留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

手动-自动驾驶混合交通流元胞传输模型

秦严严 张健 陈凌志 李淑庆 何兆益 冉斌

秦严严, 张健, 陈凌志, 李淑庆, 何兆益, 冉斌. 手动-自动驾驶混合交通流元胞传输模型[J]. 交通运输工程学报, 2020, 20(2): 229-238. doi: 10.19818/j.cnki.1671-1637.2020.02.019
引用本文: 秦严严, 张健, 陈凌志, 李淑庆, 何兆益, 冉斌. 手动-自动驾驶混合交通流元胞传输模型[J]. 交通运输工程学报, 2020, 20(2): 229-238. doi: 10.19818/j.cnki.1671-1637.2020.02.019
QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, LI Shu-qing, HE Zhao-yi, RAN Bin. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 229-238. doi: 10.19818/j.cnki.1671-1637.2020.02.019
Citation: QIN Yan-yan, ZHANG Jian, CHEN Ling-zhi, LI Shu-qing, HE Zhao-yi, RAN Bin. Cell transmission model of mixed traffic flow of manual-automated driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 229-238. doi: 10.19818/j.cnki.1671-1637.2020.02.019

手动-自动驾驶混合交通流元胞传输模型

doi: 10.19818/j.cnki.1671-1637.2020.02.019
基金项目: 

国家重点研发计划项目 2018YFB1601000

国家自然科学基金 2016YFB0100906

重庆市教委科学技术研究项目 KJQN201900730

中央高校基本科研业务费专项资金项目 2242020R40045

详细信息
    作者简介:

    秦严严(1989-), 男, 江苏沛县人, 重庆交通大学讲师, 工学博士, 从事交通流理论研究

    通讯作者:

    张健(1984-), 男, 安徽寿县人, 东南大学副教授, 工学博士

  • 中图分类号: U491.112

Cell transmission model of mixed traffic flow of manual-automated driving

Funds: 

National Key Research and Development Project of China 2018YFB1601000

National Key Research and Development Project of China 2016YFB0100906

Science and Technology Research Project of Chongqing Municipal Education Commission KJQN201900730

Special Foundation for Basic Scientific Research of Central Colleges of China 2242020R40045

More Information
  • 摘要: 为了分析自动驾驶车辆对交通流宏观特性的影响, 以手动驾驶车辆与自动驾驶车辆构成的混合交通流为研究对象, 提出了不同自动驾驶车辆比例下的混合交通流元胞传输模型(CTM); 应用Newell跟驰模型作为手动驾驶车辆跟驰模型, 应用PATH实验室真车测试标定的模型作为自动驾驶车辆跟驰模型; 计算了手动驾驶与自动驾驶车辆跟驰模型在均衡态的车头间距-速度函数关系式, 推导了不同自动驾驶车辆比例下的混合交通流基本图模型, 计算了混合交通流在不同自动驾驶车辆比例下的最大通行能力、最大拥挤密度以及反向波速等特征量, 依据同质交通流CTM理论建立了不同自动驾驶车辆比例下的混合交通流CTM; 选取移动瓶颈问题进行算例分析, 应用混合交通流CTM计算了不同自动驾驶车辆比例下的移动瓶颈影响时间, 应用跟驰模型对移动瓶颈问题进行微观数值仿真, 分析了混合交通流CTM计算结果与跟驰模型微观仿真结果之间的误差, 验证了混合交通流CTM的准确性。研究结果表明: 混合交通流CTM能够有效计算移动瓶颈的影响时间, 在不同自动驾驶车辆比例下, 混合交通流CTM计算结果与跟驰模型微观仿真结果的误差均在52 s以下, 相对误差均小于10%, 表明了混合交通流CTM在实际应用中的准确性; 混合交通流CTM体现了从微观到宏观的研究思路, 基于微观跟驰模型与目前逐步开展的小规模自动驾驶真车试验之间的关联性, 混合交通流CTM能够较真实地反映未来不同自动驾驶车辆比例下单车道混合交通流演化过程, 增加了模型研究的应用价值。

     

  • 图  1  混合交通流基本图

    Figure  1.  Fundamental diagram of mixed traffic flow

    图  2  CTM元胞

    Figure  2.  Cells of CTM

    图  3  算例分析

    Figure  3.  Example analysis

    图  4  基于CTM的时空速度状态

    Figure  4.  Speed conditions over time and space based on CTM

    图  5  基于跟驰模型微观仿真的时空速度热力分布

    Figure  5.  Heat distributions of speed over time and space based on microscopic simulations using car-following models

    表  1  基于CTM的移动瓶颈影响时间

    Table  1.   Influence times of moving bottleneck based on CTM

    自动驾驶车辆比例 影响时间/s 降低百分比/%
    0.0 711
    0.1 675 5.063 3
    0.2 645 9.282 7
    0.3 618 13.080 2
    0.4 591 16.877 6
    0.5 567 20.253 2
    0.6 546 23.206 8
    0.7 525 26.160 3
    0.8 510 28.270 0
    0.9 492 30.801 7
    1.0 474 33.333 3
    下载: 导出CSV

    表  2  基于跟驰模型微观仿真的移动瓶颈影响时间

    Table  2.   Influence times of moving bottleneck based on microscopic simulations using car-following models

    自动驾驶车辆比例 影响时间/s 降低百分比/%
    0.0 738
    0.1 715 3.116 5
    0.2 687 6.910 6
    0.3 648 12.195 1
    0.4 624 15.447 2
    0.5 610 17.344 2
    0.6 588 20.325 2
    0.7 576 21.951 2
    0.8 550 25.474 3
    0.9 538 27.100 3
    1.0 526 28.726 3
    下载: 导出CSV

    表  3  CTM结果与微观仿真结果的移动瓶颈影响时间误差

    Table  3.   Errors of moving bottleneck influence time between CTM results and microscopic simulation results

    自动驾驶车辆比例 绝对误差/s 相对误差/%
    0.0 27 3.658 5
    0.1 40 5.594 4
    0.2 42 6.113 5
    0.3 30 4.629 6
    0.4 33 5.288 5
    0.5 43 7.049 2
    0.6 42 7.142 9
    0.7 51 8.854 2
    0.8 40 7.272 7
    0.9 46 8.550 2
    1.0 52 9.885 9
    下载: 导出CSV
  • [1] 《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1-161.

    Editorial Department of China Journal of Highway and Transport. Review on China's traffic engineering research progress: 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese).
    [2] 秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130. doi: 10.3969/j.issn.1671-1637.2017.03.013

    QIN Yan-yan, WANG Hao, WANG Wei, et al. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.013
    [3] WANG Ren, LI Yan-ning, WORK D B. Comparing traffic state estimators for mixed human and automated traffic flows[J]. Transportation Research Part C: Emerging Technologies, 2017, 78: 95-110. doi: 10.1016/j.trc.2017.02.011
    [4] KESTING A, TREIBER M, SCHONHOF M, et al. Adaptive cruise control design for active congestion avoidance[J]. Transportation Research Part C: Emerging Technologies, 2008, 16(6): 668-683. doi: 10.1016/j.trc.2007.12.004
    [5] SHLADOVER S, SU Dong-yan, LU Xiao-yun. Impacts of cooperative adaptive cruise control on freeway traffic flow[J]. Transportation Research Record, 2012(2324): 63-70.
    [6] GONG Si-yuan, SHEN Jing-lai, DU Li-li. Constrained optimization and distributed computation based car following control of a connected and autonomous vehicle platoon[J]. Transportation Research Part B: Methodological, 2016, 94: 314-334. doi: 10.1016/j.trb.2016.09.016
    [7] JIA Dong-yao, NGODUY D. Platoon based cooperative driving model with consideration of realistic inter-vehicle communication[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 245-264. doi: 10.1016/j.trc.2016.04.008
    [8] JIA Dong-yao, NGODUY D. Enhanced cooperative car-following traffic model with the combination of V2V and V2I communication[J]. Transportation Research Part B: Methodological, 2016, 90: 172-191. doi: 10.1016/j.trb.2016.03.008
    [9] SU Peng, MA Jia-qi, LOCHRANE T W P, et al. The integrated adaptive cruise control car-following model based on trajectory data[C]//TRB. Proceedings of the 95rd Annual Meeting of the Transportation Research Board. Washington DC: TRB, 2016: 1-17.
    [10] PLOEG J, SEMSAR-KAZEROONI E, LIJSTER G, et al. Graceful degradation of cooperative adaptive cruise control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 488-497. doi: 10.1109/TITS.2014.2349498
    [11] MILANES V, SHLADOVER S E, SPRING J, et al. Cooperative adaptive cruise control in real traffic situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1): 296-305. doi: 10.1109/TITS.2013.2278494
    [12] MILANES V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001
    [13] HOOGENDOORN R, VAN AREM B, HOOGENDOORN S. Automated driving, traffic flow efficiency, and human factors: literature review[J]. Transportation Research Record, 2014(2422): 113-120.
    [14] HOOGENDOORN S P, BOVY P H L. Continuum modeling of multiclass traffic flow[J]. Transportation Research Part B: Methodological, 2000, 34(2): 123-146. doi: 10.1016/S0191-2615(99)00017-X
    [15] NGODUY D. Platoon-based macroscopic model for intelligent traffic flow[J]. Transportmetrica B: Transport Dynamics, 2013, 1(2): 153-169. doi: 10.1080/21680566.2013.826150
    [16] JIN Wen-Long. On the equivalence between continuum and car-following models of traffic flow[J]. Transportation Research Part B: Methodological, 2016, 93: 543-559. doi: 10.1016/j.trb.2016.08.007
    [17] 秦严严, 王昊, 王炜, 等. 混有CACC车辆和ACC车辆的异质交通流基本图模型[J]. 中国公路学报, 2017, 30(10): 127-136. doi: 10.3969/j.issn.1001-7372.2017.10.016

    QIN Yan-yan, WANG Hao, WANG Wei, et al. Fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles and adaptive cruise control vehicles[J]. China Journal of Highway and Transport, 2017, 30(10): 127-136. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.10.016
    [18] 秦严严, 王昊, 王炜. 智能网联环境下的混合交通流LWR模型[J]. 中国公路学报, 2018, 31(11): 147-156. doi: 10.3969/j.issn.1001-7372.2018.11.016

    QIN Yan-yan, WANG Hao, WANG Wei. LWR model for mixed traffic flow in connected and autonomous vehicular environments[J]. China Journal of Highway and Transport, 2018, 31(11): 147-156. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.11.016
    [19] DAGANZO C F. The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transportation Research Part B: Methodological, 1994, 28(4): 269-287. doi: 10.1016/0191-2615(94)90002-7
    [20] LEVIN M W, BOYLES S D. A multiclass cell transmission model for shared human and autonomous vehicle roads[J]. Transportation Research Part C: Emerging Technologies, 2016, 62: 103-116. doi: 10.1016/j.trc.2015.10.005
    [21] QIN Yan-yan, WANG Hao. Cell transmission model for mixed traffic flow with connected and autonomous vehicles[J]. Journal of Transportation Engineering, Part A: Systems, 2019, 145(5): 04019014-1-8. doi: 10.1061/JTEPBS.0000238
    [22] TIAPRASERT K, ZHANG Yun-long, ASWAKUL C, et al. Closed-form multiclass cell transmission model enhanced with overtaking, lane-changing, and first-in first-out properties[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 86-110. doi: 10.1016/j.trc.2017.09.008
    [23] NEWELL G F. A simplified car-following theory: a lower order model[J]. Transportation Research Part B: Methodological, 2002, 36(3): 195-205. doi: 10.1016/S0191-2615(00)00044-8
    [24] 王殿海, 金盛. 车辆跟驰行为建模的回顾与展望[J]. 中国公路学报, 2012, 25(1): 115-127. doi: 10.3969/j.issn.1001-7372.2012.01.018

    WANG Dian-hai, JIN Sheng. Review and outlook of modeling of car following behavior[J]. China Journal of Highway and Transport, 2012, 25(1): 115-127. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.01.018
    [25] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E, 2000, 62(2): 1805-1824. doi: 10.1103/PhysRevE.62.1805
    [26] JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car-following theory[J]. Physical Review E, 2001, 64: 017101-1-4. doi: 10.1103/PhysRevE.64.017101
    [27] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042. doi: 10.1103/PhysRevE.51.1035
    [28] BRACKSTONE M, MCDONALD M. Car-following: a historical review[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 1999, 2: 181-196. doi: 10.1016/S1369-8478(00)00005-X
    [29] ZHANG H M, KIM T. A car-following theory for multiphase vehicular traffic flow[J]. Transportation Research Part B: Methodological, 2005, 39: 385-399.
    [30] AHN S, CASSIDY M J, LAVAL J. Verification of a simplified car-following theory[J]. Transportation Research Part B: Methodological, 2004, 38(5): 431-440. doi: 10.1016/S0191-2615(03)00074-2
    [31] NI Dai-heng, LEONARD J D, JIA Chao-qun, et al. Vehicle longitudinal control and traffic stream modeling[J]. Transportation Science, 2015, 50(3): 1016-1031.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  1460
  • HTML全文浏览量:  232
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-18
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回