留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单参数自调节RM-GO-LSVR的船舶操纵灰箱辨识建模

梅斌 孙立成 史国友 马文耀 王伟

梅斌, 孙立成, 史国友, 马文耀, 王伟. 基于单参数自调节RM-GO-LSVR的船舶操纵灰箱辨识建模[J]. 交通运输工程学报, 2020, 20(2): 88-99. doi: 10.19818/j.cnki.1671-1637.2020.02.008
引用本文: 梅斌, 孙立成, 史国友, 马文耀, 王伟. 基于单参数自调节RM-GO-LSVR的船舶操纵灰箱辨识建模[J]. 交通运输工程学报, 2020, 20(2): 88-99. doi: 10.19818/j.cnki.1671-1637.2020.02.008
MEI Bin, SUN Li-cheng, SHI Guo-you, MA Wen-yao, WANG Wei. Grey box identification modeling for ship maneuverability based on single parameter self-adjustable RM-GO-LSVR[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 88-99. doi: 10.19818/j.cnki.1671-1637.2020.02.008
Citation: MEI Bin, SUN Li-cheng, SHI Guo-you, MA Wen-yao, WANG Wei. Grey box identification modeling for ship maneuverability based on single parameter self-adjustable RM-GO-LSVR[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 88-99. doi: 10.19818/j.cnki.1671-1637.2020.02.008

基于单参数自调节RM-GO-LSVR的船舶操纵灰箱辨识建模

doi: 10.19818/j.cnki.1671-1637.2020.02.008
基金项目: 

国家自然科学基金项目 51579025

辽宁省自然科学基金项目 20170540090

详细信息
    作者简介:

    梅斌(1991-), 男, 江西九江人, 大连海事大学工学博士研究生, 从事船舶操纵运动辨识建模研究

    孙立成(1957-), 男, 黑龙江齐齐哈尔人, 大连海事大学教授, 工学博士

  • 中图分类号: U675.9

Grey box identification modeling for ship maneuverability based on single parameter self-adjustable RM-GO-LSVR

Funds: 

National Natural Science Foundation of China 51579025

Liaoning Provincial Natural Science Foundation 20170540090

More Information
  • 摘要: 为实现舵角小、试验数据少条件下船舶操纵辨识建模, 提出了一种船舶操纵运动灰箱模型; 搜集水动力系数已知的船舶运动数学模型作为备选参考模型(RM), 计算被辨识船舶与备选RM的相关系数, 并以此筛选合适的RM; 运用相似准则将观测数据映射到RM的输入值域, 建立被辨识船舶与RM的运动关联, 获得了RM的加速度项, 并使用线性支持向量回归(LSVR)机补偿被辨识船舶和RM加速度项间的误差; 分析了机理模型, 设计了合适的LSVR输入项, 使用全局优化(GO)算法自动调节了LSVR的不敏感边界参数; 基于自航模试验数据训练了灰箱模型, 并与约束模试验(CMT)结果和计算流体力学结果比较, 验证了灰箱模型的泛化能力和预报精度。研究结果表明: 在20°船艏向、20°舵角Z形试验预报中, 灰箱模型所得第一超越角精度至少比CMT、虚拟约束模试验(VCMT)和RM方法所得结果高1°, 灰箱模型所得第二超越角精度至少比CMT和VCMT所得结果高0.4°; 在35°舵角旋回试验预报中, 灰箱模型所得进距精度至少比CMT、VCMT、数值循环水槽试验(NCWCT)和RM方法所得结果高1%, 灰箱模型所得战术直径精度比CMT所得结果低4%, 比NCWCT所得结果高10%;RM方法有助于灰箱辨识建模, GO算法能够优化LSVR的不敏感边界参数, 建立的单参数自调节灰箱辩识建模方法能够实现小舵角、少数试验条件下的船舶操纵辨识建模。

     

  • 图  1  船舶瞬时旋回

    Figure  1.  Instantaneous turning of ship

    图  2  石板灰模型、RM以及灰箱辨识建模对比

    Figure  2.  Comparison among slate-grey model, RM and grey box identification modeling

    图  3  基于RM-GO-LSVR的船舶操纵灰箱辨识建模算法及其单参数自调节优化流程

    Figure  3.  Grey box identification modeling algorithm for ship maneuverability based on RM-GO-LSVR and optimization flow for self-adjustable single parameter

    图  4  RM逼近被辨识船舶的加速度

    Figure  4.  Accelerations of identified ship approximated by RM

    图  5  迭代过程中LSVR不敏感边界参数和相关系数

    Figure  5.  Insensitive band parameters of LSVR and correlation coefficients during iterations

    图  6  20°/20° Z形试验预报结果

    Figure  6.  Prediction results of 20/20° zigzag test

    图  7  35°舵角旋回试验预报结果

    Figure  7.  Prediction results of turning circle test with 35° rudder angle

    表  1  KVLCC2船舶的尺度

    Table  1.   Dimensions of ship KVLCC2

    主尺度 实船 船模
    缩尺比 1.000 45.714
    两柱间长/m 320.0 7.0
    吃水/m 20.800 0.455
    方形系数 0.809 8 0.809 8
    最大转舵速率/(°·s-1) 2.34 15.80
    服务航速/kn 15.500 1.179
    下载: 导出CSV

    表  2  KVLCC2船舶辨识建模的训练和验证试验

    Table  2.   Training and validation tests of ship KVLCC2 identification modeling

    试验类型 舵角/(°) 船艏向/(°) 左舵/右舵 采样数
    Z形试验1 10 10 右舵 520
    Z形试验2 10 10 左舵 565
    Z形试验3 20 20 右舵 606
    Z形试验4 20 20 左舵 684
    旋回试验 35 右舵 1 610
    下载: 导出CSV

    表  3  辨识训练数据对比

    Table  3.   Comparison of training data for identification

    试验类型 试验参数 本文 文献[13] 文献[14] 文献[16]
    Z形试验 是否含有
    试验数 4 2 4 2
    最大舵角/(°) 20 20 30 20
    旋回试验 是否含有 *
    试验数 4 4* 2
    最大舵角/(°) 35 30 15
    是否验证不同类型试验
    下载: 导出CSV

    表  4  KVLCC2船舶和备选RM的主尺度

    Table  4.   Main dimensions of ship KVLCC2 and alternative RMs

    模型 KVLCC2 Mariner Tanker SR108 PCC
    Cb 0.898 0.590 0.830 0.562 0.547
    L/B 5.517 6.952 6.389 6.890 5.590
    B/T 1.442 3.100 2.584 2.988 3.926
    L/V0/s 40.130 20.853 37.035 14.085 18.000
    Ad/(LT) 1/48.69 1/83.05 1/61 1/45.8 1/39.83
    下载: 导出CSV

    表  5  不同方法预报的20°/20° Z形试验超越角比较

    Table  5.   Comparison of predicted overshoot angles in 20°/20° zigzag test among different methods  (°)

    方法 EXP-MARIN RM-GO-LSVR CMT VCMT RM
    第一超越角 13.8 12.7 10.9 11.7 11.5
    第二超越角 14.9 13.7 17.0 16.5 15.3
    下载: 导出CSV

    表  6  不同方法预报的35°舵角旋回试验进距和战术直径比较

    Table  6.   Comparison of predicted advances and tactical diameters in turning circle test with 35° rudder angle among different methods

    方法 EXP-MARIN RM-GO-LSVR NCWCT CMT VCMT RM
    量纲一进距 3.25 3.22 3.63 3.31 3.12 3.33
    量纲一战术直径 3.34 3.20 2.87 3.36 3.40 3.22
    下载: 导出CSV
  • [1] Maritime Safety Committee. Proposal for a classification scheme for degrees of autonomy[R]. London: IMO, 2018.
    [2] TSOU M C. Multi-target collision avoidance route planning under an ECDIS framework[J]. Ocean Engineering, 2016, 121: 268-278. doi: 10.1016/j.oceaneng.2016.05.040
    [3] Manoeuvring Committee. Final report and recommendations to the 25th ITTC[R]. Lyngby: ITTC, 2008.
    [4] GUO Hai-peng, ZOU Zao-jian. System-based investigation on 4-DOF ship maneuvering with hydrodynamic derivatives determined by RANS simulation of captive model tests[J]. Applied Ocean Research, 2017, 68: 11-25. doi: 10.1016/j.apor.2017.08.006
    [5] ZHANG Guo-qing, ZHANG Xian-kun, PANG Hong-shuai. Multi-innovation auto-constructed least squares identification for 4 DOF ship maneuvering modelling with full-scale trial data[J]. ISA Transactions, 2015, 58: 186-195. doi: 10.1016/j.isatra.2015.04.004
    [6] ABKOWITZ M A. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification[J]. SNAME Transactions, 1980, 88: 283-318.
    [7] LUO Wei-lin, ZOU Zao-jian. Identification of response models of ship maneuvering motion using support vector machines[J]. Journal of Ship Mechanics, 2007, 11(6): 832-838.
    [8] KÄLLSTRÖM C, ÅSTRÖM K J. Identification and modelling of ship dynamics[R]. Lund: Lund University, 1972.
    [9] YOON H K, RHEE K P. Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique[J]. Ocean Engineering, 2003, 30(18): 2379-2404. doi: 10.1016/S0029-8018(03)00106-9
    [10] SUTULO S, GUEDES SOARES C. An algorithm for offline identification of ship maneuvering mathematical models from free-running tests[J]. Ocean Engineering, 2014, 79: 10-25. doi: 10.1016/j.oceaneng.2014.01.007
    [11] HADDARA M R, WANG Y. Parametric identification of maneuvering models for ships[J]. International Shipbuilding Progress, 1999, 46(445): 5-27.
    [12] WANG Ning, ER M J, HAN Min. Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks[J]. IEEE Transactions on Cybernetics, 2015, 45(12): 2732-2743. doi: 10.1109/TCYB.2014.2382679
    [13] HESS D, FALLER W. Simulation of ship maneuvers using recursive neural networks[C]//National Academies Press. Twenty-third Symposium on Naval Hydrodynamics. Washington DC: National Academies Press, 2000: 223-242.
    [14] BAI Wei-wei, REN Jun-sheng, LI Tie-shan. Modified genetic optimization-based locally weighted learning identification modeling of ship maneuvering with full scale trial[J]. Future Generation Computer Systems, 2018, 93: 1036-1045.
    [15] ZHU Man, HAHN A, WEN Yuan-qiao, et al. Identification-based simplified model of large container ships using support vector machines and artificial bee colony algorithm[J]. Applied Ocean Research, 2017, 68: 249-261. doi: 10.1016/j.apor.2017.09.006
    [16] 王雪刚, 邹早建, 任如意, 等. 基于支持向量机的四自由度船舶操纵运动黑箱建模[J]. 中国造船, 2014, 55(3): 147-155. doi: 10.3969/j.issn.1000-4882.2014.03.017

    WANG Xue-gang, ZOU Zao-jian, REN Ru-yi, et al. Black-box modeling of ship maneuvering motion in 4 degrees of freedom based on support vector machines[J]. Shipbuilding of China, 2014, 55(3): 147-155. (in Chinese). doi: 10.3969/j.issn.1000-4882.2014.03.017
    [17] IMO. International convention for safety of life at sea[R]. London: IMO, 2018.
    [18] Sub-Committee on Ship Design and Construction. Unified interpretations of SOLAS regulations ii-1/29.3 and ii-1/29.4[R]. London: IMO, 2018.
    [19] PÉREZ F L, CLEMENTE J A. The influence of some ship parameters on maneuverability studied at the design stage[J]. Ocean Engineering, 2007, 34(3/4): 518-525.
    [20] ABKOWITZ M A. Lectures on ship hydrodynamics steering and maneuverability[R]. Lyngby: SSPA, 1964.
    [21] LJUNG L. Perspectives on system identification[J]. Annual Reviews in Control, 2008, 34(1): 1-12.
    [22] JAFARI A H, HAGAN M T. Application of new training methods for neural model reference control[J]. Engineering Applications of Artificial Intelligence, 2018, 74: 312-321. doi: 10.1016/j.engappai.2018.07.005
    [23] LIU Jia-lun, HEKKENBERG R, QUADVLIEG F, et al. An integrated empirical maneuvering model for inland vessels[J]. Ocean Engineering, 2017, 137: 287-308. doi: 10.1016/j.oceaneng.2017.04.008
    [24] KIJIMA K, TOSHIYUKI K, YASUAKI N, et al. On the maneuvering performance of ship with the parameter of loading condition[J]. Journal of the Society of Naval Architects of Japan, 1990, 168: 141-148.
    [25] TANVEER M, MANGAL M, AHMAD I, et al. One norm linear programming support vector regression[J]. Neurocomputing, 2016, 173: 1508-1518. doi: 10.1016/j.neucom.2015.09.024
    [26] SNAM E. Nomenclature for treating the motion of a submerged body through a fluid[R]. New York: SNAME, 1950.
    [27] 王雪刚, 邹早建. 基于果蝇优化算法的支持向量机参数优化在船舶操纵预报中的应用[J]. 上海交通大学学报, 2013, 47(6): 884-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201306006.htm

    WANG Xue-gang, ZOU Zao-jian. FOA-based SVM parameter optimization and its application in ship manoeuvering prediction[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 884-888. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201306006.htm
    [28] LIU Sheng, SONG Jia, LI Bing, et al. Identification of ship steering dynamics based on ACA-SVR[C]//IEEE. International conference on Mechatronics and Automation. New York: IEEE, 2008: 514-519.
    [29] UGRAY Z, LASDON L, PLUMMER J, et al. Scatter search and local NLP solvers: a multistart framework for global optimization[J]. INFORMS Journal on Computing, 2007, 19(3): 328-340. doi: 10.1287/ijoc.1060.0175
    [30] NORRBIN N H. Theory and observations on the use of a mathematical model for ship maneuvering in deep and confined waters[R]. Göteborg: SSPA, 1970.
    [31] BISHOP R E D, PARKINSON A G. On the planar motion mechanism used in ship model testing[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1970, 266: 35-61.
    [32] VAN BERLEKOM W B, GODDARD T A. Maneuvering of large tankers[C]//SNAME. The Annual Meeting of SNAME. New York: SNAME, 1972: 264-298.
    [33] YOSHIMURA Y, MASUMOTO Y. Hydrodynamic force database with medium high speed merchant ships including fishing vessels and investigation into a maneuvering prediction method[J]. Journal of the Society of Naval Architects of Japan, 2011, 14: 63-73.
    [34] SUNG Y J, PARK S H. Prediction of ship maneuvering performance based on virtual captive model tests[J]. Journal of the Society of Naval Architects of Korea, 2015, 52(5): 407-417. doi: 10.3744/SNAK.2015.52.5.407
    [35] YASUKAWA H, YOSHIMURA Y. Introduction of MMG standard method for ship maneuvering predictions[J]. Journal of Marine Science and Technology, 2015, 20: 37-52. doi: 10.1007/s00773-014-0293-y
    [36] LIU Han, MA Ning, GU Xie-chong. Maneuvering prediction of a VLCC model based on CFD simulation for PMM tests by using a circulating water channel[C]∥ASME. The 34th International Conference on Ocean, Offshore and Arctic Engineering. St John's Newfoundland: ASME, 2015: 41548-41545.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  166
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-01
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回