留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于因子模型的跨坐式单轨车辆抗倾覆性能

王超冉 季元进 任利惠

王超冉, 季元进, 任利惠. 基于因子模型的跨坐式单轨车辆抗倾覆性能[J]. 交通运输工程学报, 2020, 20(2): 66-76. doi: 10.19818/j.cnki.1671-1637.2020.02.006
引用本文: 王超冉, 季元进, 任利惠. 基于因子模型的跨坐式单轨车辆抗倾覆性能[J]. 交通运输工程学报, 2020, 20(2): 66-76. doi: 10.19818/j.cnki.1671-1637.2020.02.006
WANG Chao-ran, JI Yuan-jin, REN Li-hui. Anti-overturning capacity of straddling monorail vehicle based on factor model[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 66-76. doi: 10.19818/j.cnki.1671-1637.2020.02.006
Citation: WANG Chao-ran, JI Yuan-jin, REN Li-hui. Anti-overturning capacity of straddling monorail vehicle based on factor model[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 66-76. doi: 10.19818/j.cnki.1671-1637.2020.02.006

基于因子模型的跨坐式单轨车辆抗倾覆性能

doi: 10.19818/j.cnki.1671-1637.2020.02.006
基金项目: 

"十二五"国家科技支撑计划项目 2015BAG19B02

详细信息
    作者简介:

    王超冉(1993-), 男, 江苏徐州人, 同济大学工学硕士研究生, 从事车辆系统动力学研究

    任利惠(1970-), 男, 河北邯郸人, 同济大学教授, 工学博士

  • 中图分类号: U270.1

Anti-overturning capacity of straddling monorail vehicle based on factor model

Funds: 

"TwelfthFive-YearPlan"National Science and Technology Support Program of China 2015BAG19B02

More Information
  • 摘要: 针对跨坐式单轨车辆抗倾覆性能影响因素繁多且复杂的特点, 利用降维思想提出一种综合评价车辆抗倾覆性能的方法, 并分析其影响参数敏感性; 基于浮心高度、柔性系数和临界侧滚角的定义, 推导了针对跨坐式单轨车辆的3个指标计算方法, 讨论了3个指标的区别, 综合提出13个可量化的抗倾覆影响因子; 基于测试和仿真数据建立了跨坐式单轨车辆的抗倾覆影响因子模型, 计算得到5个主因子和各参数的影响权重; 提出以抗倾系数来综合评价跨坐式单轨车辆的抗倾覆性能, 并得到其便捷计算方法; 利用多体动力学软件Universal Mechanism建立车辆-轨道参数化动力学模型, 验证了所得到的参数权重与评价指标的准确性。分析结果表明: 跨坐式单轨车辆的浮心高度、柔性系数和临界侧滚角均能不同程度地反映车辆抗倾覆性, 但不能体现参数敏感性; 跨坐式单轨车辆的抗倾覆性能受稳定轮与轨道梁表面接触状态的影响明显, 当稳定轮一侧脱离轨面时, 车辆的抗倾覆性能下降约50%;影响车辆抗倾覆性能的5个主因子分别是稳定轮、二系悬挂、横向跨距、一系悬挂和车体; 适当降低稳定轮垂向位置和车体质心位置, 增大水平轮预压力和走行轮横向跨距可有效提高跨坐式单轨车辆的抗倾覆性能。

     

  • 图  1  浮心高度

    Figure  1.  Height of buoyance center

    图  2  柔性系数模型

    Figure  2.  Model of flexibility coefficient

    图  3  跨坐式单轨车辆侧倾模型

    Figure  3.  Roll model of straddling monorail vehicle

    图  4  临界侧滚角、临界超高率与预压力的关系

    Figure  4.  Relationships between critical roll angle, critical super-elevation ratio and pre-load

    图  5  因子权重

    Figure  5.  Factor weights

    图  6  车辆动力学模型拓扑结构

    Figure  6.  Topological structure of vehicle dynamics model

    图  7  车辆动力学模型

    Figure  7.  Vehicle dynamics model

    图  8  临界超高率

    Figure  8.  Critical super-elevation ratios

    图  9  方案1~3仿真结果

    Figure  9.  Simulation results of schemes 1-3

    表  1  车辆参数与限值

    Table  1.   Vehicle parameters and limits

    参数 方案1 方案2 方案3 下限 上限
    车体重力G1/kN 210 210 210
    转向架重力G2/kN 24 24 24
    一系悬挂垂向刚度Kpz/(MN·m-1) 1.40 1.21 1.58 1.10 1.58
    二系悬挂垂向刚度Ksz/(MN·m-1) 0.43 0.50 0.68 0.30 0.68
    二系悬挂横向(y)刚度Ksy/(MN·m-1) 0.086 0.090 0.091 0.085 0.130
    转向架一侧导向轮径向刚度Kgt/(MN·m-1) 1.25 1.42 1.35 1.00 2.00
    转向架一侧稳定轮径向刚度Kst/(MN·m-1) 0.625 0.680 0.680 0.500 1.000
    车体重心高度h2/m 0.563 0.563 0.591 0.50 1.20
    二系悬挂上支撑面高度h3/m 0.110 0.110 0.100 -0.005 0.180
    转向架重心高度h4/m 0.00 0.02 0.01 -0.05 0.45
    导向轮中心高度h5/m 0.14 0.12 0.11 0.10 0.40
    稳定轮中心高度h6/m 0.82 0.88 0.96 0.75 1.60
    走行轮1/2横向跨距b1/m 0.11 0.13 0.11 0.08 0.16
    二系悬挂1/2横向跨距b2/m 1.0 1.25 1.12 0.83 1.20
    走行轮滚动半径r/m 0.445 0.445 0.445
    预压力Fp/kN 5.0 4.8 5.5 4.5 13.0
    下载: 导出CSV

    表  2  因子相关系数

    Table  2.   Correlation coefficients of factors

    因子 Kpz Ksz Ksy Kgt Kst h2 h3 h4 h5 h6 b1 b2 Fp
    Kpz 1.000 0.376 0.471 0.429 0.183 0.359 0.223 0.135 0.122 0.185 0.268 0.195 0.220
    Ksz 0.376 1.000 0.186 0.054 0.387 0.118 0.001 0.000 0.418 0.000 0.311 0.008 0.000
    Ksy 0.471 0.186 1.000 0.463 0.423 0.480 0.321 0.148 0.289 0.396 0.128 0.388 0.327
    Kgt 0.429 0.054 0.463 1.000 0.458 0.277 0.245 0.031 0.077 0.013 0.417 0.137 0.016
    Kst 0.183 0.387 0.423 0.458 1.000 0.166 0.392 0.138 0.052 0.134 0.438 0.312 0.216
    h2 0.359 0.118 0.480 0.277 0.166 1.000 0.370 0.055 0.081 0.004 0.454 0.006 0.004
    h3 0.223 0.001 0.321 0.245 0.392 0.370 1.000 0.005 0.472 0.101 0.094 0.023 0.148
    h4 0.135 0.000 0.148 0.031 0.138 0.055 0.005 1.000 0.250 0.000 0.340 0.000 0.002
    h5 0.122 0.418 0.289 0.077 0.052 0.081 0.472 0.250 1.000 0.476 0.188 0.266 0.482
    h6 0.185 0.000 0.396 0.013 0.134 0.004 0.101 0.000 0.476 1.000 0.086 0.031 0.000
    b1 0.268 0.311 0.128 0.417 0.438 0.454 0.094 0.340 0.188 0.086 1.000 0.158 0.081
    b2 0.195 0.008 0.388 0.137 0.312 0.006 0.023 0.000 0.266 0.031 0.158 1.000 0.044
    Fp 0.220 0.000 0.327 0.016 0.216 0.004 0.148 0.002 0.482 0.000 0.081 0.044 1.000
    下载: 导出CSV

    表  3  因子特征值和累积方差

    Table  3.   Eigenvalues and cumulative variances of factors

    主因子 初始特征值 提取平方和载入 旋转平方和载入
    特征值 方差贡献率/% 累积方差贡献率/% 特征值 方差贡献率/% 累积方差贡献率/% 特征值 方差贡献率/% 累积方差贡献率/%
    1 3.412 26.245 26.245 3.412 26.245 26.245 2.377 18.284 18.284
    2 1.564 12.031 38.276 1.564 12.031 38.276 2.149 16.534 34.818
    3 1.404 10.801 49.077 1.404 10.801 49.077 1.518 11.677 46.495
    4 1.187 9.129 58.205 1.187 9.129 58.205 1.398 10.753 57.247
    5 1.051 8.087 66.292 1.051 8.087 66.292 1.176 9.045 66.292
    下载: 导出CSV

    表  4  旋转前后因子载荷

    Table  4.   Factor loads before and after rotation

    因子 旋转前因子载荷 旋转后因子载荷
    M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
    h6 0.831 0.421 -0.149 -0.073 0.184 0.932 -0.144 -0.149 0.098 -0.009
    Fp 0.800 0.448 -0.182 -0.080 0.202 0.923 -0.189 -0.169 0.118 0.005
    h4 0.766 -0.290 0.175 -0.014 -0.141 -0.413 0.231 0.079 0.301 0.068
    Ksz -0.721 0.230 -0.199 0.198 -0.126 0.040 -0.777 0.173 0.020 -0.076
    h3 -0.582 0.370 -0.045 -0.249 0.324 -0.391 0.706 0.071 -0.034 -0.102
    Kgt -0.414 0.068 0.297 0.193 -0.153 0.280 -0.688 -0.377 0.094 0.138
    b1 0.023 0.656 0.089 -0.438 -0.238 0.268 0.091 -0.799 0.026 -0.002
    b2 0.411 -0.487 0.336 -0.149 0.318 -0.036 0.512 0.611 -0.082 -0.016
    h5 -0.076 0.347 0.716 0.096 0.189 -0.017 -0.015 0.402 0.711 0.125
    Kpz 0.201 0.172 0.432 0.242 -0.044 -0.051 -0.054 0.273 -0.676 0.167
    Kst -0.184 -0.269 -0.316 -0.595 0.073 0.056 -0.123 -0.060 0.539 0.063
    Ksy -0.067 0.064 -0.371 0.515 0.617 0.167 0.191 0.075 0.013 -0.850
    h2 0.458 0.118 -0.363 0.367 -0.480 0.382 0.372 0.162 0.105 0.605
    下载: 导出CSV

    表  5  因子得分系数

    Table  5.   Factor score coefficients

    因子 M1 M2 M3 M4 M5
    Kpz -0.035 -0.040 -0.033 0.386 0.024
    Ksz -0.093 0.324 -0.107 0.018 -0.058
    Ksy 0.165 0.100 0.109 0.045 -0.744
    Kgt -0.193 0.070 -0.052 0.246 0.064
    Kst 0.049 -0.085 0.216 -0.506 0.166
    h2 0.010 0.199 -0.595 0.018 0.031
    h3 -0.045 -0.445 0.259 -0.002 -0.092
    h4 -0.021 -0.282 -0.158 0.037 0.110
    h5 0.006 -0.053 0.295 0.507 0.048
    h6 0.414 0.039 0.051 0.026 -0.042
    b1 0.233 0.240 0.102 0.024 0.494
    b2 0.157 0.185 0.402 -0.058 -0.034
    Fp 0.430 0.061 0.063 0.012 -0.054
    下载: 导出CSV

    表  6  抗倾覆性能评价指标

    Table  6.   Evaluation indexes of anti-overturning capacity

    方案编号 浮心高度/m 柔性系数 临界超高率/% 抗倾系数
    1 4.08 0.57 4.22 5.1
    2 6.27 0.38 5.36 5.6
    3 7.03 0.31 6.65 10.2
    下载: 导出CSV
  • [1] MATSUNAKA R, OBA T, NAKAGAWA D, et al. International comparison of the relationship between urban structure and the service level of urban public transportation—a comprehensive analysis in local cities in Japan, France and Germany[J]. Transport Policy, 2013, 30: 26-39. doi: 10.1016/j.tranpol.2013.06.008
    [2] HE Xi-he. Application and prospect of straddle monorail transit system in China[J]. Urban Rail Transit, 2015, 1(1): 26-34. doi: 10.1007/s40864-015-0006-9
    [3] 陈义志. 中低运量的新型城市轨道交通系统[J]. 山西建筑, 2019, 45(18): 100-101. doi: 10.3969/j.issn.1009-6825.2019.18.051

    CHEN Yi-zhi. New urban rail transit system with medium and low volume[J]. Shanxi Architecture, 2019, 45(18): 100-101. (in Chinese). doi: 10.3969/j.issn.1009-6825.2019.18.051
    [4] 夏赞鸥. 庞巴迪单轨关键技术的改进与革新[J]. 现代城市轨道交通, 2016(2): 96-99. doi: 10.3969/j.issn.1672-7533.2016.02.022

    XIA Zan-ou. Improvement and innovation of Bombardier monorail technology[J]. Modern Urban Transit, 2016(2): 96-99. (in Chinese). doi: 10.3969/j.issn.1672-7533.2016.02.022
    [5] 邢佶慧, 宋月箫, 杨庆山. 跨座式单轨交通系统动力学问题研究[J]. 科学技术与工程, 2007, 7(11): 2724-2726. doi: 10.3969/j.issn.1671-1815.2007.11.068

    XING Ji-hui, SONG Yue-xiao, YANG Qing-shan. Dynamic response research of straddle type monorail traffic system[J]. Science Technology and Engineering, 2007, 7(11): 2724-2726. (in Chinese). doi: 10.3969/j.issn.1671-1815.2007.11.068
    [6] 金波, 杜子学, 薛胜超. 基于T-S模糊神经网络的跨坐式单轨车辆运行可靠性评估[J]. 城市轨道交通研究, 2018, 21(8): 77-81, 85. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201808018.htm

    JIN Bo, DU Zi-xue, XUE Sheng-chao. Operation reliability assessment of straddle monorail vehicle based on T-S fuzzy neural network[J]. Urban Mass Transit, 2018, 21(8): 77-81, 85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201808018.htm
    [7] 杜子学, 马帅, 杨震, 等. 跨坐式单轨车辆转向架构架疲劳寿命预测研究[J]. 城市轨道交通研究, 2019, 22(8): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201908013.htm

    DU Zi-xue, MA Shuai, YANG Zhen, et al. Fatigue life prediction of straddle monorail vehicle bogie frame[J]. Urban Mass Transit, 2019, 22(8): 50-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201908013.htm
    [8] 沈龙江, 张建全. 橡胶轮胎跨座式单轨车辆力学性能分析[J]. 机车电传动, 2019(4): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201904008.htm

    SHEN Long-jiang, ZHANG Jian-quan. Analysis of mechanical property of straddle monorail vehicle based on tyre[J]. Electric Drive for Locomotives, 2019(4): 22-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201904008.htm
    [9] 隋艳霞. 跨座式单轨转向架试验台走行轮试验系统位姿解算研究[D]. 长春: 吉林大学, 2019.

    SUI Yan-xia. Research on inverse position solution for walking wheel test system of straddle-type monorail bogie test bed[D]. Changchun: Jilin University, 2019. (in Chinese).
    [10] 王国林, 郑州, 张松, 等. 跨座式单轨列车走行轮胎磨损控制方法研究[J]. 机械工程学报, 2018, 54(6): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806011.htm

    WANG Guo-lin, ZHENG Zhou, ZHANG Song, et al. Study on reducing wear of straddle-type monorail trains' running wheel tires[J]. Journal of Mechanical Engineering, 2018, 54(6): 78-85. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806011.htm
    [11] 唐萃, 刘朝涛, 李帅先. 跨座式单轨列车主动转向控制模型设计及分析[J]. 机械与电子, 2017, 35(9): 41-44. doi: 10.3969/j.issn.1001-2257.2017.09.011

    TANG Cui, LIU Chao-tao, LI Shuai-xian. Analysis and design of active steering control model of straddle-type monorail vehicle[J]. Machinery and Electronics, 2017, 35(9): 41-44. (in Chinese). doi: 10.3969/j.issn.1001-2257.2017.09.011
    [12] KIM C W, KAWATANI M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(10): 1225-1245. doi: 10.1002/eqe.580
    [13] 任利惠, 周劲松, 沈钢, 等. 基于特征根的跨坐式独轨车辆的稳定性分析[J]. 同济大学学报(自然科学版), 2003, 4(4): 469-472. doi: 10.3321/j.issn:0253-374X.2003.04.020

    REN Li-hui, ZHOU Jin-song, SHEN Gang, et al. Hunting stability of straddle-type monorail car based on equation eigenvalue[J]. Journal of Tongji University (Natural Science), 2003, 4(4): 469-472. (in Chinese). doi: 10.3321/j.issn:0253-374X.2003.04.020
    [14] 任利惠, 季元进. 跨坐式单轨车辆的临界侧滚角[J]. 同济大学学报(自然科学版), 2017, 45(11): 1681-1687. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201711017.htm

    REN Li-hui, JI Yuan-jin. Critical roll angel of straddling monorail vehicle[J]. Journal of Tongji University (Natural Science), 2017, 45(11): 1681-1687. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201711017.htm
    [15] 张建全, 黄运华, 李芾, 等. 跨坐式单轨车导向轮稳定轮预压力研究[J]. 铁道机车车辆, 2011, 31(3): 48-52. doi: 10.3969/j.issn.1008-7842.2011.03.013

    ZHANG Jian-quan, HUANG Yun-hua, LI Fu, et al. Research on the pre-pressure of the steering tire and stabilizing tire of a straddle type monorail car[J]. Railway Locomotive and Car, 2011, 31(3): 48-52. (in Chinese). doi: 10.3969/j.issn.1008-7842.2011.03.013
    [16] 黄运华, 丁军君. 跨座式单轨车曲线通过性能评价指标研究[J]. 电力机车与城轨车辆, 2013, 36(2): 1-4. doi: 10.3969/j.issn.1672-1187.2013.02.001

    HUANG Yun-hua, DING Jun-jun. Research on evaluation indexes of the curve negotiation performance of a straddle type monorail car[J]. Electric Locomotives and Mass Transit Vehicles, 2013, 36(2): 1-4. (in Chinese). doi: 10.3969/j.issn.1672-1187.2013.02.001
    [17] 杜子学, 梁志华. 跨坐式单轨车辆曲线通过性能评价指标体系研究[J]. 铁道机车车辆, 2014, 34(3): 75-78. doi: 10.3969/j.issn.1008-7842.2014.03.19

    DU Zi-xue, LIANG Zhi-hua. Study on the curve performance evaluation indexes system of the straddle type monorail vehicle[J]. Railway Locomotive and Car, 2014, 34(3): 75-78. (in Chinese). doi: 10.3969/j.issn.1008-7842.2014.03.19
    [18] 李学良, 沈钢. 轨道车辆的柔性系数研究[J]. 铁道车辆, 2011, 49(8): 4-6. doi: 10.3969/j.issn.1002-7602.2011.08.002

    LI Xue-liang, SHEN Gang. Research on the flexibility coefficient of rail vehicles[J]. Rolling Stock, 2011, 49(8): 4-6. (in Chinese). doi: 10.3969/j.issn.1002-7602.2011.08.002
    [19] 廖贞, 杨冰, 梁赛, 等. 横向风载作用下跨座式单轨车辆动力响应研究[J]. 机械设计与制造, 2019(9): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201909003.htm

    LIAO Zhen, YANG Bing, LIANG Sai, et al. Study on the dynamic responses of the straddle-type monorail vehicle under transverse wind load[J]. Machinery Design and Manufacture, 2019(9): 1-4. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201909003.htm
    [20] 许亮. 曲线超高率对单轴转向架跨座式单轨车辆曲线通过性能的影响[J]. 无线互联科技, 2018, 15(16): 117-119. https://www.cnki.com.cn/Article/CJFDTOTAL-WXHK201816051.htm

    XU Liang. Influence of curve ultra-high rate on performance of single-axle bogie straddle-type monorail vehicle curve[J]. Wireless Internet Technology, 2018, 15(16): 117-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WXHK201816051.htm
    [21] 李雄峰, 陈鹏宇, 韩文奇, 等. 因子分析法在泥石流危险性评价中的应用[J]. 中国地质灾害与防治学报, 2016, 27(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201601012.htm

    LI Xiong-feng, CHEN Peng-yu, HAN Wen-qi, et al. Application of factor analysis to debris flow risk assessment[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(1): 55-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201601012.htm
    [22] 杜子学, 文孝霞, 杨震, 等. 跨座式单轨车辆走行轮偏磨损因子模型研究[J]. 西南交通大学学报, 2019, 54(2): 373-380. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201902019.htm

    DU Zi-xue, WEN Xiao-xia, YANG Zhen, et al. Study on partial-wear-factor model monorail vehicle running wheel[J]. Journal of Southwest Jiaotong University, 2019, 54(2): 373-380. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201902019.htm
    [23] 赵建军, 贺宇航, 黄润秋, 等. 基于因子分析法的边坡稳定性评价指标权重[J]. 西南交通大学学报, 2015, 50(2): 325-330. doi: 10.3969/j.issn.0258-2724.2015.02.018

    ZHAO Jian-jun, HE Yu-hang, HUANG Run-qiu, et al. Weights of slope stability evaluation indexes based on factor analysis method[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 325-330. (in Chinese). doi: 10.3969/j.issn.0258-2724.2015.02.018
    [24] 陈守东, 杨莹, 马辉. 中国金融风险预警研究[J]. 数量经济技术经济研究, 2006(7): 36-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY200607004.htm

    CHEN Shou-dong, YANG Ying, MA Hui. The study of early-warning on Chinese financial risk[J]. The Journal of Quantitative and Technical Economics, 2006(7): 36-48. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SLJY200607004.htm
    [25] LEE C H, KIM C W, KAWATANI M, et al. Dynamic response analysis of monorail bridges under moving trains and riding comfort of trains[J]. Engineering Structures, 2005, 27(14): 1999-2013.
    [26] GODA K, NISHIGAITO T, HIRAISHI M, et al. A curving simulation for a monorail car[C]//IEEE. Proceedings of the 2000 ASME/IEEE Joint Road Conference. New York: IEEE, 2002: 171-177.
    [27] LEE C H, KAWATANI M, KIM C W, et al. Dynamic response of a monorail steel bridge under a moving train[J]. Journal of Sound and Vibration, 2006, 294(3): 562-579.
    [28] 任利惠, 黄有培, 冷涵, 等. 跨坐式单轨车辆的耦合转向架[J]. 城市轨道交通研究, 2018, 21(11): 51-53, 58. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811015.htm

    REN Li-hui, HUANG You-pei, LENG Han, et al. On the coupling bogie of straddle type monorail vehicle[J]. Urban Mass Transit, 2018, 21(11): 51-53, 58. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811015.htm
    [29] 陆海英, 王文华, 任利惠, 等. 基于耦合转向架的跨坐式单轨列车及其动力学性能[J]. 机车电传动, 2019(5): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201905024.htm

    LU Hai-ying, WANG Wen-hua, REN Li-hui, et al. A straddling monorail train scheme with coupled bogie and its dynamics performance[J]. Electric Drive for Locomotives, 2019(5): 100-104. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201905024.htm
    [30] 罗湘萍, 田师峤. 双轴跨坐式单轨车辆迫导向转向架曲线通过性能研究[J]. 机电一体化, 2016(11): 19-23, 34. https://www.cnki.com.cn/Article/CJFDTOTAL-JDTH201611004.htm

    LUO Xiang-ping, TIAN Shi-qiao. The curving performance of two-axis monorail vehicle with forced steering bogie[J]. Mechatronics, 2016(11): 19-23, 34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JDTH201611004.htm
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  102
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回