留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机场道面高频振捣密实混凝土弯曲疲劳性能演化特征

权磊 田波 李思李 何哲 贺凯涵

权磊, 田波, 李思李, 何哲, 贺凯涵. 机场道面高频振捣密实混凝土弯曲疲劳性能演化特征[J]. 交通运输工程学报, 2020, 20(2): 34-45. doi: 10.19818/j.cnki.1671-1637.2020.02.003
引用本文: 权磊, 田波, 李思李, 何哲, 贺凯涵. 机场道面高频振捣密实混凝土弯曲疲劳性能演化特征[J]. 交通运输工程学报, 2020, 20(2): 34-45. doi: 10.19818/j.cnki.1671-1637.2020.02.003
QUAN Lei, TIAN Bo, LI Si-li, HE Zhe, HE Kai-han. Evolution characteristics of flexural fatigue performance of dense concrete consolidated with high frequency vibration applied in airport pavement[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 34-45. doi: 10.19818/j.cnki.1671-1637.2020.02.003
Citation: QUAN Lei, TIAN Bo, LI Si-li, HE Zhe, HE Kai-han. Evolution characteristics of flexural fatigue performance of dense concrete consolidated with high frequency vibration applied in airport pavement[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 34-45. doi: 10.19818/j.cnki.1671-1637.2020.02.003

机场道面高频振捣密实混凝土弯曲疲劳性能演化特征

doi: 10.19818/j.cnki.1671-1637.2020.02.003
基金项目: 

国家重点研发计划项目 2018YFB1600100

国家自然科学基金项目 51608239

民航科技项目 ZQT15043109

广西科技计划项目 AC16380105

详细信息
    作者简介:

    权磊(1987-), 男, 陕西富平人, 交通运输部公路科学研究院副研究员, 工学博士, 从事水泥混凝土铺面结构设计方法研究

    通讯作者:

    田波(1973-), 男, 陕西商县人, 交通运输部公路科学研究院研究员, 工学博士

  • 中图分类号: U416.222

Evolution characteristics of flexural fatigue performance of dense concrete consolidated with high frequency vibration applied in airport pavement

Funds: 

National Key Research and Development Program of China 2018YFB1600100

National Natural Science Foundation of China 51608239

Civil Aviation Science and Technology Project ZQT15043109

Guangxi Science and Technology Project AC16380105

More Information
  • 摘要: 为了验证高频振捣滑模摊铺工艺的可靠性及其对含大粒径骨料(最大粒径为40 mm)干硬性混凝土疲劳演化特征的影响, 分别采用小型机具施工工艺(低频振捣)和滑模施工工艺(高频振捣)在郑州新郑机场摊铺40 cm厚混凝土道面板; 对现场切割试件与室内相同配比成型的试件(尺寸均为150 mm×150 mm×550 mm)进行了弯拉强度与疲劳试验, 测量了跨中梁底应变和竖向位移; 根据可靠度理论分析了不同工艺成型混凝土小梁的弯曲疲劳寿命概率分布特征, 建立了弯曲疲劳方程, 进一步分析了试件的弹性模量衰减特征和梁底残余拉伸应变演变规律。研究结果表明: 高频振捣工艺能使混凝土更加致密, 试件平均疲劳寿命较低频振动成型试件长约27%;双对数疲劳方程能够很好地表征含大粒径骨料道面混凝土的疲劳行为; 高应力水平下高频振捣成型混凝土疲劳寿命比室内成型混凝土长4%, 低应力水平下高频振捣成型混凝土疲劳寿命比室内成型混凝土长18%以上; 混凝土抗弯拉弹性模量随加载循环比的增加基本呈线性衰减特征, 试件临近破坏时的抗弯拉弹性模量为初始模量的50%~80%;在重复荷载作用下, 梁底轴向残余应变随加载次数的增加而增大; 提出的4种典型演化形态可表征不同应力水平下混凝土残余应变的复杂增长趋势; 骨料粒径增大是导致试件疲劳性能演变规律离散性的主要原因, 疲劳荷载作用下的累积损伤和骨料依次失效过程是混凝土残余应变演化曲线出现明显台阶特征的主要原因。研究结果为进一步通过足尺环道加速加载试验建立室内试验与现场足尺道面板性能关联方程奠定了基础。

     

  • 图  1  试验段施工工艺与足尺板切割成型的混凝土试件

    Figure  1.  Construction technologies for test sections and concrete specimens cut from full scale slabs

    图  2  混凝土试件疲劳试验应变与挠度采集方法

    Figure  2.  Strain and deflection collection methods in fatigue tests of concrete specimens

    图  3  不同成型方式混凝土试件疲劳寿命的Weibull分布检验

    Figure  3.  Weibull distribution tests for fatigue lives of concrete specimens consolidated with different methods

    图  4  本文疲劳试验结果与相关文献结果对比

    Figure  4.  Comparison of fatigue test results in this paper and in related literatures

    图  5  混凝土抗弯拉弹性模量随加载循环比的衰减特征

    Figure  5.  Deterioration characteristic of concrete flexural modulus with loading cycle ratio

    图  6  梁底残余拉伸应变演变趋势

    Figure  6.  Evolution trends of residual tensile strains at beam bottom

    图  7  残余应变随加载循环比增长趋势拟合结果

    Figure  7.  Fitting results of residual strain increasing with loading cycle ratio

    图  8  疲劳试件破裂面骨料与砂浆断裂特征

    Figure  8.  Fracture characteristics of aggregates and mortar on fracture surface of fatigue specimen

    表  1  试验用混凝土配合比

    Table  1.   Concrete mixture proportions for tests

    参数名称 水泥掺量/kg 水掺量/kg 河砂掺量/kg 10~20 mm碎石掺量/kg 20~40 mm碎石掺量/kg 外加剂掺量/kg 砂率/% 水灰比 新拌混凝土含气量/% 坍落度/mm
    参数值 330 132 630 561 841 6.6 31 0.42 2.5~3.5 10~20
    下载: 导出CSV

    表  2  弯拉强度试验结果

    Table  2.   Results of flexural tensile strength tests

    指标 施工/成型方式
    室内成型 小型机具施工 滑模机械施工
    弯拉强度均值/MPa 5.89 6.21 6.66
    较室内标准试件强度提高百分比/% 5.4 13.0
    下载: 导出CSV

    表  3  弯曲疲劳试验结果

    Table  3.   Flexural fatigue test results

    施工/成型方式 低高应力比 应力水平 试件编号 疲劳寿命/次 疲劳寿命均值/次
    滑模机械施工 0.37 0.95 HM-1 19 68
    HM-2 65
    HM-3 120
    0.41 0.85 HM-4 1 270 2 802
    HM-5 2 500
    HM-6 4 636
    0.47 0.75 HM-7 85 000 296 670
    HM-8 205 000
    HM-9 600 010
    0.33 0.75 HM-10 15 320 122 900
    HM-11 74 580
    HM-12 89 160
    HM-13 312 540
    HM-14
    小型机具施工 0.33 0.75 RG-1 8 850 96 774
    RG-2 20 060
    RG-3 69 870
    RG-4 155 680
    RG-5 229 410
    室内成型 0.37 0.95 SN-1 38 70
    SN-2 74
    SN-3 98
    0.41 0.85 SN-4 890 2 047
    SN-5 1 508
    SN-6 3 742
    0.47 0.75 SN-7 149 080 250 050
    SN-8 187 000
    SN-9 414 070
    0.33 0.75 SN-10 10 060 100 613
    SN-11 22 260
    SN-12 68 390
    SN-13 111 520
    SN-14 190 890
    SN-15 200 560
    下载: 导出CSV

    表  4  两参数Weibull分布拟合结果

    Table  4.   Fitting results for two-parameter Weibull distribution

    施工方式 疲劳应力水平 m ln(t) R2
    滑模机械施工 0.95 0.833 4 3.736 1 0.985 0
    0.85 1.215 8 9.917 0 0.998 3
    0.75 0.774 2 9.523 2 0.946 5
    小型机具施工 0.75 0.637 9 7.405 6 0.975 3
    室内成型 0.95 1.598 3 7.102 3 0.973 8
    0.85 1.058 6 8.310 5 0.952 2
    0.75 0.810 4 9.795 2 0.943 3
    室内成型和小型机具施工* 0.75 0.824 7 9.804 7 0.944 4
    下载: 导出CSV

    表  5  滑模施工混凝土试件不同失效概率下的疲劳方程回归系数

    Table  5.   Regression coefficients for fatigue equation of concrete specimens consolidated with slip-form under different failure probabilities

    失效概率p a b R2
    0.05 0.986 1 0.030 4 0.964 6
    0.10 1.011 1 0.030 6 0.979 8
    0.15 1.026 1 0.030 6 0.987 0
    0.20 1.037 3 0.030 6 0.991 2
    0.25 1.045 9 0.030 6 0.994 0
    0.30 1.053 4 0.030 5 0.995 9
    0.35 1.059 7 0.030 5 0.997 3
    0.40 1.065 6 0.030 5 0.998 3
    0.45 1.070 8 0.030 4 0.999 0
    0.50 1.075 7 0.030 4 0.999 5
    下载: 导出CSV

    表  6  室内成型混凝土试件不同失效概率下的疲劳方程回归系数

    Table  6.   Regression coefficients for fatigue equation of concrete specimens consolidated in laboratory under different failure probabilities

    失效概率p a b R2
    0.05 1.053 4 0.041 3 0.998 0
    0.10 1.064 9 0.038 5 0.998 7
    0.15 1.071 0 0.037 0 0.999 0
    0.20 1.075 2 0.035 9 0.999 2
    0.25 1.078 4 0.035 2 0.999 3
    0.30 1.081 2 0.034 5 0.999 4
    0.35 1.083 4 0.034 0 0.999 5
    0.40 1.085 4 0.033 5 0.999 6
    0.45 1.087 2 0.033 1 0.999 6
    0.50 1.088 7 0.032 4 0.999 7
    下载: 导出CSV

    表  7  弯曲疲劳试验中混凝土最大残余应变

    Table  7.   Maximum residual strains of concrete during flexural fatigue tests

  • [1] ROLLINGS R S, WITCZAK M W. Structural deterioration model for rigid airfield pavements[J]. Journal of Transportation Engineering, 1990, 116(4): 479-491. doi: 10.1061/(ASCE)0733-947X(1990)116:4(479)
    [2] Federal Aviation Administration. Airport pavement design and evaluation, circular advisory[R]. Washington DC: U. S. Department of Transportation, 2009.
    [3] FOXWORTHY P T, DARTER M I. A comprehensive system for nondestructive testing and evaluation of rigid airfield pavements[J]. Transportation Research Record, 1986(1070): 114-124.
    [4] ARA Inc. Guide for mechanistic-empirical design of new and rehabilitated pavement structures[R]. Washington DC: Transportation Research Board, 2004.
    [5] PACKARD R G, TAYABJI S D. New PCA thickness design procedure for concrete highway and street pavements[C]//Purdue University. Proceedings of the Third International Conference on Concrete Pavement Design and Rehabilitation. West Lafayette: Purdue University, 1985(1): 224-235.
    [6] DARTER M I, BARENBERG E J. Design of zero-maintenance plain jointed concrete pavement, Vol. Ⅱ—Design Manual[R]. Urbana-Champaign: University of Illinois, 1977.
    [7] ROESLER J R. Fatigue resistance of concrete pavements[C]//Delft University of Technology. Proceedings of 6th International DUT—Workshop on Fundamental Modelling of Design and Performance of Concrete Pavements. Delft: Delft University of Technology, 2006: 1247-1268.
    [8] ROESLER J R, LITTLETON P C, HILLER J E. et al. Effect of stress state on concrete slab fatigue resistance[R]. Urbana-Champaign: University of Illinois, 2004.
    [9] 范宝甫. 水泥混凝土挠曲疲劳强度σf的研究[J]. 华东公路, 1985(5): 31-40.

    FAN Bao-fu. Study on flexural fatigue strength σf of concrete[J]. East China Highway, 1985(5): 31-40. (in Chinese).
    [10] 石小平, 姚祖康, 李华, 等. 水泥混凝土的弯曲疲劳特性[J]. 土木工程学报, 1990, 23(3): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199003001.htm

    SHI Xiao-ping, YAO Zu-kang, LI Hua, et al. Study on flexural fatigue behavior of cement concrete[J]. China Civil Engineering Journal, 1990, 23(3): 11-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199003001.htm
    [11] 王秉纲, 王选仓, 高维成, 等. 重载水泥混凝土路面疲劳关系研究[C]//中国公路学会. 中国公路学会'2000学术交流会论文集. 北京: 中国公路学会, 2000: 112-116.

    WANG Bing-gang, WANG Xuan-cang, GAO Wei-cheng, et al. Study on the fatigue relationship of heavy-duty cement concrete pavement[C]//China Highway and Transportation Society. Proceedings of China Highway and Transportation Society Seminar in 2000. Beijing: China Highway and Transportation Society, 2000: 112-116. (in Chinese).
    [12] 高维成. 水泥混凝土路面疲劳特性研究[D]. 西安: 西安公路交通大学, 2000.

    GAO Wei-cheng. Study on fatigue behavior of concrete pavements[D]. Xi'an: Xi'an Highway University, 2000. (in Chinese).
    [13] 李朝阳, 宋玉普, 赵国藩. 混凝土疲劳残余应变性能研究[J]. 大连理工大学学报, 2001, 41(3): 355-358. doi: 10.3321/j.issn:1000-8608.2001.03.022

    LI Chao-yang, SONG Yu-pu, ZHAO Guo-fan. Study of residual strain of concrete under fatigue loading[J]. Journal of Dalian University of Technology, 2001, 41(3): 355-358. (in Chinese). doi: 10.3321/j.issn:1000-8608.2001.03.022
    [14] 郭寅川, 申爱琴, 田丰, 等. 动态疲劳荷载作用下路面混凝土力学性能研究[J]. 中国公路学报, 2017, 30(7): 18-24. doi: 10.3969/j.issn.1001-7372.2017.07.003

    GUO Yin-chuan, SHEN Ai-qin, TIAN Feng, et al. Mechanical property of pavement cement concrete under dynamic fatigue load[J]. China Journal of Highway and Transport, 2017, 30(7): 18-24. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.07.003
    [15] 谢建斌, 何天淳, 程赫明, 等. 循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J]. 兰州理工大学学报, 2004, 30(2): 104-109. doi: 10.3969/j.issn.1673-5196.2004.02.029

    XIE Jian-bin, HE Tian-chun, CHENG He-ming, et al. Investigation flexural fatigue behavior of steel fiber reinforced concrete for pavement surface stratum under cyclic load[J]. Journal of Lanzhou University of Technology, 2004, 30(2): 104-109. (in Chinese). doi: 10.3969/j.issn.1673-5196.2004.02.029
    [16] BANJARA N K, RAMANJANEYULU K, SASMAL S, et al. Flexural fatigue performance of plain and fibre reinforced concrete[J]. Transactions of the Indian Institute of Metals, 2016, 69(2): 373-377. doi: 10.1007/s12666-015-0770-y
    [17] LEE M K, BARR B I G. An overview of the fatigue behavior of plain and fiber reinforced concrete[J]. Cement and Concrete Composites, 2004, 26(4): 299-305. doi: 10.1016/S0958-9465(02)00139-7
    [18] ALLICHE A. Damage model for fatigue loading of concrete[J]. International Journal of Fatigue, 2004, 26(9): 915-921. doi: 10.1016/j.ijfatigue.2004.02.006
    [19] 凌海宇, 田波, 权磊, 等. 振动条件下基于扩展度的低坍落度混凝土工作性评价[J]. 混凝土, 2018(6): 101-104. doi: 10.3969/j.issn.1002-3550.2018.06.025

    LING Hai-yu, TIAN Bo, QUAN Lei, et al. Evaluation of workability of low slump concrete based on extensibility under vibration condition[J]. Concrete, 2018(6): 101-104. (in Chinese). doi: 10.3969/j.issn.1002-3550.2018.06.025
    [20] ROESLER J R. Fatigue of concrete beams and slabs[D]. Urbana-Champaign: University of Illinois, 1998.
    [21] 杜修力, 金浏. 非均质混凝土材料破坏的三维细观数值模拟[J]. 工程力学, 2013, 30(2): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302012.htm

    DU Xiu-li, JIN Liu. Numerical simulation of three-dimensional meso-mechanical model for damage process of heterogeneous concrete[J]. Engineering Mechanics, 2013, 30(2): 92-98. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201302012.htm
    [22] MAITRA S R, REDDY K S, RAMACHANDRA L S. Numerical investigation of fatigue characteristics of concrete pavement[J]. International Journal of Fracture, 2014, 189(2): 181-193. doi: 10.1007/s10704-014-9969-x
    [23] 周正峰, 蒲卓桁, 唐基华. 双线性黏聚区模型在混凝土路面损伤开裂分析中的应用[J]. 交通运输工程学报, 2019, 19(1): 17-23. doi: 10.3969/j.issn.1671-1637.2019.01.003

    ZHOU Zheng-feng, PU Zhuo-heng, TANG Ji-hua. Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 17-23. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.003
    [24] 党发宁, 刘彦文, 丁卫华, 等. 基于破损演化理论的混凝土CT图像定量分析[J]. 岩石力学与工程学报, 2007, 26(8): 1588-1593. doi: 10.3321/j.issn:1000-6915.2007.08.008

    DANG Fa-ning, LIU Yan-wen, DING Wei-hua, et al. Quantitative analysis of concrete CT images based on damage-fracture evolution theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1588-1593. (in Chinese). doi: 10.3321/j.issn:1000-6915.2007.08.008
    [25] 谭忆秋, 邢超, 张磊, 等. 均质性对沥青混合料应变场分布的影响[J]. 中国公路学报, 2016, 29(4): 8-13. doi: 10.3969/j.issn.1001-7372.2016.04.002

    TAN Yi-qiu, XING Chao, ZHANG Lei, et al. Effects of homogeneity on asphalt mixture strain field distribution[J]. China Journal of Highway and Transport, 2016, 29(4): 8-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.04.002
    [26] 蔡良才, 王海服, 张罗利, 等. 基于累积损伤的机场道面剩余寿命预测模型[J]. 交通运输工程学报, 2014, 14(4): 1-6. http://transport.chd.edu.cn/article/id/201404001

    CAI Liang-cai, WANG Hai-fu, ZHANG Luo-li, et al. Prediction model of remaining life for airport pavement based on cumulative damage[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 1-6. (in Chinese). http://transport.chd.edu.cn/article/id/201404001
    [27] CAI Liang-cai, ZHU Zhan-qing, WU Ai-hong, et al. Cement concrete pavement design based on cumulative damage factor[J]. Journal of Traffic and Transportation Engineering, 2012, 12(4): 1-8, 24.
    [28] 王观虎, 蔡良才, 邵斌, 等. 机场水泥混凝土道面使用寿命的改进灰色预测模型[J]. 交通运输工程学报, 2009, 9(3): 45-48. doi: 10.3321/j.issn:1671-1637.2009.03.008

    WANG Guan-hu, CAI Liang-cai, SHAO Bin, et al. Modified gray prediction model of service life for airport cement concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 45-48. (in Chinese). doi: 10.3321/j.issn:1671-1637.2009.03.008
    [29] 洪锦祥, 缪昌文, 石杏喜, 等. 混凝土疲劳变形曲线三阶段的比例关系与应变速率[J]. 南京理工大学学报, 2013, 37(1): 150-155. doi: 10.3969/j.issn.1005-9830.2013.01.026

    HONG Jin-xiang, MIAO Chang-wen, SHI Xing-xi, et al. Proportion relation and strain rate of three-stage concrete's fatigue deformation curve[J]. Journal of Nanjing University of Science and Technology, 2013, 37(1): 150-155. (in Chinese). doi: 10.3969/j.issn.1005-9830.2013.01.026
    [30] 刘芳平, 周建庭. 基于疲劳应变演化的混凝土弯曲强度退化分析[J]. 中国公路学报, 2017, 30(4): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704012.htm

    LIU Fang-ping, ZHOU Jian-ting. Concrete bending strength degradation analysis based on fatigue strain evolution[J]. China Journal of Highway and Transport, 2017, 30(4): 97-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704012.htm
    [31] GUDIMETTLA J M, CRAWFORD G L, GROVE J. Optimizing paving mixtures for durable, cost-effective, and sustainable concrete[J]. Transportation Research Record, 2016(2573): 115-124.
    [32] 季节, 刘禄厚, 索智, 等. 环氧沥青混凝土抗疲劳层对柔性基层长寿命沥青混凝土路面结构的影响[J]. 交通运输工程学报, 2017, 17(4): 1-8. doi: 10.3969/j.issn.1671-1637.2017.04.001

    JI Jie, LIU Lu-hou, SUO Zhi, et al. Influence of epoxy asphalt concrete anti-fatigue layer on structure of perpetual asphalt concrete pavement with flexible base[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 1-8. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.001
    [33] 吴玉, 蒋鑫, 吴朝阳, 等. 土基模量对水泥混凝土路面轮载疲劳开裂损伤的影响[J]. 交通运输工程学报, 2017, 17(2): 31-40. http://transport.chd.edu.cn/article/id/201702004

    WU Yu, JIANG Xin, WU Chao-yang, et al. Influence of subgrade modulus on fatigue cracking damage of cement concrete pavement under traffic load[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 31-40. (in Chinese). http://transport.chd.edu.cn/article/id/201702004
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  797
  • HTML全文浏览量:  133
  • PDF下载量:  371
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回