留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制

聂枝根 王万琼 赵伟强 黄震 宗长富

聂枝根, 王万琼, 赵伟强, 黄震, 宗长富. 基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制[J]. 交通运输工程学报, 2020, 20(2): 147-160. doi: 10.19818/j.cnki.1671-1637.2020.02.012
引用本文: 聂枝根, 王万琼, 赵伟强, 黄震, 宗长富. 基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制[J]. 交通运输工程学报, 2020, 20(2): 147-160. doi: 10.19818/j.cnki.1671-1637.2020.02.012
NIE Zhi-gen, WANG Wan-qiong, ZHAO Wei-qiang, HUANG Zhen, ZONG Zhang-fu. Dynamic trajectory planning and tracking control for lane change of intelligent vehicle based on trajectory preview[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 147-160. doi: 10.19818/j.cnki.1671-1637.2020.02.012
Citation: NIE Zhi-gen, WANG Wan-qiong, ZHAO Wei-qiang, HUANG Zhen, ZONG Zhang-fu. Dynamic trajectory planning and tracking control for lane change of intelligent vehicle based on trajectory preview[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 147-160. doi: 10.19818/j.cnki.1671-1637.2020.02.012

基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制

doi: 10.19818/j.cnki.1671-1637.2020.02.012
基金项目: 

国家自然科学基金项目 51705225

国家留学基金项目 201801810050

昆明理工大学引进人才科研启动基金项目 KKSY201602009

详细信息
    作者简介:

    聂枝根(1983-), 男, 江西高安人, 昆明理工大学副教授, 工学博士, 从事车辆动力学仿真、控制及智能汽车控制研究

    通讯作者:

    赵伟强(1977-), 男, 吉林榆树人, 吉林大学副教授, 工学博士

  • 中图分类号: U469.5

Dynamic trajectory planning and tracking control for lane change of intelligent vehicle based on trajectory preview

Funds: 

National Natural Science Foundation of China 51705225

Chinese Scholarship Council Foundation 201801810050

Research Start-up Fund for Talent Introduction of Kunming University of Science and Technology KKSY201602009

More Information
    Author Bio:

    NIE Zhi-gen(1983-), male, associateprofessor, PhD, E-mail: niezhigen@126.com

    Corresponding author: NIE Zhi-gen(1983-), male, associate professor, PhD, E-mail: hanpingcauc@163.com
  • 摘要: 为实现实际动态交通环境下智能汽车的变道控制, 提出了基于轨迹预瞄的智能汽车变道动态轨迹规划与跟踪控制策略; 针对实际交通环境下目标车道车速和加速度的动态变化, 提出了智能汽车变道动态轨迹规划算法, 获得了能够避免智能汽车发生碰撞的变道轨迹的动态最大纵向长度; 设计了兼顾变道效率和乘员舒适性的优化目标函数, 优化获得了在变道轨迹最大纵向长度范围内的实时动态最优变道轨迹; 利用轨迹预瞄前馈和状态反馈相结合的类人转向控制方式, 实现了智能汽车变道动态轨迹跟踪和乘员舒适性的最优控制, 并利用硬件在环试验台验证了所提控制策略的正确性。研究结果表明: 定速工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.4%、4.8%和0.59 m·s-2; 定加速度工况下实际与参考轨迹的侧向位移误差、航向角误差和最大侧向加速度分别为1.1%、4.6%和0.48 m·s-2; 变加速度激烈工况下实际与参考轨迹的侧向位移误差和最大侧向加速度分别为1.7%和0.80 m·s-2, 航向角超调后能迅速重新跟踪动态轨迹航向角; 所提控制策略可以很好地跟踪控制实际交通环境下目标车道汽车在定车速、定加速度和变加速度工况下的智能汽车动态变道轨迹, 从而能实现智能汽车最优变道, 可确保变道过程中不与目标车道汽车发生碰撞, 并兼顾变道效率和乘员舒适性。

     

  • 图  1  三自由度简化模型

    Figure  1.  3-DOF simplified model

    图  2  控制策略

    Figure  2.  Control strategy

    图  3  变道动态轨迹规划

    Figure  3.  Dynamic trajectory planning for lane change

    图  4  智能汽车典型变道

    Figure  4.  Typical lane change for intelligent vehicle

    图  5  目标车道前车决定的变道轨迹曲线最大纵向长度

    Figure  5.  Maximum longitudinal length of lane change trajectory curve determined by front vehicle of target lane

    图  6  实时变道轨迹曲线预瞄

    Figure  6.  Real-time lane change trajectory curve preview

    图  7  坐标系转换后的误差

    Figure  7.  Deviations after coordinate transformation

    图  8  硬件在环试验台

    Figure  8.  Hardware-in-loop test bench

    图  9  车速为100 km·h-1时定速度动态变道试验结果

    Figure  9.  Experimental results of dynamic lane change with constant vehicle speed of 100 km·h-1

    图  10  车速为80 km·h-1时定加速度动态变道试验结果

    Figure  10.  Experimental results of dynamic lane change with constant acceleration when vehicle speed is 80 km·h-1

    图  11  车速为80 km·h-1时变加速度动态变道试验结果

    Figure  11.  Experimental results of dynamic lane change with variable acceleration when vehicle speed is 80 km·h-1

    表  1  汽车模型参数

    Table  1.   Parameters of vehicle model

    参数 参数
    m1/kg 7 388 m2/kg 6 360
    I1/(kg·m2) 38 170 h/m 1.105
    p/m 2.995 b/m 1.495
    k1/(N·rad-1) -200 100 k2/(N·rad-1) -489 600
    下载: 导出CSV
  • [1] CAO Hao-tian, SONG Xiao-lin, ZHAO Song, et al. An optimal model-based trajectory following architecture synthesising the lateral adaptive preview strategy and longitudinal velocity planning for highly automated vehicle[J]. Vehicle System Dynamics, 2017, 55(8): 1143-1188. doi: 10.1080/00423114.2017.1305114
    [2] HE Xiang-kun, LIU Yu-long, LYU Chen, et al. Emergency steering control of autonomous vehicle for collision avoidance and stabilization[J]. Vehicle System Dynamics, 2019, 57(8): 1163-1187. doi: 10.1080/00423114.2018.1537494
    [3] NARANJOJ E, GONZALEZ C, GARCIA R, et al. Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(3): 438-450. doi: 10.1109/TITS.2008.922880
    [4] NILSSON J, BRÄNNSTRÖM M, COELINGH E, et al. Lane change maneuvers for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1087-1096. doi: 10.1109/TITS.2016.2597966
    [5] ZHOU Jian, ZHENG Hong-yu, WANG Jun-min, et al. Multiobjective optimization of lane-changing strategy for intelligent vehicles in complex driving environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1291-1308. doi: 10.1109/TVT.2019.2956504
    [6] CHU K, LEE M, SUNWOO M. Local path planning for off-road autonomous driving with avoidance of static obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1599-1616. doi: 10.1109/TITS.2012.2198214
    [7] GONZÁLEZ D, PÉREZ J, MILANÉS V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1135-1145.
    [8] BEVLY D, CAO Xiao-long, GORDON M, et al. Lane change and merge maneuvers for connected and automated vehicles: a survey[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 105-120. doi: 10.1109/TIV.2015.2503342
    [9] ZHANG Su-min, DENG Wei-wen, ZHAO Qing-rong, et al. Dynamic trajectory planning for vehicle autonomous driving[C]//IEEE. IEEE International Conference on Systems, Man, and Cybernetics. New York: IEEE, 2013: 4161-4166.
    [10] LUO Yu-gong, XIANG Yong, CAO Kun, et al. A dynamic automated lane change maneuver based on vehicle-to-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 87-102. doi: 10.1016/j.trc.2015.11.011
    [11] YANG Da, ZHENG Shi-yu, WEN Cheng, et al. A dynamic lane-changing trajectory planning model for automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 228-247. doi: 10.1016/j.trc.2018.06.007
    [12] NILSSON J, SILVLIN J, BRANNSTROM M, et al. If, when, and how to perform lane change maneuvers on highways[J]. IEEE Intelligent Transportation Systems Magazine, 2016, 8(4): 68-78. doi: 10.1109/MITS.2016.2565718
    [13] GLASER S, VANHOLME B, MAMMAR S, et al. Maneuver-based trajectory planning for highly autonomous vehicles on real road with traffic and driver interaction[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 589-606. doi: 10.1109/TITS.2010.2046037
    [14] SHIM T, ADIREDDY G, YUAN Hong-liang. Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 226(6): 767-778. doi: 10.1177/0954407011430275
    [15] KANARIS A, KOSMATOPOULOS E B, LOANNOU P A. Strategies and spacing requirements for lane changing and merging in automated highway systems[J]. IEEE Transactions on Vehicular Technology, 2001, 50(6): 1568-1581. doi: 10.1109/25.966586
    [16] JI Jie, KHAJEPOUR A, MELEK W W, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multi-constraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952-964. doi: 10.1109/TVT.2016.2555853
    [17] JO K, LEE M, KIM J, et al. Tracking and behavior reasoning of moving vehicles based on roadway geometry constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(2): 460-476. doi: 10.1109/TITS.2016.2605163
    [18] YU Zhuo-ping, ZHANG Ren-xie, XIONG Lu, et al. Robust hierarchical controller with conditional integrator based on small gain theorem for reference trajectory tracking of autonomous vehicles[J]. Vehicle System Dynamics, 2019, 57(8): 1143-1162. doi: 10.1080/00423114.2018.1555333
    [19] HWANG C L, YANGCC, HUNGJ Y. Pathr-tracking of anautonomous vehicle via model predictive control and nonlincarfiltering[J]. IEEETransactions on Fuzzy Systems. 2017: 10.1109/TFUZZ. 2017.2698370.
    [20] GUO Jing-hua, LUO Yu-gong, LI Ke-qiang. Robust gain-scheduling automatic steering control of unmanned ground vehicles under velocity-varying motion[J]. Vehicle System Dynamics, 2019, 57(4): 595-616. doi: 10.1080/00423114.2018.1475677
    [21] 张荣辉, 游峰, 初鑫男, 等. 车-车协同下无人驾驶汽车的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191. doi: 10.3969/j.issn.1001-7372.2018.04.022

    ZHANG Rong-hui, YOU Feng, CHU Xin-nan, et al. Lane change merging control method for unmanned vehicle under V2V cooperative environment[J]. China Journal of Highway and Transport, 2018, 31(4): 180-191. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.04.022
    [22] 章仁燮, 熊璐, 余卓平, 等. 基于条件积分算法的无人驾驶汽车轨迹跟踪鲁棒控制方法[J]. 机械工程学报, 2018, 54(18): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818017.htm

    ZHANG Ren-xie, XIONG Lu, YU Zhuo-ping, et al. Robust trajectory tracking control of autonomous vehicles based on conditional integration method[J]. Journal of Mechanical Engineering, 2018, 54(18): 129-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818017.htm
    [23] 聂枝根, 王万琼, 王超, 等. 中高速重型半挂车适时模式切换的集成控制策略[J]. 交通运输工程学报, 2017, 17(6): 135-149. doi: 10.3969/j.issn.1671-1637.2017.06.015

    NIE Zhi-gen, WANG Wan-qiong, WANG Chao, et al. Integrated control strategy of articulated heavy vehicle based on timely mode switching under medium/high speed conditions[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 135-149. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.06.015
    [24] THOMMYPPILLAI M, EVANGELOU S, SHARP R S. Car driving at the limit by adaptive linear optimal preview control[J]. Vehicle System Dynamics, 2009, 47(12): 1535-1550. doi: 10.1080/00423110802673109
    [25] TAMADDONI S H, TAHERI S, AHMADIAN M. Optimal preview game theory approach to vehicle stability controller design[J]. Vehicle system dynamics, 2011, 49(12): 1967-1979. doi: 10.1080/00423114.2011.565778
    [26] 聂枝根, 王万琼, 宗长富, 等. 基于线性变参数实时简化模型的重型半挂车稳定性控制策略[J]. 中国公路学报, 2018, 31(1): 128-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801016.htm

    NIE Zhi-gen, WANG Wan-qiong, ZONG Chang-fu, et al. Stability control strategy for articulated heavy vehicles based on linear simplified model with real-time parameters[J]. China Journal of Highway and Transport, 2018, 31(1): 128-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801016.htm
    [27] JULA H, KOSMATOPOULOS E B, IOANNOU P A. Collision avoidance analysis for lane changing and merging[J]. IEEE Transactions on Vehicular Technology, 2000, 49(6): 2295-2308.
    [28] LIAN Yu-feng, WANG Xiao-yu, TIAN Yan-tao, et al. Lateral collision avoidance robust control of electric vehicles combining a lane-changing model based on vehicle edge turning trajectory and a vehicle semi-uncertainty dynamic model[J]. International Journal of Automotive Technology, 2018, 19(2): 331-343.
    [29] SHARP R S, VALTETSIOTIS V. Optimal preview car steering control[J]. Vehicle System Dynamics, 2001, 35: 101-117.
    [30] CHENG C, CEBON D. Improving roll stability of articulated heavy vehicles using active semi-trailer steering[J]. Vehicle System Dynamics, 2008, 46(S1): 373-388.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1239
  • HTML全文浏览量:  198
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回