13 1.863 -4.688 -2.548
    8 13:32:58 30.771 798 103.987 098 487.942 4.932 13 2.241 -10.712 -1.873
    9 13:32:59 30.771 809 103.987 107 487.515 5.149 14 2.102 -4.076 -1.270
    10 13:33:00 30.771 822 103.987 112 486.485 4.804 13 2.279 -6.862 -5.196
    11 13:33:01 30.771 828 103.987 120 487.244 4.935 10 1.393 -3.525 -1.945
    12 13:33:02 30.771 855 103.987 140 488.127 4.861 12 1.595 -3.903 -1.600
    13 13:33:03 30.771 855 103.987 156 488.441 4.356 11 5.358 -8.165 -4.483
    14 13:33:04 30.771 867 103.987 173 490.216 4.148 12 4.602 -9.635 -3.457
    15 13:33:05 30.771 873 103.987 184 490.162 4.583 13 2.260 -7.212 -4.478
    16 13:33:06 30.771 887 103.987 195 489.384 4.933 12 3.821 -10.061 -3.614
    17 13:33:07 30.771 896 103.987 201 489.482 4.968 11 3.156 -6.929 -4.607
    18 13:33:08 30.771 900 103.987 216 489.861 4.773 12 4.080 -10.674 -8.328
    19 13:33:09 30.771 905 103.987 223 490.150 3.149 11 2.212 -7.365 -3.340
    20 13:33:10 30.771 912 103.987 231 490.372 4.218 11 4.262 -11.397 -3.218
    下载: 导出CSV

    表  2  高峰时段交通量

    Table  2.   Traffic volumes of peak times

    高峰时段 7:30~8:30 11:00~12:30 13:30~14:30 17:00~18:30 18:30~19:30 20:30~21:30
    由西向东交通量/人次 5 824 1 839 7 274 2 085 2 966 535
    由东向西交通量/人次 336 11 470 773 8 452 1 254 2 596
    下载: 导出CSV

    表  3  手机传感器出行识别结果

    Table  3.   Travel identification results of mobile phone sensor

    出行区域 出行时间 到达区域 到达时间
    135 08:00 223 08:06
    223 11:29 135 11:38
    135 12:03 132 12:08
    132 12:56 135 13:05
    116 13:14 110 13:17
    110 13:35 135 13:45
    135 15:47 223 15:53
    223 17:27 135 17:34
    135 17:51 131 17:55
    131 18:07 135 18:10
    下载: 导出CSV

    表  4  问卷调查出行识别结果

    Table  4.   Travel identification results of questionnaire

    出行区域 出行时间 到达区域 到达时间
    135 07:55 223 08:02
    223 11:30 135 11:37
    135 12:00 132 12:07
    132 12:55 135 13:03
    135 15:42 223 15:51
    223 17:25 135 17:32
    135 17:50 131 17:57
    下载: 导出CSV

    表  5  手机传感器出行端点识别精度

    Table  5.   Identification accuracy of travel endpoints of mobile phone sensor

    类别 传感器识别数量 识别比例/%
    正确识别 1 706 93.02
    错误识别 128 6.98
    下载: 导出CSV

    表  6  手机传感器出行时间识别精度

    Table  6.   Travel time identification accuracy of mobile phone sensor

    类别 传感器识别数量 识别比例/%
    5 min内 1 666 90.84
    5 min以上 168 9.16
    下载: 导出CSV

    表  7  手机传感器出行方式识别精度

    Table  7.   Identification accuracy of travel modes by mobile phone sensor

    类别 传感器识别数量 识别比例/%
    准确识别 720 89.86
    未准确识别 71 7.74
    错误识别 22 2.40
    下载: 导出CSV

    表  8  问卷调查与手机传感器数据查核正确率

    Table  8.   Checking accuracy of questionnaire and mobile phone sensor data

    方向 手机传感器数据/人次 问卷调查数据/人次 查核线数据/人次 传感器识别比例/% 问卷调查识别比例/%
    由西向东 32 034 31 867 36 340 88.15 87.69
    由东向西 28 385 26 409 34 845 81.46 75.79
    下载: 导出CSV
  • [1] MURAKAMI E, WAGNER D P. Can using global positioning system (GPS) improve trip reporting?[J]. Transportation Research Part C: Emerging Technologies, 1999, 7(2/3): 149-165.
    [2] WOLF J. Using GPS data loggers to replace travel diaries in the collection of travel data[D]. Atlanta: Georgia Institute of Technology, 2000.
    [3] BOHTE W, MAAT K. Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: a large-scale application in the Netherlands[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(3): 285-297. doi: 10.1016/j.trc.2008.11.004
    [4] FENG Tao, TIMMERMANS H J P. Transportation mode recognition using GPS and accelerometer data[J]. Transportation Research Part C: Emerging Technologies, 2013, 37: 118-130. doi: 10.1016/j.trc.2013.09.014
    [5] AULD J, WILLIAMS C, MOHAMMADIAN A, et al. An automated GPS-based prompted recall survey with learning algorithms[J]. Transportation Letters, 2008, 1(1): 59-79.
    [6] BIERLAIRE M, CHEN Jing-min, NEWMAN J. A probabilistic map matching method for smartphone GPS data[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 78-98. doi: 10.1016/j.trc.2012.08.001
    [7] OLIVEIRA M G S, VOVSHA P, WOLF J, et al. Evaluation of two methods for identifying trip purpose in GPS-based household travel surveys[J]. Transportation Research Record, 2014, 2406: 33-41.
    [8] GEURS K T, THOMAS T, BIJLSMA M, et al. Automatic trip and mode detection with move smarter: first results from the dutch mobile mobility panel[J]. Transportation Research Procedia, 2015, 11: 247-262. doi: 10.1016/j.trpro.2015.12.022
    [9] 冉斌. 手机数据在交通调查和交通规划中的应用[J]. 城市交通, 2013, 11(1): 72-81, 32. doi: 10.3969/j.issn.1672-5328.2013.01.011

    RAN Bin. Use of cellphone data in travel survey and transportation planning[J]. Urban Transport of China, 2013, 11(1): 72-81, 32. (in Chinese). doi: 10.3969/j.issn.1672-5328.2013.01.011
    [10] FENG Yi-heng, HOURDOS J, DAVIS G A. Probe vehicle based real-time traffic monitoring on urban roadways[J]. Transportation Research Part C: Emerging Technologies, 2014, 40: 160-178. doi: 10.1016/j.trc.2014.01.010
    [11] 吴子啸, 任西锋, 胡静宇. 基于公交GPS和IC卡数据的综合交通建模新思路[J]. 城市交通, 2011, 9(1): 47-51. doi: 10.3969/j.issn.1672-5328.2011.01.010

    WU Zi-xiao, REN Xi-feng, HU Jing-yu. Comprehensive transportation modeling with information from GPS and IC card on public transit vehicles[J]. Urban Transport of China, 2011, 9(1): 47-51. (in Chinese). doi: 10.3969/j.issn.1672-5328.2011.01.010
    [12] 付鑫, 孙茂棚, 孙皓. 基于GPS数据的出租车通勤识别及时空特征分析[J]. 中国公路学报, 2017, 30(7): 134-143. doi: 10.3969/j.issn.1001-7372.2017.07.017

    FU Xin, SUN Mao-peng, SUN Hao. Taxi commute recognition and temporal-spatial characteristics analysis based on GPS data[J]. China Journal of Highway and Transport, 2017, 30(7): 134-143. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.07.017
    [13] 杨飞, 姚振兴. 基于手机传感器数据的出行特征提取方法[J]. 城市交通, 2016, 14(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201601003.htm

    YANG Fei, YAO Zhen-xing. Travel characteristics extracting method by smartphone sensor data[J]. Urban Transport of China, 2016, 14(1): 9-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSJT201601003.htm
    [14] 戴露. 基于手机GPS数据的出行端点识别方法研究[D]. 成都: 西南交通大学, 2017.

    DAI Lu. Research on extraction method of trip end based on cellphone GPS data[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese).
    [15] 韩旭. 基于手机加速度传感器数据的交通出行方式识别方法研究[D]. 成都: 西南交通大学, 2016.

    HAN Xu. Research of travel mode recognition method based on cellphone accelerometer data[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese).
    [16] 赵瑜. 不同交通状态下基于手机GPS轨迹的出行信息采集效果评估研究[D]. 成都: 西南交通大学, 2016.

    ZHAO Yu. Research on evaluation of acquisition effect of travel information based on cellphone GPS trajectory under different traffic states[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese).
    [17] BROACH J, DILL J, MCNEIL N W. Travel mode imputation using GPS and accelerometer data from a multi-day travel survey[J]. Journal of Transportation Geography, 2019, 78: 194-204. doi: 10.1016/j.jtrangeo.2019.06.001
    [18] 曾大堃. 手机GPS定位频率对交通出行信息提取精度的影响研究[D]. 成都: 西南交通大学, 2016.

    ZENG Da-kun. Research on impact of the logging frequency of cellphone GPS on the extration accuracy of travel information[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese).
    [19] YANG Fei, YAO Zhen-xing, JIN J P. GPS and acceleration data in multimode trip data recognition based on wavelet transform modulus maximum algorithm[J]. Transportation Research Record, 2015, 2526: 90-98. doi: 10.3141/2526-10
    [20] GONG Lei, KANAMORI R, YAMAMOTO T. Data selection in machine learning for identifying trip purposes and travel modes from longitudinal GPS data collection lasting for seasons[J]. Travel Behaviour and Society, 2018, 11: 131-140. doi: 10.1016/j.tbs.2017.03.004
    [21] ASSEMI B, SAFI H, MESBAH M, et al. Developing and validating a statistical model for travel mode identification on smartphones[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 1920-1931. doi: 10.1109/TITS.2016.2516252
    [22] REHRL K, BRUNAUER R, GRÖCHENIG S. Collecting floating car data with smartphones: results from a field trial in Austria[J]. Journal of Location Based Services, 2016, 10(1): 16-30. doi: 10.1080/17489725.2016.1169323
    [23] MARRA A D, BECKER H, AXHAUSEN K W, et al. Developing a passive GPS tracking system to study long-term travel behavior[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 348-368. doi: 10.1016/j.trc.2019.05.006
    [24] CISCAL-TERRY W, DELL'AMICO M, HADJIDIMITRIOU N S, et al. An analysis of drivers route choice behaviour using GPS data and optimal alternatives[J]. Journal of Transport Geography, 2016, 51: 119-129. doi: 10.1016/j.jtrangeo.2015.12.003
    [25] PETRONEA, FRANZ M L. Probe vehicle based trajectory data visualization and applications[J]. International Journal of Transportation, 2018, 6(1): 59-74. doi: 10.14257/ijt.2018.6.1.05
    [26] BORIO D, CANO E, BALDINI G. Speed consistency in the smart tachograph[J]. Sensors, 2018, 18(5): 1-21. doi: 10.1109/JSEN.2018.2792879
    [27] CHEN C, GONG H, LAWSON C, et al. Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study[J]. Transportation Research Part A: Policy and Practice, 2010, 44(10): 830-840. doi: 10.1016/j.tra.2010.08.004
    [28] 张国云. 支持向量机算法及其应用研究[D]. 长沙: 湖南大学, 2006.

    ZHANG Guo-yun. Research on support vector machine algorithm and its application[D]. Changsha: Hunan University, 2006. (in Chinese).
    [29] 李晔. 基于一种改进遗传算法的神经网络[D]. 太原: 太原理工大学, 2007.

    LI Ye. Neural network based on improved genetic algorithm[D]. Taiyuan: Taiyuan University of Technology, 2007. (in Chinese).
    [30] ERHARDT G D, RIZZO L. Evaluating the biases and sample size implications of multi-day GPS-enabled household travel surveys[J]. Transportation Research Procedia, 2018, 32: 279-290. doi: 10.1016/j.trpro.2018.10.051
    [31] 卫宇. 考虑地球曲率情况下两点距离问题的求解[J]. 航空兵器, 2008(3): 7-12. doi: 10.3969/j.issn.1673-5048.2008.03.002

    WEI Yu. Solution of distance between two points considering curvature of the earth[J]. Aero Weapon, 2008(3): 7-12. (in Chinese). doi: 10.3969/j.issn.1673-5048.2008.03.002
  • 加载中
图(12) / 表(8)
计量
  • 文章访问数:  632
  • HTML全文浏览量:  56
  • PDF下载量:  396
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-14
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回