留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

民机机身结构适坠性研究

牟浩蕾 解江 冯振宇

牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002
引用本文: 牟浩蕾, 解江, 冯振宇. 民机机身结构适坠性研究[J]. 交通运输工程学报, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002
MOU Hao-lei, JIE Jiang, FENG Zhen-yu. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002
Citation: MOU Hao-lei, JIE Jiang, FENG Zhen-yu. Research on crashworthiness of civil aircraft fuselage structures[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 17-39. doi: 10.19818/j.cnki.1671-1637.2020.03.002

民机机身结构适坠性研究

doi: 10.19818/j.cnki.1671-1637.2020.03.002
基金项目: 

航空科学基金项目 2017ZD67002

天津市教委科研计划项目 2019KJ135

中央高校基本科研业务费专项资金项目 3122019162

详细信息
    作者简介:

    牟浩蕾(1987-), 男, 山东烟台人, 中国民航大学助理研究员, 从事航空结构冲击动力学及客舱安全适航技术研究

    通讯作者:

    冯振宇(1966-), 男, 河北衡水人, 中国民航大学教授, 工学博士

  • 中图分类号: V214

Research on crashworthiness of civil aircraft fuselage structures

Funds: 

Aeronautical Science Foundation of China 2017ZD67002

Tianjin Municipal Education Commission Scientific Research Project 2019KJ135

Special Foundation for Basie Scientific Research of Central Colleges of China 3122019162

More Information
  • 摘要: 以民机机身结构为研究对象, 按照积木式研究方案的不同层级, 即材料级、元件级、细节件级、子部件级、部件级、整机, 阐述了民机机身结构适坠性试验及数值模拟方法; 总结了世界范围内在子部件级(货舱地板下部机身框段)和部件级(机身框段)开展的适坠性研究, 对比分析了机身框段结构坠撞破坏模式, 阐述了机身框段适坠性设计方法; 阐述了民机机身结构适坠性符合性验证及评估方法, 展望了民机机身结构适坠性设计、验证及审定的未来发展方向。研究结果表明: 材料失效和连接结构失效是民机机身坠撞过程中的主要失效模式, 材料本构模型和连接结构失效模型对适坠性仿真分析有重要影响, 需发展更为准确的材料本构模型及连接结构建模技术, 提高其动态仿真成熟度; 在机身结构中布置吸能结构可有效改善其适坠性能, 需发展更加高效稳定的吸能结构设计及布置方案, 以最大化提升机身结构适坠性能; 细节件级和子部件级试验及仿真分析提供了评估失效模式、破坏机理和吸能能力的解决方案, 需进一步发展高精度测试技术及有限元仿真分析技术, 以有效支持部件级和整机适坠性设计、验证及适航审定; 发展含不确定参数的适坠性优化设计方法及评估方法, 以避免额外试验和后期结构更改; 系统开展适坠性积木式试验, 有效支持有限元模型验证及评估工作, 发展经积木式方法验证的有限元仿真分析来表明适坠性符合性, 以减少适坠性验证时间及成本, 并指导适坠性试验设计及结构设计。

     

  • 图  1  载荷传递路径

    Figure  1.  Load transfer path

    图  2  积木式方案

    Figure  2.  Building block approaches

    图  3  连接结构不同建模技术

    Figure  3.  Different modeling techniques of connection structures

    图  4  金属C型柱失效模式

    Figure  4.  Failure modes of metal C-channels

    图  5  金属C型柱触发机制

    Figure  5.  Trigger mechanisms of metal C-channels

    图  6  破坏模式与EsFmax对应关系

    Figure  6.  Relationships between failure modes and Es, Fmax

    图  7  C型柱(6层)轴压试验

    Figure  7.  Crushing tests of C-channels (6 plies)

    图  8  C型柱(10层)轴压试验

    Figure  8.  Crushing tests of C-channels (10 plies)

    图  9  C型柱(12层)轴压试验

    Figure  9.  Crushing tests of C-channels (12 plies)

    图  10  C型柱(考虑螺栓连接)轴压试验

    Figure  10.  Crushing tests of C-channels (with bolted)

    图  11  机身框试验件设计及弯曲试验

    Figure  11.  Design of fuselage frame specimens and bending tests

    图  12  复合材料机身框压缩试验及破坏模式

    Figure  12.  Compression test and failure mode of composite fuselage frame

    图  13  复合材料薄壁结构吸能特性影响因素

    Figure  13.  Influence factors for energy-absorbing characteristics of composite thin-walled structures

    图  14  不同失效模型仿真结果

    Figure  14.  Simulation results of different failure models

    图  15  复合材料薄壁结构有限元建模方法

    Figure  15.  FE modeling method of composite thin-walled structures

    图  16  腹板不同几何构型

    Figure  16.  Different geometries of webs

    图  17  货舱地板下部复合材料波纹板

    Figure  17.  Sub-cargo composite corrugated web

    图  18  A350货舱地板下部立柱及有限元模型

    Figure  18.  A350 sub-cargo strut and finite element model

    图  19  波音787货舱地板下部立柱及有限元模型

    Figure  19.  Boeing 787 sub-cargo strut and finite element model

    图  20  复合材料货舱地板下部立柱及有限元模型

    Figure  20.  Composite sub-cargo strut and finite element model

    图  21  复合材料货舱地板下部吸能结构

    Figure  21.  Composite sub-cargo energy-absorbing structure

    图  22  货舱地板下部结构吸能设计

    Figure  22.  Energy-absorbing design of sub-cargo structure

    图  23  机身曲壁板冲击试验

    Figure  23.  Fuselage curved panel impact test

    图  24  A320机身壁板试验及有限元模型

    Figure  24.  A320 fuselage panel test and finite element model

    图  25  通勤飞机复合材料地板下部机身框段

    Figure  25.  Composite sub-floor fuselage section of commuter aircraft

    图  26  波音B787货舱地板下部机身框段

    Figure  26.  Sub-cargo fuselage section of Boeing 787

    图  27  A350货舱地板下部机身框段

    Figure  27.  Sub-cargo fuselage section of A350

    图  28  商用飞机典型货舱地板下部机身框段

    Figure  28.  Typical sub-cargo composite fuselage section of commercial aircraft

    图  29  A321复合材料货舱地板下部机身框段

    Figure  29.  Composite sub-cargo fuselage section of A321

    图  30  运输类飞机典型货舱地板下部机身框段

    Figure  30.  Typical sub-cargo fuselage section of transport aircraft

    图  31  飞机机身框段适坠性试验

    Figure  31.  Crashworthiness tests of aircraft fuselage section

    图  32  机身框段破坏模式Ⅰ

    Figure  32.  Failure modes Ⅰ of fuselage section

    图  33  机身框段破坏模式Ⅱ

    Figure  33.  Failure modes Ⅱ of fuselage section

    图  34  机身框段坠撞区域

    Figure  34.  Crash zones of fuselage section

    图  35  DLR复合材料机身框段

    Figure  35.  DLR composite fuselage section

    图  36  复合材料机身框段坠撞仿真结果及载荷传递路径

    Figure  36.  Crashworthiness simulation results and load transfer path of composite fuselage section

    图  37  张力破坏概念设计及理想破坏模式

    Figure  37.  Tension crash concept design and ideal failure modes

    图  38  适坠性符合性验证流程

    Figure  38.  Compliance verification process of crashworthiness

    表  1  机身隔框典型失效形式

    Table  1.   Typical failure modes of fuselage frames

    失效模式 闭合型 张开型
    金属机身隔框
    复材机身隔框
    示意
    下载: 导出CSV
  • [1] GUIDA M, MARULO F, ABRATE S. Advances in crash dynamics for aircraft safety[J]. Progress in Aerospace Sciences, 2018, 98: 106-123. doi: 10.1016/j.paerosci.2018.03.008
    [2] WAIMER M, FESER T, SCHATROW P, et al. Crash concepts for CFRP transport aircraft—comparison of the traditional bend frame concept versus the developments in a tension absorbers concept[J]. International Journal of Crashworthiness, 2018, 23(2): 193-218. doi: 10.1080/13588265.2017.1341279
    [3] GRANSDEN D I, ALDERLIESTEN R. Development of a finite element model for comparing metal and composite fuselage section drop testing[J]. International Journal of Crashworthiness, 2017, 22(4): 401-414. doi: 10.1080/13588265.2016.1273987
    [4] LANKARANI H M, HOOPER S J. Application of computer-aided analysis tools for aircraft occupant and seat crashworthiness problems[J]. International Journal of Crashworthiness, 1999, 4(4): 433-448. doi: 10.1533/cras.1999.0117
    [5] LYLE K H, JACKSON K E, FASANELLA E L. Simulation of aircraft landing gears with a nonlinear dynamic finite element code[J]. Journal of Aircraft, 2002, 39(1): 142-147. doi: 10.2514/2.2908
    [6] JACHSON K E, FASANELLA E L. Crash simulation of vertical drop tests of two Boeing 737 fuselage sections[R]. Washington DC: FAA, 2002.
    [7] RASSAIAN M. Virtual test and simulation[C]∥AIAA. AIAA Complex Aerospace Systems Exchange. Washington DC: AIAA, 2013: 1-25.
    [8] HACHENBERG D, LAVINGE V, MAHE M. Crashworthiness of fuselage hybrid structure[C]∥FAA. 8th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2016: 1-16.
    [9] SENTHIL K, IQBAL M A, CHANDEL P S, et al. Study of the constitutive behavior of 7075-T651 aluminum alloy[J]. International Journal of Impact Engineering, 2017, 108: 171-190. doi: 10.1016/j.ijimpeng.2017.05.002
    [10] OLIVARES G, ACOSTA J F, RAJU S. Crashworthiness evaluation of composite aircraft structures[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-25.
    [11] SEIDTJ D. Plastic deformation and ductile fracture of 2024-T351 aluminum under various loading conditions[D]. Columbus: The Ohio State University, 2010.
    [12] EFFELSBERG J, HAUFE A, FEUCHT M, et al. On parameter identification for the GISSMO damage model[C]//DYNAmore. 12th International LS-DYNA Users Conference. Dublin: DYNAmore, 2012: 1-10.
    [13] JACKSON K E, FASANELLA E L. Crash simulation of verticle drop tests of two Boeing 737 fuselage sections[R]. Washington DC: FAA, 2000.
    [14] LANGRAND B, DELETOMBE E, MARKIEWICZ E, et al. Identification of nonlinear dynamic behavior and failure for riveted joint assemblies[J]. Shock and Vibration, 2000, 7: 121-138. doi: 10.1155/2000/632896
    [15] LANGRAND B, MARKIEWICZ E. Strain-rate dependence in spot welds: non-linear behaviour and failure in pure and combined modes I/II[J]. International Journal of Impact Engineering, 2010, 37(7): 792-805. doi: 10.1016/j.ijimpeng.2010.01.004
    [16] SHOJI H, MIYAKI H, IWASAKI K, et al. Crashworthiness research on cabin structure at JAXA[C]//FAA. 5th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2007: 1-26.
    [17] LIU Xiao-chuan, XI Xu-long, BAI Chun-yu, et al. Dynamic response and failure mechanism of Ti-6AL-4V hi-lock bolts under combined tensile-shear loading[J]. International Journal of Impact Engineering, 2019, 131: 140-151. doi: 10.1016/j.ijimpeng.2019.04.025
    [18] 牟浩蕾, 赵一帆, 刘义, 等. 航空沉头铆钉动态加载试验及失效模式研究[J]. 航空科学技术, 2019, 30(4): 69-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201904013.htm

    MOU Hao-lei, ZHAO Yi-fan, LIU Yi, et al. Dynamic loading failure experiment and failure mode analysis of aeronautic countersunk rivets[J]. Aeronautical Science and Technology, 2019, 30(4): 69-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201904013.htm
    [19] 解江, 白春玉, 舒挽, 等. 航空铆钉动态加载失效实验[J]. 爆炸与冲击, 2017, 37(5): 879-886. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705013.htm

    XIE Jiang, BAI Chun-yu, SHU Wan, et al. Dynamic loading failure experiment of aeronautic rivet[J]. Explosion and Shock Waves, 2017, 37(5): 879-886. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201705013.htm
    [20] 殷俊清. 航空薄壁件铆接变形分析及预测研究[D]. 西安: 西北工业大学, 2015.

    YIN Jun-qing. Study on riveting deformation and its prediction of aeronautical thin-walled components[D]. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese).
    [21] LEI Lei, HE Xiao-cong, ZHAO De-suo, et al. Clinch-bonded hybrid joining for similar and dissimilar copper alloy, aluminum alloy and galvanised steel sheets[J]. Thin-Walled Structures, 2018, 131: 393-403. doi: 10.1016/j.tws.2018.07.017
    [22] MUCHA J, WITKOWSKI W. Mechanical behavior and failure of riveting joints in tensile and shear tests[J]. Strength of Materials, 2015, 47(5): 755-769. doi: 10.1007/s11223-015-9712-5
    [23] 张浩宇, 侯波, 何宇廷, 等. 航空复合材料-金属连接结构的拉伸性能及其渐进损伤[J]. 机械工程材料, 2017, 41(8): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201708020.htm

    ZHANG Hao-yu, HOU Bo, HE Yu-ting, et al. Tensile property of aeronautical composite-metal joint structure and its progressive damage[J]. Materials for Mechanical Engineering, 2017, 41(8): 87-92. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201708020.htm
    [24] CUI Jun-jia, DONG Dong-ying, ZHANG Xu, et al. Influence of thickness of composite layers on failure behaviors of carbon fiber reinforced plastics/aluminum alloy electromagnetic riveted lap joints under high-speed loading[J]. International Journal of Impact Engineering, 2018, 115: 1-9. doi: 10.1016/j.ijimpeng.2018.01.004
    [25] MARANNANO G, ZUCCARELLO B. Numerical experimental analysis of hybrid double lap aluminum-CFRP joints[J]. Composites Part B: Engineering, 2015, 71: 28-39. doi: 10.1016/j.compositesb.2014.11.025
    [26] CWIK T, IANNUCCI L, EFFENBERGER M. Pull-through performance of carbon fibre epoxy composites[J]. Composite Structures, 2012, 94: 3037-3042. doi: 10.1016/j.compstruct.2012.03.027
    [27] 黄庆概. 单搭接件力学性能研究[D]. 杭州: 浙江大学, 2016.

    HUANG Qing-gai. Study on mechanical properties of single lap joints[D]. Hangzhou: Zhejiang University, 2016. (in Chinese).
    [28] 余小青. 复合材料双面搭接接头力学性能研究[D]. 南京: 南京航空航天大学, 2010.

    YU Xiao-qing. The research on mechanical behaviors of composite double lap joints[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. (in Chinese).
    [29] HEIMBS S, HOFFMANN M, WAIMER M, et al. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations[J]. International Journal of Crashworthiness, 2013, 18(4): 406-422. doi: 10.1080/13588265.2013.801294
    [30] MUCHA J, WITKOWSKI W. The clinching joints strength analysis in the aspects of changes in the forming technology and load conditions[J]. Thin-Walled Structures, 2014, 82: 55-66. doi: 10.1016/j.tws.2014.04.001
    [31] 汪存显, 高豪迈, 龚煦, 等. 航空铆钉连接件的抗冲击性能[J]. 航空学报, 2019, 40(1): 289-301. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901020.htm

    WANG Cun-xian, GAO Hao-mai, GONG Xu, et al. Impact responses of aeronautic riveting structures[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 289-301. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201901020.htm
    [32] BALBUDHE S W, ZAVERI S R. Stress analysis of riveted lap joint[J]. International Journal of Mechanical Engineering and Robotics Research, 2013, 2(3): 137-143.
    [33] MUCHA J, WITKOWSKI W. The experimental analysis of the double joint type change effect on the joint destruction process in uniaxial shearing test[J]. Thin-Walled Structures, 2013, 66: 39-49. doi: 10.1016/j.tws.2013.01.018
    [34] TANG Yu-ling, ZHOU Zhen-gong, PAN Shi-dong, et al. Mechanical property and failure mechanism of 3D carbon-carbon braided composites bolted joints under unidirectional tensile loading[J]. Materials and Design, 2015, 65: 243-253. doi: 10.1016/j.matdes.2014.08.073
    [35] LI Gang, SHI Guo-qin, BELLINGER N C. Residual stress/strain in three-row, countersunk, riveted lap joints[J]. Journal of Aircraft, 2007, 44(4): 1275-1285. doi: 10.2514/1.26748
    [36] RABALAISC P. Analysis of bolt and rivet structural fasteners subjected to dynamic shear loadings[D]. College Station: Texas A & amp; amp; M University, 2015.
    [37] SONNENSCHEIN U. Modelling of bolts under dynamic loads[C]∥DYNAmore. LS-DYNA Anwenderforum. Dublin: DYNAmore, 2008: 13-24.
    [38] NARKHEDE S, LOKHANDE N, GANGANI B, et al. Bolted joint representation in LS-DYNA to model bolt pre-stress and bolt failure characteristic in crash simulation[C]//DYNAmore. 11th International LS-DYNA Users Conference. Dublin: DYNAmore, 2017: 11-19.
    [39] RAMTEKEA L, NADGOUDA P B. Improving analysis accuracy by modeling rivets/bolts as solids in sheet metal structure[C]∥DYNAmore. 7th European LS-DYNA Conference. Dublin: DYNAmore, 2009: 1-8.
    [40] 周璐瑶. 基于耐撞性无铆钉铆接接头建模方法研究[D]. 长春: 吉林大学, 2014.

    ZHOU Lu-yao. Study of finite element modeling technique for clinching joints based on crashworthiness[D]. Changchun: Jilin University, 2014. (in Chinese).
    [41] S∅NSTAB∅J K, MORIN D, LANGSETH M. Macroscopic modelling of flow-drill screw connections in thin-walled aluminum structures[J]. Thin-Walled Structures, 2016, 105: 185-206. doi: 10.1016/j.tws.2016.04.013
    [42] PREVITALI F, ANGHILERI M, CASTELLETTI L M L, et al. Combined numerical/experimental approach for rivet strength assessment[C]∥DYNAmore. 7th European LS-DYNA Conference. Dublin: DYNAmore, 2009: 1-9.
    [43] ZENG Chao, TIAN Wei, LIAO Wen-he. Improved model concerning driven rivet head dimensions based on material flow characteristics[J]. Journal of Aircraft, 2016, 53(4): 1179-1184.
    [44] TERAMOTO S S, ALVES M. Buckling transition of axially impacted open shells[J]. International Journal of Impact Engineering, 2004, 30: 1241-1260. doi: 10.1016/j.ijimpeng.2004.06.001
    [45] BISAGNI C. Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes[J]. International Journal of Crashworthiness, 2009, 14(4): 365-378. doi: 10.1080/13588260902792954
    [46] 解江, 张雪晗, 苏璇, 等. 铺层顺序对复合材料薄壁圆管轴向压溃吸能特性的影响研究[J]. 工程力学, 2018, 35(6): 231-239. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806028.htm

    XIE Jiang, ZHANG Xue-han, SU Xuan, et al. Influence of layer sequence on energy absorption characteristics of thin-walled composite circular tubes under axial compression[J]. Engineering Mechanics, 2018, 35(6): 231-239. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806028.htm
    [47] 牟浩蕾, 张雪晗, 宋东方, 等. 复合材料层合结构破坏机理及压溃吸能特性分析[J]. 振动与冲击, 2018, 37(22): 194-200, 213. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822029.htm

    MOU Hao-lei, ZHANG Xue-han, SONG Dong-fang, et al. Damage mechanism and energy-absorbing characteristics of composite laminated structures[J]. Journal of Vibration and Shock, 2018, 37(22): 194-200, 213. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201822029.htm
    [48] MAMALIS A G, ROBINSON M, MANOLAKOS D E, et al. Crashworthy capability of composite material structures[J]. Composite Structures, 1997, 37(2): 109-134. doi: 10.1016/S0263-8223(97)80005-0
    [49] FARLEY G L, JONES R M. Energy-absorption capability of composite tubes and beams[R]. Washington DC: NASA, 1989.
    [50] HULL D. A unified approach to progressive crushing of fibre-reinforced composite tubes[J]. Composites Science and Technology, 1991, 40(4): 377-421. doi: 10.1016/0266-3538(91)90031-J
    [51] GUPTA N K, VELMURUGAN R, GUPTA S K. An analysis of axial crushing of composite tubes[J]. Journal of Composite Materials, 1997, 31(13): 1262-1286. doi: 10.1177/002199839703101301
    [52] MOU Hao-lei, XIE Jiang, ZOU Jun, et al. Experimental researches on failure and energy absorption of composite laminated thin-walled structures[J]. Journal of Composite Materials, 2020, 1-16.
    [53] FENG Zhen-yu, XIE Jiang, SONG Shan-shan, et al. The failure mechanism and energy-absorbing characteristics of composite thin-walled C-channels subject to low-speed axial compression[J]. Journal of Composite Materials, 2019, 53(16): 2249-2259. doi: 10.1177/0021998319826337
    [54] FERABOLI P, SPETZLER M. Design of energy-absorbing CFRP stanchions for the cargo floor structure of transport category airplanes[C]//JAMS. JAMS 2013 Technical Review Meeting. Washington DC: JAMS, 2013: 1-21.
    [55] OSTLER D, BLESSING E, PERL M, et al. A building block approach for crashworthiness testing of composites[C]//JAMS. JAMS 2019 Technical Review Meeting. Washington DC: JAMS, 2019: 1-30.
    [56] JACKSON A, DUTTON S, GUNNION A J, et al. Investigation into laminate design of open carbon-fibre/epoxy sections by quasi-static and dynamic crushing[J]. Composite Structures, 2011, 93(10): 2646-2654. doi: 10.1016/j.compstruct.2011.04.032
    [57] DAVID M, JOHNSON A F, VOGGENREITER H. Analysis of crushing response of composite crashworthy structures[J]. Applied Composite Materials, 2013, 20: 773-787. doi: 10.1007/s10443-012-9301-8
    [58] FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption[J]. Journal of Composite Materials, 2008, 42: 229-256. doi: 10.1177/0021998307086202
    [59] SOKOLINSKY V S, INDERMUEHLE K C, HURTADO J A. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1119-1126. doi: 10.1016/j.compositesa.2011.04.017
    [60] LAU S T W, SAID M R, YAAKOB M Y. On the effect of geometrical designs and failure modes in composite axial crushing: a literature review[J]. Composite Structure, 2012, 94: 803-812. doi: 10.1016/j.compstruct.2011.09.013
    [61] CHIU L N S, FALZON B G, BOMAN R, et al. Finite element modelling of composite structures under crushing load[J]. Composite Structure, 2015, 131: 215-228. doi: 10.1016/j.compstruct.2015.05.008
    [62] REN Yi-ru, JIANG Hong-yong, LIU Zhi-hui. Evaluation of double- and triple-coupled triggering mechanisms to improve crashworthiness of composite tubes[J]. International Journal of Mechanical Sciences, 2019, 157/158: 1-12. doi: 10.1016/j.ijmecsci.2019.04.024
    [63] LUO Hai-bo, YAN Ying, ZHANG Tai-hua, et al. Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic[J]. Polymer Testing, 2017, 63: 12-24. doi: 10.1016/j.polymertesting.2017.08.004
    [64] SIROMANI D, HENDERSON G, MIKITA D, et al. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 25-35. doi: 10.1016/j.compositesa.2014.04.019
    [65] ESHKOOR R A, OSHKOVR S A, SULONG A B, et al. Effect of trigger configuration on the crashworthiness characteristics of natural silk epoxy composite tubes[J]. Composites Part B: Engineering, 2013, 55: 5-10. doi: 10.1016/j.compositesb.2013.05.022
    [66] HEIMBS S, STROBL F, MIDDENDORF P. Integration of a composite crash absorber in aircraft fuselage vertical struts[J]. International Journal of Vehicle Structures and Systems, 2011, 3(2): 87-95.
    [67] COLLINS J S, JOHNSON E R. Static and dynamic response of graphite-epoxy curved frames[J]. Journal of Composite Materials, 1992, 26(6): 792-803. doi: 10.1177/002199839202600602
    [68] WAIMER M. Development of a kinematics model for the assessment of global crash scenarios of a composite transport aircraft fuselage[R]. Cologne: DLR, 2013.
    [69] BUSSADORI B P, SCHUFFENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. doi: 10.1016/j.compositesb.2014.01.020
    [70] MOU Hao-lei, XIE Jiang, SU Xuan, et al. Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing[J]. Mechanics of Composite Materials, 2019, 55(1): 121-134. doi: 10.1007/s11029-019-09797-x
    [71] 冯振宇, 周建, 张雪晗, 等. 复合材料薄壁圆管压溃吸能机理分析及层叠壳建模方法研究[J]. 振动与冲击, 2017, 36(23): 268-275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201723039.htm

    FENG Zhen-yu, ZHOU Jian, ZHANG Xue-han, et al. Mechanism analysis and laminated shell modeling for crushing energy absorption of composite thin-walled circular tubes[J]. Journal of Vibration and Shock, 2017, 36(23): 268-275. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201723039.htm
    [72] SIROMANI D, AWERBUCH J, TAN T M. Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression[J]. Composites Part B: Engineering, 2014, 64: 50-58. doi: 10.1016/j.compositesb.2014.04.008
    [73] 解江, 马骢瑶, 周建, 等. 复合材料机身C型柱准静态压溃仿真及失效模式[J]. 航空材料学报, 2017, 37(2): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201702011.htm

    XIE Jiang, MA Cong-yao, ZHOU Jian, et al. Quasi-static crushing simulation research and failure mode analysis of composite thin-walled C-channel specimen[J]. Journal of Aeronautical Materials, 2017, 37(2): 73-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201702011.htm
    [74] MOU Hao-lei, SU Xuan, XIE Jiang, et al. Parametric analysis of composite sinusoidal specimens under quasi-static crushing[J]. The Aeronautical Journal, 2018, 122(1254): 1244-1262. doi: 10.1017/aer.2018.64
    [75] HADAVINIA H, GHASEMNEJAD H. Effects of mode-Ⅰ and mode-Ⅱ interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections[J]. Composite Structures, 2009, 89: 303-314. doi: 10.1016/j.compstruct.2008.08.004
    [76] PALANIVELU S, VAN PAEPEGEM W, DEGRIECK J, et al. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: central delamination and triggering modelling[J]. Polymer Testing, 2010, 29: 729-741. doi: 10.1016/j.polymertesting.2010.05.010
    [77] WAIMER M, SIEMANN M H, FESER T. Simulation of CFRP components subjected to dynamic crash loads[J]. International Journal of Impact Engineering, 2017, 101: 115-131. doi: 10.1016/j.ijimpeng.2016.11.011
    [78] 解江, 宋山山, 宋东方, 等. 复合材料C型柱轴压失效分析的层合壳建模方法[J]. 航空学报, 2019, 40(2): 127-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902013.htm

    XIE Jiang, SONG Shan-shan, SONG Dong-fang, et al. Stacked shell modeling method for failure analysis of composite C-channels subject to axial compression[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 127-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902013.htm
    [79] FERABOLI P, WADE B, DELEO F, et al. LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1809-1825. doi: 10.1016/j.compositesa.2011.08.004
    [80] 牟浩蕾, 邹田春, 陈艳芬, 等. 复合材料波纹板准静态压溃仿真与试验及材料模型参数分析[J]. 机械科学与技术, 2015, 34(4): 618-622. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201504027.htm

    MOU Hao-lei, ZOU Tian-chun, CHEN Yan-fen, et al. Experiment and simulation of composite corrugated plate under quasi-static crushing and analysis of material model parameters[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(4): 618-622. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201504027.htm
    [81] WADE B, FERABOLI P. Composite damage material modeling for crash simulation: MAT54 & amp; amp; the efforts of the CMH-17 numerical round robin[C]//JAMS. JAMS 2014 Technical Review Meeting. Washington DC: JAMS, 2014: 1-26.
    [82] BUSSADORI B P, SCHUDDENHAUER K, SCATTINA A. Modelling of CFRP crushing structures in explicit crash analysis[J]. Composites Part B: Engineering, 2014, 60: 725-735. doi: 10.1016/j.compositesb.2014.01.020
    [83] RICCIO A, RAIMONDO A, DI CAPRIO F, et al. Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system[J]. Composites Part B: Engineering, 2018, 150: 93-103. doi: 10.1016/j.compositesb.2018.05.044
    [84] JIANG Hong-yong, REN Yi-ru, LIU Zhi-hui, et al. Multi-scale analysis for mechanical properties of fiber bundle and damage characteristics of 2D triaxially braided composite panel under shear loading[J]. Thin-Walled Structures, 2018, 132: 276-286. doi: 10.1016/j.tws.2018.08.022
    [85] REN Yi-ru, ZHANG Song-jun, JIANG Hong-yong, et al. Meso-scale progressive damage behavior characterization of triaxial braided composites under quasi-static tensile load[J]. Applied Composite Materials, 2018, 25: 335-352. doi: 10.1007/s10443-017-9623-7
    [86] ZHANG Chao, MAO Chun-jian, CURIEL-SOSA J L, et al. Meso-scale finite element simulations of 3D braided textile composites: effects of force loading modes[J]. Applied Composite Materials, 2018, 25: 823-841. doi: 10.1007/s10443-018-9728-7
    [87] JACKSON K E, FASANELLA E L, KELLAS S. Development of a scale model composite fuselage concept for improved crashworthiness[J]. Journal of Aircraft, 2001, 38(1): 95-103. doi: 10.2514/2.2739
    [88] RICCIO A, SAPUTO S, SELLITTO A, et al. On the crashworthiness behaviour of a composite fuselage sub-floor component[J]. Composite Structures, 2020, 234: 1-14.
    [89] WIGGENRAAD J F M, SMICHIELSEN A L P J, SANTORO D, et al. Development of a crashworthy composite fuselage concept for a commuter aircraft[R]. Amsterdam: NLR, 2001.
    [90] MOU Hao-lei, ZOU Tian-chun, FENG Zhen-yu, et al. Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens[J]. Latin American Journal of Solids and Structures, 2016, 13(6): 1186-1202. doi: 10.1590/1679-78252446
    [91] DELSART D, PORTEMONT G, WAIMER M. Crash testing of a CFRP commercial aircraft sub-cargo fuselage section[J]. Procedia Structural Integrity, 2016, 2: 2198-2205. doi: 10.1016/j.prostr.2016.06.275
    [92] CAPRIO F D, IGNARRA M, MARULO F, et al. Design of composite stanchions for the cargo subfloor structure of a civil aircraft[J]. Procedia Engineering, 2016, 167: 88-96. doi: 10.1016/j.proeng.2016.11.673
    [93] 冯振宇, 解江, 李恒晖, 等. 大飞机货舱地板下部结构有限元建模与适坠性分析[J]. 航空学报, 2019, 40(2): 115-126. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902012.htm

    FENG Zhen-yu, XIE Jiang, LI Heng-hui, et al. Finite element modeling and crashworthiness analysis of large aeroplane sub-cargo structure[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 115-126. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201902012.htm
    [94] 冯振宇, 程坤, 赵一帆, 等. 运输类飞机典型货舱地板下部结构冲击吸能特性研究[J]. 航空学报, 2019, 40(9): 208-220. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909015.htm

    FENG Zhen-yu, CHENG Kun, ZHAO Yi-fan, et al. Study on impact energy absorption characteristics of the lower structure of typical cargo floor of transportation aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 208-220. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909015.htm
    [95] FASANELLA E L, WIDMAYER E, ROBINSON M P. Structural analysis of the controlled impact demonstration of a jet transport airplane[J]. Journal of Aircraft, 1987, 24(4): 274-280.
    [96] FASANELLA E L, ALFARO-BOU E, HAYDUK R J. Impact data from a transport aircraft during a controlled impact demonstration[R]. Washington DC: NASA, 1986.
    [97] WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage section located forward of the wing[R]. Washington DC: NASA, 1983.
    [98] FASANELLA E L, ALFARO-BOU E. Vertical drop test of a transport fuselage section located aft of the wing[R]. Washington DC: NASA, 1986.
    [99] WILLIAMS M S, HAYDUK R J. Vertical drop test of a transport fuselage center section including the wheel wells[R]. Washington DC: NASA, 1983.
    [100] JACKSON K E, LITTELL J D, ANNETT M S, et al. Finite element simulations of two vertical drop tests of F-28 fuselage sections[R]. Washington DC: NASA, 2018.
    [101] LITTELL J D. A summary of results from two full-scale F28 fuselage section drop tests[R]. Washington DC: NASA, 2018.
    [102] LOGUE T V, MCGUIRE R J, REINHARDT J W, et al. Vertical drop test of a narrow-body fuselage section with overhead stowage bins and auxiliary fuel tank system on board[R]. Washington DC: FAA, 1995.
    [103] ABRAMOWITZ A, SMITH T G, VU T. Vertical drop test of a narrow-body transport fuselage section with a conformable auxiliary fuel tank onboard[R]. Washington DC: FAA, 2000.
    [104] ABRAMOWITZ A, SMITH T G, VU T, et al. Vertical drop test of an ATR42-300 airplane[R]. Washington DC: FAA, 2006.
    [105] OLIVARES G. Crashworthiness certification by analysis[C]//JAMS. JAMS 2018 Technical Review Meeting. Washington DC: JAMS, 2018: 1-60.
    [106] HASHEMI S M R, WALTON A C. A systematic approach to aircraft crashworthiness and impact surface material models[J]. Journal of Aerospace Engineering, 2000, 214(5): 265-280.
    [107] RICCIO A, SAPUTO S, SELLITTO A, et al. An insight on the crashworthiness behavior of a full-scale composite fuselage section at different impact angles[J]. Aerospace, 2019, 72(6): 1-14.
    [108] KUMAKURA I, MINEGISHI M, IWASAKI K, et al. Summary of vertical drop tests of YS-11 transport fuselage sections[R]. New York: SAE International, 2003.
    [109] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309015.htm

    LIU Xiao-chuan, GUO Jun, SUN Xia-sheng, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309015.htm
    [110] 刘小川, 周苏枫, 马君峰, 等. 民机客舱下部吸能结构分析与试验相关性研究[J]. 航空学报, 2012, 33(12): 2202-2210. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212007.htm

    LIU Xiao-chuan, ZHOU Su-feng, MA Jun-feng, et al. Correlation study of crash analysis and test of civil airplane sub-cabin energy absorption structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2202-2210. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201212007.htm
    [111] WAIMER M, KOHLGRÜBER D, HACHENBERG D, et al. The kinematics model-a numerical method for the development of a crashworthy composite fuselage design of transport aircraft[C]//FAA. 6th Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2010: 1-32.
    [112] KINDERVATER C M, KOHLGRUBER D, JOHNSON A. Composite vehicle structural crashworthiness—a status of design methodology and numerical simulation techniques[J]. International Journal of Crashworthiness, 1999, 4(2): 213-230.
    [113] ZOU Tian-chun, MOU Hao-lei, FENG Zhen-yu. Research on effects of oblique struts on crashworthiness of composite fuselage sections[J]. Journal of Aircraft, 2012, 49(6): 2059-2063.
    [114] ZHU Xian-fei, FENG Yun-wen, XUE Xiao-feng, et al. Evaluate the crashworthiness response of an aircraft fuselage section with luggage contained in the cargo hold[J]. International Journal of Crashworthiness, 2017, 22(4): 347-364.
    [115] ADAMS A, LANKARANI H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness[J]. International Journal of Crashworthiness, 2003, 8(4): 401-413.
    [116] MENG Fan-xing, ZHOU Qin, YANG Jia-ling. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage[J]. International Journal of Crashworthiness, 2009, 14(1): 83-97.
    [117] FASANELLA E L, JACKSON K E. Crash simulation of a vertical drop test of a B737 fuselage section with auxiliary fuel tank[C]//FAA. 3rd Triennial International Aircraft Fire and Cabin Safety Research Conference. Washington DC: FAA, 2001: 1-19.
    [118] SCHATROW P, WAIMER M. Crash concept for composite transport aircraft using mainly tensile and compressive absorption mechanisms[J]. CEAS Aeronautical Journal, 2016, 7(3): 471-482.
    [119] SCHATROW P, WAIMER M. Investigation of a crash concept for CFRP transport aircraft based on tension absorption[J]. International Journal of Crashworthiness, 2014, 19(5): 524-539.
    [120] DELETOMBE E, DELSART D, KOHLGRÜBER D, et al. Improvement of numerical methods for crash analysis in future composite aircraft design[J]. Aerospace Science and Technology, 2000, 4(3): 189-199.
    [121] 解江, 冯振宇, 赵彦强, 等. 含随机不确定参数复合材料薄壁结构吸能特性评估方法研究[J]. 振动与冲击, 2015, 34(22): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201522019.htm

    XIE Jiang, FENG Zhen-yu, ZHAO Yan-qiang, et al. Evaluation method based on probability for energy-absorbing composite structures with uncertain parameters[J]. Journal of Vibration and Shock, 2015, 34(22): 109-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201522019.htm
    [122] XIE Jiang, MOU Hao-lei, SU Xuan, et al. Uncertain evaluation of crashworthiness of thin-walled composite structures[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1238-1248.
    [123] 郑建强, 向锦武, 罗漳平, 等. 民机机身下部结构耐撞性优化设计[J]. 航空学报, 2012, 33(4): 640-649. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204009.htm

    ZHENG Jian-qiang, XIANG Jin-wu, LUO Zhang-ping, et al. Crashworthiness optimization of civil aircraft subfloor structure[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 640-649. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204009.htm
    [124] REN Yi-ru, XIANG Jin-wu. Crashworthiness uncertainty analysis of typical civil aircraft based on Box-Behnken method[J]. Chinese Journal of Aeronautics, 2014, 27(3): 550-557.
    [125] LYLE K H, STOCKWELL A E, HARDY R C. Application of probability methods to assess airframe crash modeling uncertainty[J]. Journal of Aircraft, 2007, 44(5): 1568-1573.
  • 加载中
图(38) / 表(1)
计量
  • 文章访问数:  1437
  • HTML全文浏览量:  249
  • PDF下载量:  667
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-27
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回