留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合稳定性的高速无人驾驶车辆纵横向协调控制方法

李军 唐爽 黄志祥 周伟

李军, 唐爽, 黄志祥, 周伟. 融合稳定性的高速无人驾驶车辆纵横向协调控制方法[J]. 交通运输工程学报, 2020, 20(2): 205-218. doi: 10.19818/j.cnki.1671-1637.2020.02.017
引用本文: 李军, 唐爽, 黄志祥, 周伟. 融合稳定性的高速无人驾驶车辆纵横向协调控制方法[J]. 交通运输工程学报, 2020, 20(2): 205-218. doi: 10.19818/j.cnki.1671-1637.2020.02.017
LI Jun, TANG Shuang, HUANG Zhi-xiang, ZHOU Wei. Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 205-218. doi: 10.19818/j.cnki.1671-1637.2020.02.017
Citation: LI Jun, TANG Shuang, HUANG Zhi-xiang, ZHOU Wei. Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 205-218. doi: 10.19818/j.cnki.1671-1637.2020.02.017

融合稳定性的高速无人驾驶车辆纵横向协调控制方法

doi: 10.19818/j.cnki.1671-1637.2020.02.017
基金项目: 

国家自然科学基金项目 51705051

重庆市自然科学基金项目 cstc2018jcyjAX0422

详细信息
    作者简介:

    李军(1964-), 男, 重庆人, 重庆交通大学教授, 工学博士, 从事新能源汽车和智能车辆与控制研究

    通讯作者:

    唐爽(1995-), 男, 重庆人, 重庆交通大学工程硕士研究生

  • 中图分类号: U491.2

Longitudinal and lateral coordination control method of high-speed unmanned vehicles with integrated stability

Funds: 

National Natural Science Foundation of China 51705051

Natural Science Foundation of Chongqing cstc2018jcyjAX0422

More Information
  • 摘要: 提出了一种纵横向协调控制的路径跟踪控制方法; 建立了车辆预瞄误差模型和考虑路面地形的高速车辆等效动力学模型, 以此引入道路曲率地形因素; 基于模糊规则设计了预瞄距离发生器, 解决预瞄误差模型中固定预瞄距离的问题; 建立了预测时域与道路曲率的函数关系, 运用模型预测控制算法求解前轮转角, 从而建立路径跟踪控制器; 运用指数模型表示车辆期望车速, 设计了比例积分微分纵向控制器控制车速以改善路径跟踪精度; 运用质心侧偏角相平面图表征车辆稳定性特征, 设计比例积分微分稳定性控制器以改善车辆稳定性。研究结果表明: 提出的控制方法能在不同附着系数路面上对车辆跟踪性能进行优化, 在干燥沥青路面以车速90 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少33%;在潮湿沥青路面以车速70 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少30%;在冰雪路面以车速55 km·h-1行驶时, 与只运用模型预测控制算法进行路径跟踪控制的车辆相比, 最大横向误差可减少16%。可见, 所提出的控制方法能有效改善路径跟踪精度。

     

  • 图  1  车辆动力学模型

    Figure  1.  Vehicle dynamics model

    图  2  车轮侧向力与侧偏角关系曲线

    Figure  2.  Relationship curves between lateral force and side angle of tire

    图  3  车辆预瞄跟踪模型

    Figure  3.  Preview tracking model of vehicle

    图  4  预瞄距离

    Figure  4.  Preview distances

    图  5  质心侧偏角相平面

    Figure  5.  Phase plane of side slip angle

    图  6  稳定性控制器控制流程

    Figure  6.  Control flow of stability controller

    图  7  双移线

    Figure  7.  Double shift line

    图  8  70km·h-1干燥沥青路面路径跟踪仿真结果

    Figure  8.  Path tracking simulation results on dry asphalt pavement at 70 km·h-1

    图  9  90km·h-1干燥沥青路面路径跟踪仿真结果

    Figure  9.  Path tracking simulation results on dry asphalt pavement at 90 km·h-1

    图  10  60km·h-1潮湿沥青路面路径跟踪仿真结果

    Figure  10.  Path tracking simulation results on wet asphalt pavement at 60 km·h-1

    图  11  70km·h-1潮湿沥青路面路径跟踪仿真结果

    Figure  11.  Path tracking simulation results on wet asphalt pavement at 70 km·h-1

    图  12  50km·h-1冰雪路面路径跟踪仿真结果

    Figure  12.  Path tracking simulation results on icy and snowy pavement at 50 km·h-1

    图  13  55km·h-1冰雪路面路径跟踪仿真结果

    Figure  13.  Path tracking simulation results on icy and snowy pavement at 55 km·h-1

    表  1  制动规则

    Table  1.   Braking rules

    工况 转向特性 制动情况
    1 δ > 0, e4 > 0 过多转向 右侧轮
    2 δ > 0, e4 < 0 不足转向 左侧轮
    3 δ < 0, e4 < 0 过多转向 左侧轮
    4 δ < 0, e4 > 0 不足转向 右侧轮
    下载: 导出CSV

    表  2  车辆基本参数

    Table  2.   Vehicle basic parameters

    参数 数值
    m/kg 1 723
    I1/(kg·m2) 4 175
    I2/(kg·m2) 1 243
    H1/(N·m·rad-1) 145 330
    H2/(N·m·rad-1) 4 500
    a/m 1.232
    b/m 1.468
    A1/(N·rad-1) 66 900
    A2/(N·rad-1) 62 700
    W/m 0.3
    h/m 0.54
    下载: 导出CSV
  • [1] YAKUB F, MORI Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2015, 229(12): 1695-1714. doi: 10.1177/0954407014566031
    [2] 郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述[J]. 汽车安全与节能学报, 2016, 7(2): 151-159. doi: 10.3969/j.issn.1674-8484.2016.02.003

    GUO Jing-hua, LI Ke-qiang, LUO Yu-gong. Review on the research of motion control for intelligent vehicles[J]. Journal of Automotive Safety and Energy, 2016, 7(2): 151-159. (in Chinese). doi: 10.3969/j.issn.1674-8484.2016.02.003
    [3] 林棻, 倪兰青, 赵又群, 等. 考虑横向稳定性的智能车辆路径跟踪控制[J]. 华南理工大学学报(自然科学版), 2018, 46(1): 78-84. doi: 10.3969/j.issn.1000-565X.2018.01.010

    LIN Fen, NI Lan-qing, ZHAO You-qun, et al. Path following control of intelligent vehicles considering lateral stability[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(1): 78-84. (in Chinese). doi: 10.3969/j.issn.1000-565X.2018.01.010
    [4] 朱敏, 陈慧岩. 无人驾驶越野车辆纵向速度跟踪控制试验[J]. 机械工程学报, 2018, 54(24): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824013.htm

    ZHU Min, CHEN Hui-yan. Experiment on longitudinal speed tracking control for unmanned off-road vehicles[J]. Journal of Mechanical Engineering, 2018, 54(24): 111-117. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824013.htm
    [5] LENG Zhe, MINOR M A. Curvature-based ground vehicle control of trailer path following considering sideslip and limited steering actuation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(2): 332-348. doi: 10.1109/TITS.2016.2572208
    [6] 陈特, 陈龙, 徐兴, 等. 分布式驱动无人车路径跟踪与稳定性协调控制[J]. 汽车工程, 2019, 41(10): 1109-1116. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm

    CHEN Te, CHEN Long, XU Xing, et al. Integrated control of unmanned distributed driven vehicles path tracking and stability[J]. Automotive Engineering, 2019, 41(10): 1109-1116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910001.htm
    [7] 余卓平, 侯誉烨, 熊璐, 等. 基于反步法的差动转向无人车辆轨迹跟踪[J]. 汽车工程, 2019, 41(11): 1229-1234, 1242. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201911002.htm

    YU Zhuo-ping, HOU Yu-ye, XIONG Lu, et al. Trajectory tracking of skid steer unmanned vehicle based on backstepping[J]. Automotive Engineering, 2019, 41(11): 1229-1234, 1242. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201911002.htm
    [8] 刁勤晴, 张雅妮, 朱凌云. 双预瞄点智能车大曲率路径的横纵向模糊控制[J]. 中国机械工程, 2019, 30(12): 1445-1452. doi: 10.3969/j.issn.1004-132X.2019.12.010

    DIAO Qin-qing, ZHANG Ya-ni, ZHU Ling-yun. A lateral and longitudinal fuzzy control of intelligent vehicles with double preview points for large curvature roads[J]. China Mechanical Engineering, 2019, 30(12): 1445-1452. (in Chinese). doi: 10.3969/j.issn.1004-132X.2019.12.010
    [9] 赵治国, 周良杰, 朱强. 无人驾驶车辆路径跟踪控制预瞄距离自适应优化[J]. 机械工程学报, 2018, 54(24): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824020.htm

    ZHAO Zhi-guo, ZHOU Liang-jie, ZHU Qiang. Preview distance adaptive optimization for the path tracking control of unmanned vehicle[J]. Journal of Mechanical Engineering, 2018, 54(24): 166-173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201824020.htm
    [10] 李爽, 徐延海, 陈静, 等. 基于弧长预瞄的车辆侧向跟踪控制研究[J]. 汽车工程, 2019, 41(6): 668-675. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201906010.htm

    LI Shuang, XU Yan-hai, CHEN Jing, et al. A study on vehicle lateral tracking control based on arc-length preview[J]. Automotive Engineering, 2019, 41(6): 668-675. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201906010.htm
    [11] 吴艳, 王丽芳, 李芳. 基于滑模自抗扰的智能车路径跟踪控制[J]. 控制与决策, 2019, 34(10): 2150-2156. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201910012.htm

    WU Yan, WANG Li-fang, LI Fang. Intelligent vehicle path following control based on sliding mode active disturbance rejection[J]. Control and Decision, 2019, 34(10): 2150-2156. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201910012.htm
    [12] 汪伟, 赵又群, 许健雄, 等. 基于模糊控制的汽车路径跟踪研究[J]. 中国机械工程, 2014, 25(18): 2532-2538. doi: 10.3969/j.issn.1004-132X.2014.18.023

    WANG Wei, ZHAO You-qun, XU Jian-xiong, et al. Research on vehicle path tracking based on fuzzy control[J]. China Mechanical Engineering, 2014, 25(18): 2532-2538. (in Chinese). doi: 10.3969/j.issn.1004-132X.2014.18.023
    [13] JI Jie, KHAJEPOUR A, MELEK W W, et al. Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints[J]. IEEE Transactions on Vehicular Technology, 2017, 66(2): 952-964. doi: 10.1109/TVT.2016.2555853
    [14] LIU Kai, GONG Jian-wei, KURT A, et al. Dynamic modeling and control of high-speed automated vehicles for lane change maneuver[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 329-339. doi: 10.1109/TIV.2018.2843177
    [15] 张亮修, 吴光强, 郭晓晓. 自主车辆线性时变模型预测路径跟踪控制[J]. 同济大学学报(自然科学版), 2016, 44(10): 1595-1603. doi: 10.11908/j.issn.0253-374x.2016.10.018

    ZHANG Liang-xiu, WU Guang-qiang, GUO Xiao-xiao. Path tracking using linear time-varying model predictive control for autonomous vehicle[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1595-1603. (in Chinese). doi: 10.11908/j.issn.0253-374x.2016.10.018
    [16] GUO Jing-hua, LUO Yu-gong, LI Ke-qiang, et al. Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation[J]. Mechanical Systems and Signal Processing, 2018, 105: 183-199. doi: 10.1016/j.ymssp.2017.12.018
    [17] BROWN M, FUNKE J, ERLIEN S, et al. Safe driving envelopes for path tracking in autonomous vehicles[J]. Control Engineering Practice, 2017, 61: 307-316. doi: 10.1016/j.conengprac.2016.04.013
    [18] GUO Hong-yan, LIU Jun, CAO Dong-pu, et al. Dual-envelop-oriented moving horizon path tracking control for fully automated vehicles[J]. Mechatronics, 2018, 50: 422-433. doi: 10.1016/j.mechatronics.2017.02.001
    [19] 刘凯, 陈慧岩, 龚建伟, 等. 高速无人驾驶车辆的操控稳定性研究[J]. 汽车工程, 2019, 41(5): 514-521. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201905007.htm

    LIU Kai, CHEN Hui-yan, GONG Jian-wei, et al. A research on handling stability of high-speed unmanned vehicles[J]. Automotive Engineering, 2019, 41(5): 514-521. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201905007.htm
    [20] KIM E, KIM J, SUNWOO M. Model predictive control strategy for smooth path tracking of autonomous vehicles with steering actuator dynamics[J]. International Journal of Automotive Technology, 2014, 15(7): 1155-1164. doi: 10.1007/s12239-014-0120-9
    [21] 张亮修, 张铁柱, 吴光强. 考虑误差校正的智能车辆路径跟踪鲁棒预测控制[J]. 西安交通大学学报, 2020, 54(3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202003003.htm

    ZHANG Liang-xiu, ZHANG Tie-zhu, WU Guang-qiang. Robust predictive control for intelligent vehicle path tracking considering error feedback correction[J]. Journal of Xi'an Jiaotong University, 2020, 54(3): 20-27. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202003003.htm
    [22] 白国星, 孟宇, 刘立, 等. 基于可变预测时域及速度的车辆路径跟踪控制[J]. 中国机械工程, http://kns.cnki.net/kcms/detail/421294.TH.20190610.1702.004.html..

    BAI Guo-xing, MENG Yu, LIU Li, et al. Path tracking control of vehicles based on variable prediction horizon and velocity[J]. China Mechanical Engineering, http://kns.cnki.net/kcms/detail/42.1294.TH.20190610.1702.004.html. (inChinese).
    [23] PACEJKA H B, BESSELINK I J M. Magic formula tyre model with transient properties[J]. Vehicle System Dynamics, 1997, 27(S1): 13-29.
    [24] KUWATA Y, TEO J, FIORE G, et al. Real-time motion planning with applications to autonomous urban driving[J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1105-1118. doi: 10.1109/TCST.2008.2012116
    [25] STANKIEWICZ P G, BROWN A A, BRENNAN S N. Preview horizon analysis for vehicle rollover prevention using the zero-moment point[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, 137(9): 091002-1-12. doi: 10.1115/1.4030390
    [26] 刘凯, 龚建伟, 陈舒平, 等. 高速无人驾驶车辆最优运动规划与控制的动力学建模分析[J]. 机械工程学报, 2018, 54(14): 141-151. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201814017.htm

    LIU Kai, GONG Jian-wei, CHEN Shu-ping, et al. Dynamic modeling analysis of optimal motion planning and control for high-speed self-driving vehicles[J]. Journal of Mechanical Engineering, 2018, 54(14): 141-151. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201814017.htm
    [27] 王艺, 蔡英凤, 陈龙, 等. 基于模型预测控制的智能网联汽车路径跟踪控制器设计[J]. 机械工程学报, 2019, 55(8): 136-144, 153. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201908019.htm

    WANG Yi, CAI Ying-feng, CHEN Long, et al. Design of intelligent and connected vehicle path tracking controller based on model predictive control[J]. Journal of Mechanical Engineering, 2019, 55(8): 136-144, 153. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201908019.htm
    [28] 汪若尘, 魏振东, 叶青, 等. 视觉预瞄式智能车辆纵横向协同控制研究[J]. 汽车工程, 2019, 41(8): 763-770, 830. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201907006.htm

    WANG Ruo-chen, WEI Zhen-dong, YE Qing, et al. A research on visual preview longitudinal and lateral cooperative control of intelligent vehicle[J]. Automotive Engineering, 2019, 41(8): 763-770, 830. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201907006.htm
    [29] 金辉, 李世杰. 基于极限车速的车辆稳定性控制研究[J]. 汽车工程, 2018, 40(1): 48-56. doi: 10.3969/j.issn.1674-6546.2018.01.013

    JIN Hui, LI Shi-jie. A research on vehicle stability control based on limited speed[J]. Automotive Engineering, 2018, 40(1): 48-56. (in Chinese). doi: 10.3969/j.issn.1674-6546.2018.01.013
    [30] CHUNG T Y, YI K K. Design and evaluation of side slip angle-based vehicle stability control scheme on a virtual test track[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 224-234. doi: 10.1109/TCST.2005.863649
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  1063
  • HTML全文浏览量:  280
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-14
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回