留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有输入时滞的二轮自平衡车自适应滑模控制

薛晗 邵哲平 方琼林 马峰

薛晗, 邵哲平, 方琼林, 马峰. 具有输入时滞的二轮自平衡车自适应滑模控制[J]. 交通运输工程学报, 2020, 20(2): 219-228. doi: 10.19818/j.cnki.1671-1637.2020.02.018
引用本文: 薛晗, 邵哲平, 方琼林, 马峰. 具有输入时滞的二轮自平衡车自适应滑模控制[J]. 交通运输工程学报, 2020, 20(2): 219-228. doi: 10.19818/j.cnki.1671-1637.2020.02.018
XUE Han, SHAO Zhe-ping, FANG Qiong-lin, MA Feng. Adaptive sliding mode control for two-wheeled self-balancing vehicle with input delay[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 219-228. doi: 10.19818/j.cnki.1671-1637.2020.02.018
Citation: XUE Han, SHAO Zhe-ping, FANG Qiong-lin, MA Feng. Adaptive sliding mode control for two-wheeled self-balancing vehicle with input delay[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 219-228. doi: 10.19818/j.cnki.1671-1637.2020.02.018

具有输入时滞的二轮自平衡车自适应滑模控制

doi: 10.19818/j.cnki.1671-1637.2020.02.018
基金项目: 

国家自然科学基金项目 51579114

国家自然科学基金项目 51879119

福建省自然科学基金项目 2018J05085

集美大学交通运输工程学科高层次课题研究培育基金项目 2020

详细信息
    作者简介:

    薛晗(1982-), 女, 福建厦门人, 集美大学讲师, 工学博士, 从事智能控制研究

  • 中图分类号: U489

Adaptive sliding mode control for two-wheeled self-balancing vehicle with input delay

Funds: 

National Natural Science Foundation of China 51579114

National Natural Science Foundation of China 51879119

Natural Science Foundation of Fujian Province 2018J05085

Transportation Engineering Discipline High-Level Research and Cultivation Fund Project of Jimei University 2020

More Information
    Author Bio:

    XUE Han(1982-), female, lecturer, PhD, E-mail: immd@163.com

  • 摘要: 对具有输入时滞的二轮自平衡车系统, 设计了一种自适应滑模控制算法; 采用拉格朗日函数建立二轮自平衡车系统的动力学数学模型, 并在系统模型中考虑实际中存在输入时滞, 以及在处理输入时滞时所引入的未知扰动; 对变换后的输入矩阵做奇异值分解, 进一步设计了对扰动参数具有自适应估计能力的自适应滑模控制器; 基于Lyapunov稳定性理论, 保证了闭环系统鲁棒渐近稳定; 试验采用陀螺仪MPU-6050以及加速度传感器构成小车姿态检测装置。分析结果表明: 当控制参数较小时, 系统的超调量较小, 然而系统的调节时间较长; 当控制参数较大时, 系统产生了较明显的超调量, 然而系统的调节时间缩短了; 当外加扰动较小时, 车体速度变化小于0.08 m·s-1, 倾角角速度变化小于0.6°·s-1; 当外加扰动较大时, 车体速度变化小于0.10 m·s-1, 倾角角速度变化小于0.8°·s-1; 初始倾角为5°时, 车体速度保持在0.005 m·s-1范围内, 倾角角速度保持在0.022°·s-1范围内; 初始倾角为10°时, 车体速度保持在0.007 m·s-1范围内, 倾角角速度保持在0.031°·s-1范围内。可见, 自适应滑模控制算法能在引入适量干扰和不同初始车体倾角的情况下, 使小车自主调整并迅速恢复稳定状态。

     

  • 图  1  二轮自平衡车模型

    Figure  1.  Model of two-wheeled self-balancing vehicle

    图  2  倾角曲线

    Figure  2.  Inclination curve

    图  3  角速度曲线

    Figure  3.  Angular velocity curve

    图  4  位移曲线

    Figure  4.  Displacement curve

    图  5  速度曲线

    Figure  5.  Velocity curve

    图  6  状态响应曲线(C=1)

    Figure  6.  State response curves (C=1)

    图  7  状态响应曲线(C=100)

    Figure  7.  State response curves (C=100)

    图  8  二轮自平衡车系统

    Figure  8.  Two-wheeled self-balancing vehicle system

    图  9  软件流程

    Figure  9.  Software flow

    图  10  平衡控制响应曲线

    Figure  10.  Balance control response curves

    图  11  施加小扰动下的运动曲线

    Figure  11.  Motion curves under small disturbance

    图  12  施加大扰动下的运动曲线

    Figure  12.  Motion curves under large disturbance

    图  13  初始倾角5°的运动曲线

    Figure  13.  Motion curves with initial inclination 5°

    图  14  初始倾角10°的运动曲线

    Figure  14.  Motion curves with initial inclination 10°

    表  1  二轮自平衡车参数

    Table  1.   Parameters of two-wheeled self-balancing vehicle

    参数 数值
    M/kg 9
    m/kg 5
    l/m 0.95
    R/m 0.20
    J/(kg·m2) 12.00
    Jw/(kg·m2) 0.13
    τ/s 0.1
    下载: 导出CSV
  • [1] ABEYGUNAWARDHANA P K W, DEFOORT M, MURAKAMI T. Self-sustaining control of two-wheel mobile manipulator using sliding mode control[C]//IEEE. The 11th IEEE International Workshop on Advanced Motion Control. New York: IEEE, 2010: 792-797.
    [2] IRIARTE R, AGUILAR L T, FRIDMAN L. Second order sliding mode tracking controller for inertia wheel pendulum[J]. Journal of the Franklin Institute, 2013, 350: 92-106. doi: 10.1016/j.jfranklin.2012.10.013
    [3] GUO Zhao-qin, XU Jian-xin, LEE Tong-heng. Design and implementation of a new sliding mode controller on an underactuated wheeled inverted pendulum[J]. Journal of the Franklin Institute, 2014, 351: 2261-2282. doi: 10.1016/j.jfranklin.2013.02.002
    [4] YUE Ming, WEI Xing, LI Zhi-jun. Adaptive sliding-mode control for two-wheeled inverted pendulum vehicle based on zero-dynamics theory[J]. Nonlinear Dynamics, 2014, 76: 459-471. doi: 10.1007/s11071-013-1139-6
    [5] 李立华. 基于滑模变结构控制的二轮自平衡车系统设计及应用[D]. 武汉: 武汉科技大学, 2015.

    LI Li-hua. Design and application of sliding mode variable structure control for two-wheeled self-balancing vehicle system[D]. Wuhan: Wuhan University of Science and Technology, 2015. (in Chinese).
    [6] DAI Fu-quan, GAO Xue-shan, JIANG Shi-gong, et al. A two-wheeled inverted pendulum robot with friction compensation[J]. Mechatronics, 2015, 30: 116-125. doi: 10.1016/j.mechatronics.2015.06.011
    [7] GHAFFARI A, SHARIATI A, SHAMEKHI A H. A modified dynamical formulation for two-wheeled self-balancing robots[J]. Nonlinear Dynamics, 2016, 83: 217-230. doi: 10.1007/s11071-015-2321-9
    [8] ZHOU Yu-sheng, WANG Zai-hua. Robust motion control of a two-wheeled inverted pendulum with an input delay based on optimal integral sliding mode manifold[J]. Nonlinear Dynamics, 2016, 85: 2065-2074. doi: 10.1007/s11071-016-2811-4
    [9] ESMAEILI N, ALFI A, KHOSRAVI H. Balancing and trajectory tracking of two-wheeled mobile robot using backstepping sliding mode control: design and experiments[J]. Journal of Intelligent and Robotic Systems, 2017, 87: 601-613. doi: 10.1007/s10846-017-0486-9
    [10] CHEN Mou. Robust tracking control for self-balancing mobile robots using disturbance observer[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(3): 458-465. doi: 10.1109/JAS.2017.7510544
    [11] WANG H P, MUSTAFA G I Y, TIAN Y. Model-free fractional-order sliding mode control for an active vehicle suspension system[J]. Advances in Engineering Software, 2018, 115: 452-461. doi: 10.1016/j.advengsoft.2017.11.001
    [12] CHEN Long, WANG Hai, HUANG Yun-zhi, et al. Robust hierarchical sliding mode control of a two-wheeled self-balancing vehicle using perturbation estimation[J]. Mechanical Systems and Signal Processing, 2020, 139: 1-19.
    [13] BENAMOR A, MESSAOUD H. Robust adaptive sliding mode control for uncertain systems with unknown time-varying delay input[J]. ISA Transactions, 2018, 79: 1-12. doi: 10.1016/j.isatra.2018.04.017
    [14] LI Rong-chang, ZHANG Qing-ling. Robust H sliding mode observer design for a class of Takagi-Sugeno fuzzy descriptor systems with time-varying delay[J]. Applied Mathematics and Computation, 2018, 337: 158-178. doi: 10.1016/j.amc.2018.05.008
    [15] HAN Yue-qiao, KAO Yong-gui, GAO Cun-chen. Robust observer-based H control for uncertain discrete singular systems with time-varying delays via sliding mode approach[J]. ISA Transactions, 2018, 80: 81-88. doi: 10.1016/j.isatra.2018.05.023
    [16] AL-WAIS S, KHOO S, LEE T H, et al. Robust H cost guaranteed integral sliding mode control for the synchronization problem of nonlinear tele-operation system with variable time-delay[J]. ISA Transactions, 2018, 72: 25-36. doi: 10.1016/j.isatra.2017.10.009
    [17] SONG Jun, NIU Yu-gang, ZOU Yuan-yuan. Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities[J]. Automatica, 2018, 93: 33-41. doi: 10.1016/j.automatica.2018.03.037
    [18] HAN Yue-qiao, KAO Yong-gui, GAO Cun-chen. Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances[J]. Automatica, 2017, 75: 210-216. doi: 10.1016/j.automatica.2016.10.001
    [19] 吴立刚, 凌明祥, 王常虹, 等. 自适应滑模控制具有状态和输入时滞的不确定系统[J]. 电机与控制学报, 2005, 9(5): 443-447, 451. doi: 10.3969/j.issn.1007-449X.2005.05.009

    WU Li-gang, LING Ming-xiang, WANG Chang-hong, et al. Adaptive sliding mode control of uncertain linear systems with state and input delays[J]. Electric Machines and Control, 2005, 9(5): 443-447, 451. (in Chinese). doi: 10.3969/j.issn.1007-449X.2005.05.009
    [20] QIAN Qing-wen, WU Jun-feng, WANG Zhe. Optimal path planning for two-wheeled self-balancing vehicle pendulum robot based on quantum-behaved particle swarm optimization algorithm[J]. Personal and Ubiquitous Computing, 2019, 23: 393-403. doi: 10.1007/s00779-019-01216-1
    [21] WEISS A, FADIDA E, HANAN U B. Optimizing step climbing by two connected wheeled inverted pendulum robots[J]. Procedia Manufacturing, 2018, 21: 236-242. doi: 10.1016/j.promfg.2018.02.116
    [22] YUE Ming, WANG Shuang, SUN Jian-zhong. Simultaneous balancing and trajectory tracking control for two-wheeled inverted pendulum vehicles: a composite control approach[J]. Neurocomputing, 2016, 191: 44-54. doi: 10.1016/j.neucom.2016.01.008
    [23] REN T J, CHEN T C, CHEN C J. Motion control for a two-wheeled vehicle using a self-tuning PID controller[J]. Control Engineering Practice, 2008, 16: 365-375. doi: 10.1016/j.conengprac.2007.05.007
    [24] MOEZI S A, ZAKERI E, EGHTESAD M. Optimal adaptive interval type-2 fuzzy fractional-order backstepping sliding mode control method for some classes of nonlinear systems[J]. ISA Transactions, 2019, 93: 23-39. doi: 10.1016/j.isatra.2019.03.006
    [25] LIU Heng, WANG Hong-xing, CAO Jin-de, et al. Composite learning adaptive sliding mode control of fractional-order nonlinear systems with actuator faults[J]. Journal of the Franklin Institute, 2019, 356: 9580-9599. doi: 10.1016/j.jfranklin.2019.02.042
    [26] HUANG Sun-hua, ZHOU Bin, BU Si-qi, et al. Robust fixed-time sliding mode control for fractional-order nonlinear hydro-turbine governing system[J]. Renewable Energy, 2019, 139: 447-458. doi: 10.1016/j.renene.2019.02.095
    [27] SONG Shuai, ZHANG Bao-yong, SONG Xiao-na, et al. Fractional-order adaptive neuro-fuzzy sliding mode H control for fuzzy singularly perturbed systems[J]. Journal of the Franklin Institute, 2019, 356: 5027-5048.
    [28] ZAKERI E, MOEZI S A, EGHTESAD M. Optimal interval type-2 fuzzy fractional order super twisting algorithm: a second order sliding mode controller for fully-actuated and under-actuated nonlinear systems[J]. ISA Transactions, 2019, 85: 13-32. doi: 10.1016/j.isatra.2018.10.013
    [29] 沈智鹏, 代昌盛, 张宁. 欠驱动船舶自适应迭代滑模轨迹跟踪控制[J]. 交通运输工程学报, 2017, 17(6): 125-134. http://transport.chd.edu.cn/article/id/201706014

    SHEN Zhi-peng, DAI Chang-sheng, ZHANG Ning. Trajectory tracking control of underactuated ship based on adaptive iterative sliding mode[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 125-134. (in Chinese). http://transport.chd.edu.cn/article/id/201706014
    [30] 田翔, 何仁. 混合动力客车模式切换多控制器的协调控制[J]. 交通运输工程学报, 2017, 17(6): 150-158. http://transport.chd.edu.cn/article/id/201706016

    TIAN Xiang, HE Ren. Mode transition coordination control of hybrid electric bus based on multiple controller[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 150-158. (in Chinese). http://transport.chd.edu.cn/article/id/201706016
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  715
  • HTML全文浏览量:  69
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-07
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回