留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融石英砂动力特性动三轴试验

魏平 鲍宁 魏静 陈建峰

魏平, 鲍宁, 魏静, 陈建峰. 熔融石英砂动力特性动三轴试验[J]. 交通运输工程学报, 2020, 20(2): 46-54. doi: 10.19818/j.cnki.1671-1637.2020.02.004
引用本文: 魏平, 鲍宁, 魏静, 陈建峰. 熔融石英砂动力特性动三轴试验[J]. 交通运输工程学报, 2020, 20(2): 46-54. doi: 10.19818/j.cnki.1671-1637.2020.02.004
WEI Ping, BAO Ning, WEI Jing, CHEN Jian-feng. Dynamic properties of fused silica sand based on dynamic triaxial test[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 46-54. doi: 10.19818/j.cnki.1671-1637.2020.02.004
Citation: WEI Ping, BAO Ning, WEI Jing, CHEN Jian-feng. Dynamic properties of fused silica sand based on dynamic triaxial test[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 46-54. doi: 10.19818/j.cnki.1671-1637.2020.02.004

熔融石英砂动力特性动三轴试验

doi: 10.19818/j.cnki.1671-1637.2020.02.004
基金项目: 

国家自然科学基金项目 41772289

详细信息
    作者简介:

    魏平(1977-), 女, 河北沧州人, 北京工业职业技术学院副教授, 工学博士, 从事路基工程研究

  • 中图分类号: U414

Dynamic properties of fused silica sand based on dynamic triaxial test

Funds: 

National Natural Science Foundation of China 41772289

More Information
    Author Bio:

    WEI Ping(1977-), female, associate professor, PhD, E-mail: 610888065@qq.com

  • 摘要: 为探究振动荷载作用下熔融石英砂液化破坏过程中动变形和动强度变化规律, 促进透明土技术在岩土工程动力特性可视化模型试验中的推广和应用, 对构成透明砂土骨架结构的典型粒径(0.5~1.0 mm)熔融石英砂开展饱和试样动三轴试验; 研究了不同围压、加载频率和动应力比等试验条件下熔融石英砂试样的累积轴向应变、动孔压发展模式、动应力衰减、动弹性模量和阻尼比的变化规律, 并将试验结果与相同级配的标准砂进行了对比。分析结果表明: 熔融石英砂累积轴向应变随动应力比的增大呈现出由稳定型向破坏型转变的趋势, 加载频率为0.5~1.5 Hz时, 临界动应力比为0.150~0.175, 小于标准砂的0.200~0.225;升高围压、增大动应力比、降低加载频率会加快试样塑性应变累积, 缩短液化破坏时间; 熔融石英砂孔压发展模式随围压增大逐渐由Seed孔压模型向指数型过渡, 增大加载动应力会加剧液化破坏后孔压的振动幅度; 相同动应力比下, 熔融石英砂与标准砂的动应力与动应变呈现线性相关, 在围压大于200 kPa时, 二者动应力衰减幅度随围压的增大而逐渐减小; 熔融石英砂的动弹性模量和阻尼比表现为线性关系, 动弹性模量随动应变的增大呈现出双曲线型减小的趋势, 并随围压的增大而增大; 阻尼比随动应变的增加先增大后基本稳定在0.22, 发展曲线受围压影响较小。

     

  • 图  1  动三轴仪示意

    Figure  1.  Schematic of dynamic triaxial apparatus

    图  2  熔融石英砂(左)和标准砂(右)

    Figure  2.  Fused silica sand (left) and standard sand (right)

    图  3  不同加载频率下试样累积轴向应变曲线

    Figure  3.  Cumulative axial strain curves of specimens under different loading frequencies

    图  4  不同围压下动孔压时程曲线

    Figure  4.  Time history curves of dynamic pore pressure

    图  5  归一化动孔压发展模式

    Figure  5.  Development modes of normalized dynamic pore pressures

    图  6  试样动应力随振动次数增加的衰减

    Figure  6.  Attenuations of dynamic stresses of specimens with increase of vibration number

    图  7  振动液化过程中熔融石英砂动应力的衰减

    Figure  7.  Attenuations of dynamic stresses of fused silica sand in process of vibration liquefaction

    图  8  振动液化过程中熔融石英砂动弹性模量的衰减

    Figure  8.  Attenuations of dynamic elastic moduli of fused silica sand in process of vibration liquefaction

    图  9  不同围压下熔融石英砂阻尼比随动应变变化

    Figure  9.  Changes of damping ratios of fused silica sand with dynamic strain under different confining pressures

    图  10  动弹性模量和阻尼比关系曲线

    Figure  10.  Relationship curves of dynamic elastic modulus and damping ratio

    表  1  颗粒的基本物性参数

    Table  1.   Fundamental physical parameters of particles

    砂样 内摩擦角/(°) 不均匀系数 曲率系数 最小干密度/(g·cm-3) 最大干密度/(g·cm-3) 各组分(mm)比例/%
    0.25~0.50 0.50~1.00 > 1.00
    熔融石英砂 32.8 1.45 0.96 0.993 1.262 0.8 99.2 0.0
    标准砂 30.5 1.45 0.96 1.429 1.718 0.2 99.4 0.4
    下载: 导出CSV

    表  2  动三轴试验方案

    Table  2.   Dynamic triaxial test programs

    试样 加载频率/Hz 围压/kPa 动应力比
    0.5~1.0 mm熔融石英砂(FS) 0.5 200 0.150、0.175、0.200
    1.0 100 0.200、0.225
    200 0.150、0.175、0.200、0.225
    300 0.200、0.225
    400 0.200、0.225
    1.5 200 0.150、0.175、0.200
    0.5~1.0 mm标准砂(ISO) 1.0 200 0.200、0.225
    300 0.200、0.225
    下载: 导出CSV

    表  3  双曲线模型参数取值

    Table  3.   Parameter values of hyperbola model

    表  4  表 4λE公式中的参数取值

    Table  4.   Parameters of λ-E equation

    参数 不同围压(kPa)下的参数取值
    200 300 400
    p -4.9 -6.8 -8.0
    q 9.22 8.01 6.08
    判定系数R2 0.995 6 0.983 6 0.992 5
    下载: 导出CSV
  • [1] ISKANDER M, LAI J, OAWALD C J, et al. Development of a transparent material to model the geotechnical properties of soils[J]. Geotechnical Testing Journal, 1994, 17(4): 425-433. doi: 10.1520/GTJ10303J
    [2] EZZEIN F M, BATHURST R J. A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil[J]. Geotextiles and Geomembranes, 2014, 42(3): 246-255. doi: 10.1016/j.geotexmem.2014.04.003
    [3] XIAO Yang, YIN Feng, LIU Han-long, et al. Model tests on soil movement during the installation of piles in transparent granular soil[J]. International Journal of Geomechanics, 2017, 17(4): 06016027. doi: 10.1061/(ASCE)GM.1943-5622.0000788
    [4] 袁炳祥, 吴跃东, 陈锐, 等. 侧向受荷桩土体内部位移场的模型试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 2031-2036. doi: 10.3785/j.issn.1008-973X.2016.10.026

    YUAN Bing-xiang, WU Yue-dong, CHEN Rui, et al. Model test on displacement field of internal soil induced by laterally loading pile[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(10): 2031-2036. (in Chinese). doi: 10.3785/j.issn.1008-973X.2016.10.026
    [5] XIANG Yu-zhou, LIU Han-long, ZHANG Wen-gang, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism[J]. Tunneling and Underground Space Technology, 2018, 74: 178-184. doi: 10.1016/j.tust.2018.01.020
    [6] CHEN J F, GUO X P, XUE J F, et al. Load behaviour of model strip footings on reinforced transparent soils[J]. Geosynthetics International, 2019, 26(3): 1-10.
    [7] MANNHEIMER R J, OSWALD C J. Development of transparent porous media with permeabilities and porosities comparable to soils, aquifers, and petroleum reservoirs[J]. Ground Water, 2010, 31(5): 781-788.
    [8] SERRANO R F, ISKANDER M, TABE K. 3D contaminant flow imaging in transparent granular porous media[J]. Géotechnique Letters, 2011, 1(3): 71-78. doi: 10.1680/geolett.11.00027
    [9] 刘建军, 汪尧, 宋睿. 基于透明岩土材料的可视化渗流实验及其应用前景[J]. 地球科学, 2017, 42(8): 1287-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708004.htm

    LIU Jian-jun, WANG Yao, SONG Rui. Visual seepage experiment based on transparent rock-soil material and its application prospect[J]. Earth Science, 2017, 42(8): 1287-1295. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708004.htm
    [10] 金韦剑, 朱斌. 基于透明土孔隙介质双渗流模型试验研究[J]. 四川地质学报, 2020, 40(1): 103-106. doi: 10.3969/j.issn.1006-0995.2020.01.021

    JIN Wei-jian, ZHU Bin. Experimental study on double seepage model based on transparent soil pore medium[J]. Acta Geologica Sichuan, 2020, 40(1): 103-106. (in Chinese). doi: 10.3969/j.issn.1006-0995.2020.01.021
    [11] 隋旺华, 高岳, LIU Jin-yuan. 透明土实验技术现状与展望[J]. 煤炭学报, 2011, 36(4): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201104011.htm

    SUI Wang-hua, GAO Yue, LIU Jin-yuan. Status and prospect of transparent soil experimental technique[J]. Journal of China Coal Society, 2011, 36(4): 577-582. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201104011.htm
    [12] SADEK S, ISKANDER M, LIU Jin-yuan. Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal, 2002, 39(1): 111-124. doi: 10.1139/t01-075
    [13] EZZEIN F M, BATHURST R J. A transparent sand for geotechnical laboratory modeling[J]. Geotechnical Testing Journal, 2011, 34(6): 590-601.
    [14] GUZMAN I L, ISKANDER M, SUESCUN-FLOREZ E, et al. A transparent aqueous-saturated sand surrogate for use in physical modeling[J]. Acta Geotechnica, 2014, 9(2): 187-206. doi: 10.1007/s11440-013-0247-2
    [15] 孔纲强, 李辉, 王忠涛, 等. 透明砂土与天然砂土动力特性对比[J]. 岩土力学, 2018, 39(6): 1935-1940, 1947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806003.htm

    KONG Gang-qiang, LI Hui, WANG Zhong-tao, et al. Comparison of dynamic properties between transparent sand and natural sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1935-1940, 1947. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806003.htm
    [16] XIAO Yang, SUN Yi-fei, YIN Feng, et al. Constitutive modeling for transparent granular soils[J]. International Journal of Geomechanics, 2017, 17(7): 04016150. doi: 10.1061/(ASCE)GM.1943-5622.0000857
    [17] ZHANG Zhen, TAO Feng-juan, YE Guan-bao, et al. Physical models to investigate soil arching phenomena under cyclic footing loading using transparent soil[C]//Springer. Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours. Berlin: Springer, 2018: 792-801.
    [18] GUZMAN I L, ISKANDER M, BLESS S. Observations of projectile penetration into a transparent soil[J]. Mechanics Research Communications, 2015, 70: 4-11. doi: 10.1016/j.mechrescom.2015.08.008
    [19] KONG Gang-qiang, ZHOU Li-duo, WANG Zhong-tao, et al. Shear modulus and damping ratios of transparent soil manufactured by fused quartz[J]. Materials Letters, 2016, 182: 257-259. doi: 10.1016/j.matlet.2016.07.012
    [20] KONG Gang-qiang, LI Hui, YANG Gui, et al. Investigation on shear modulus and damping ratio of transparent soils with different pore fluids[J]. Granular Matter, 2018, 20(1): 1-8. doi: 10.1007/s10035-017-0773-y
    [21] KONG Gang-qiang, LI Hui, YANG Qing, et al. Cyclic undrained behavior and liquefaction resistance of transparent sand manufactured by fused quartz[J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 13-17. doi: 10.1016/j.soildyn.2018.02.015
    [22] 张强. Y形桩竖向承载特性的透明土模型试验研究[D]. 淮南: 安徽理工大学, 2016.

    ZHANG Qiang. The research of transparent soil model experimental about vertical load-bearing characteristics of Y-section pile[D]. Huainan: Anhui University of Science and Technology, 2016. (in Chinese).
    [23] 丁选明, 黄宇航, 瞿立明, 等. 桩承式路堤土拱效应透明土模型试验研究[J]. 科学技术与工程, 2016, 16(28): 110-114. doi: 10.3969/j.issn.1671-1815.2016.28.019

    DING Xuan-ming, HUANG Yu-hang, QU Li-ming, et al. Experimental investigation on soil arching in piled embankments based on transparent soil model[J]. Science Technology and Engineering, 2016, 16(28): 110-114. (in Chinese). doi: 10.3969/j.issn.1671-1815.2016.28.019
    [24] 曹兆虎, 孔纲强, 文磊, 等. 楔形管桩沉桩及桩端后注浆可视化模型试验[J]. 铁道科学与工程学报, 2017, 14(5): 922-927. doi: 10.3969/j.issn.1672-7029.2017.05.006

    CAO Zhao-hu, KONG Gang-qiang, WEN Lei, et al. Visualization model test on tapered pipe pile installation and pile tip grouting process[J]. Journal of Railway Science and Engineering, 2017, 14(5): 922-927. (in Chinese). doi: 10.3969/j.issn.1672-7029.2017.05.006
    [25] 周航, 袁井荣, 刘汉龙, 等. 矩形桩沉桩挤土效应透明土模型试验研究[J]. 岩土力学, 2019, 40(11): 4429-4438. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911034.htm

    ZHOU Hang, YUAN Jing-rong, LIU Han-long, et al. Model test of rectangular pile penetration effect in transparent soil[J]. Rock and Soil Mechanics, 2019, 40(11): 4429-4438. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911034.htm
    [26] 黄博, 丁浩, 陈云敏. 高速列车荷载作用的动三轴试验模拟[J]. 岩土工程学报, 2011, 33(2): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201102007.htm

    HUANG Bo, DING Hao, CHEN Yun-min. Simulation of high-speed train load by dynamic triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 195-202. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201102007.htm
    [27] SEEDH B, TOKIMATSU K, HARDER L F, et al. Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of Geotechnical Engineering, 1985, 111(12): 1425-1445. doi: 10.1061/(ASCE)0733-9410(1985)111:12(1425)
    [28] 曾长女, 刘汉龙, 周云东. 饱和粉土粉粒含量影响的动孔压发展规律试验研究[J]. 防灾减灾工程学报, 2006, 26(2): 180-184. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602010.htm

    ZENG Chang-nyu, LIU Han-long, ZHOU Yun-dong. Experimental study on influence of silt particle content on pore water pressure mode of saturated silt[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(2): 180-184. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200602010.htm
    [29] HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
    [30] 孙静, 袁晓铭. 土的动模量和阻尼比研究述评[J]. 世界地震工程, 2003, 19(1): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200301015.htm

    SUN Jing, YUAN Xiao-ming. A state-of-art of research on dynamic modulus and damping ratio of soils[J]. World Earthquake Engineering, 2003, 19(1): 88-95. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200301015.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  141
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-31
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回