留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

边坡开挖支护时序有限元分析

闫强 廉向东 凌建明

闫强, 廉向东, 凌建明. 边坡开挖支护时序有限元分析[J]. 交通运输工程学报, 2020, 20(3): 61-71. doi: 10.19818/j.cnki.1671-1637.2020.03.005
引用本文: 闫强, 廉向东, 凌建明. 边坡开挖支护时序有限元分析[J]. 交通运输工程学报, 2020, 20(3): 61-71. doi: 10.19818/j.cnki.1671-1637.2020.03.005
YAN Qiang, LIAN Xiang-dong, LING Jian-ming. Time series finite element analysis of support of slope excavation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 61-71. doi: 10.19818/j.cnki.1671-1637.2020.03.005
Citation: YAN Qiang, LIAN Xiang-dong, LING Jian-ming. Time series finite element analysis of support of slope excavation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 61-71. doi: 10.19818/j.cnki.1671-1637.2020.03.005

边坡开挖支护时序有限元分析

doi: 10.19818/j.cnki.1671-1637.2020.03.005
基金项目: 

国家自然科学基金项目 51878075

中国博士后科学基金项目 2019M663872XB

详细信息
    作者简介:

    闫强(1982-), 男, 山东菏泽人, 广西交通投资集团有限公司高级工程师, 工学博士, 从事道路工程研究

  • 中图分类号: U416.14

Time series finite element analysis of support of slope excavation

Funds: 

National Natural Science Foundation of China 51878075

China Postdoctoral Science Foundation 2019M663872XB

More Information
    Author Bio:

    YAN Qiang(1982-), male, senior engineer, PhD, yyqq023@163.com

  • 摘要: 为研究公路改扩建工程边坡稳定性的影响因素, 寻求科学的支护方法, 以柳州至南宁高速K1456+800处左侧改扩建边坡为研究对象, 利用ANSYS建立了有限元数值模型, 选择未及时支护和及时支护2种支护方式, 模拟计算了改扩建工程中6级边坡开挖过程中坡体的剪应变增量及水平、竖向位移增量; 为定量分析2种支护条件下边坡开挖过程中位移及应力的变化趋势, 选取了6个特殊节点进行监测, 主要监测内容包括测点的位移(包括水平位移和竖向位移)以及主应力(包括最大主应力和最小主应力)随开挖时步的变化情况。分析结果表明: 无论是否及时支护, 每步剪应变增量最大值均位于坡脚, 但及时支护时, 分布面积及数值较未及时支护时小, 边坡发生失稳的可能性较低; 随着开挖推进, 水平位移增量先减小后小幅增大, 竖向位移增量先急剧增大后缓慢减小, 及时支护下各测点最终位移较未及时支护情况要小; 未及时支护时最终开挖安全系数接近1.0, 及时支护后每步安全系数均大幅提高, 基本大于1.35。综上所述, 及时支护能够有效减小边坡剪切应力, 限制水平与竖向位移, 降低整体应力水平, 提高边坡安全系数, 显著改善坡体稳定性。

     

  • 图  1  边坡工程

    Figure  1.  Slope engineering

    图  2  边坡开挖模型

    Figure  2.  Slope excavation model

    图  3  边坡数值计算网格模型

    Figure  3.  Grid model of slope numerical calculation

    图  4  剪应变增量

    Figure  4.  Shear strain increments

    图  5  水平位移

    Figure  5.  Horizontal displacements

    图  6  未及时支护测点U1增量与开挖时步的关系

    Figure  6.  Relationships between U1 increment of measuring point and time step under late support

    图  7  及时支护测点U1增量与开挖时步的关系

    Figure  7.  Relationships between U1 increment of measuring point and time step under timely support

    图  8  测点最终U1增量曲线

    Figure  8.  Final U1 increment curves of measuring points

    图  9  竖向位移

    Figure  9.  Vertical displacements

    图  10  未及时支护测点U2增量与开挖时步的关系

    Figure  10.  Relationships between U2 increment of measuring point and time step under late support

    图  11  及时支护测点U2增量与开挖时步的关系

    Figure  11.  Relationships between U2 increment of measuring point and time step under timely support

    图  12  测点最终U2增量

    Figure  12.  Final U2 increments of measuring points

    图  13  未及时支护测点最大主应力增量与开挖时步的关系

    Figure  13.  Relationships between maximum principal stress increment of measuring point and time step under late support

    图  14  及时支护时测点最大主应力增量与开挖时步的关系

    Figure  14.  Relationships between maximum principal stress increment of measuring point and time step under timely support

    图  15  未及时支护测点最小主应力增量与开挖时步的关系

    Figure  15.  Relationships between minimum principal stress increment of measuring point and time step under late support

    图  16  及时支护测点最小主应力增量与开挖时步的关系

    Figure  16.  Relationships between minimum principal stress increment of measuring point and time step under timely support

    图  17  测点最终应力增量

    Figure  17.  Final stress increments of measuring point

    图  18  安全系数与开挖时步的关系

    Figure  18.  Relationships between safety factor and time step

    表  1  模型建立参数

    Table  1.   Model building parameters

    参数 宽度/m 高度/m 底部约束 两侧约束 节点变形 材料 屈服准则 收敛准则
    数值 137 左侧73、右侧15 刚性约束 水平约束 竖向固定 莫尔-库仑弹塑性材料 莫尔-库仑准则 最大不平衡力趋近于10-5 kN
    下载: 导出CSV

    表  2  计算参数

    Table  2.   Calculation parameters

    岩性 重度/(kN·m-3) 黏聚力/kPa 内摩擦角/(°) 弹性模量/GPa 坡高/m 平均倾角/(°) 边坡分级/m
    砾质黏性土 19.13 29 21.4 1.8 34 34.8 2
    砂质黏性土 20.22 31 24.0 1.4 6 33.7 3
    砂岩 25.10 46 45.0 2.8 17 39.5 1
    下载: 导出CSV

    表  3  支护防护

    Table  3.   Support protection

    边坡级数 第2级 第3级 第4级 第5级 第6级
    支护防护 4排9 m长全长注浆锚杆(型号为HRB335, 直径28 mm)浅表支护 4排12 m长全长注浆锚杆(型号为HRB335, 直径32 mm)浅表支护 3排24 m长6束预应力锚索(直径15.2 mm)锚固10 m 4排12 m长全长注浆锚杆(型号为HRB335, 直径32 mm)浅表支护 4排9 m长全长注浆锚杆(型号为HRB335, 直径28 mm)浅表支护
    下载: 导出CSV
  • [1] 张坤勇, 杜伟, 王乾坤. 基于修正关口-太田模型的归一化变形量开挖边坡失稳判据[J]. 土木工程学报, 2019, 52(11): 86-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201911010.htm

    ZHANG Shen-yong, DU Wei, WANG Qian-kun. Criterion of normalized deformation for instability analysis of excavation slope based on modified Ohta-Sechiguchi anisotropic elastoplastic model[J]. China Civil Engineering Journal, 2019, 52(11): 86-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201911010.htm
    [2] 刘广宁, 李聪, 卢波, 等. 降雨诱发全-强风化岩边坡浅层失稳模型试验研究[J]. 长江科学院院报, http://kns.cnki.net/kcms/detail/42.1171.TV.20191104.1013.002.html.

    LIU Guang-ning, LI Cong, LU Bo, et al. Model test of shallow failure of fully strong weathered rock slope induced by rainfall[J]. Journal of Yangtze River Scientific Research Institute, http://kns.cnki.net/kcms/detail/42.1171.TV.20191104.1013.002.html. (inChinese).
    [3] 金磊, 曾亚武, 程涛, 等. 土石混合体边坡稳定性的三维颗粒离散元分析[J]. 哈尔滨工业大学学报, 2020, 52(2): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202002006.htm

    JIN Lei, ZENG Ya-wu, CHENG Tao, et al. Stability analysis of soil-rock mixture slope based on 3-D DEM[J]. Journal of Harbin Institute of Technology, 2020, 52(2): 41-50. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202002006.htm
    [4] 蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析[J]. 岩土工程学报, http://kns.cnki.net/kcms/detail/32.1124.TU.20191115.1133.002.html.

    JIANG Shui-hua, LIU Xian, HUANG Fa-ming, et al. Failure mechanism and reliability analyses of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters[J]. Chinese Journal of Geotechnical Engineering, http://kns.cnki.net/kcms/detail/32.1124.TU.20191115.1133.002.html. (inChinese).
    [5] 闫强. 高速公路改扩建工程高边坡开挖过程稳定性研究[D]. 西安: 长安大学, 2015.

    YAN Qiang. Study on the slope stability in the excavation process of reconstruction highway[D]. Xi'an: Chang'an University, 2015. (in Chinese).
    [6] 殷德胜, 汪卫明, 陈胜宏. 岩质边坡开挖过程模拟的动态有限单元法[J]. 岩石力学与工程学报, 2011, 30(11): 2217-2224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111008.htm

    YIN De-sheng, WANG Wei-ming, CHEN Sheng-hong. Dynamic finite element method for excavation process simulation of rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2217-2224. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201111008.htm
    [7] 段钊, 唐皓, 党琪, 等. 边坡开挖诱发滑坡离散元模拟[J]. 长安大学学报(自然科学版), 2014, 34(5): 49-55. doi: 10.3969/j.issn.1671-8879.2014.05.008

    DUAN Zhao, TANG Hao, DANG Qi, et al. Discrete element simulation of landslide induced by slope excavation[J]. Journal of Chang'an University (Natural Science Edition), 2014, 34(5): 49-55. (in Chinese). doi: 10.3969/j.issn.1671-8879.2014.05.008
    [8] 林同立, 何忠明, 蔡军. 改扩建高速公路路堑边坡拓宽方案对比分析[J]. 矿冶工程, 2014, 34(6): 18-21. doi: 10.3969/j.issn.0253-6099.2014.06.005

    LIN Tong-li, HE Zhong-ming, CAI Jun. Analysis and comparison of embankment widening schemes in highway renovation and expansion project[J]. Mining and Metallurgical Engineering, 2014, 34(6): 18-21. (in Chines). doi: 10.3969/j.issn.0253-6099.2014.06.005
    [9] 王述红, 饶文杰, 关祥祥, 等. 复杂岩体边坡关键块体搜索及开挖支护[J]. 东北大学学报(自然科学版), 2013, 34(7): 1017-1021. doi: 10.3969/j.issn.1005-3026.2013.07.024

    WANG Shu-hong, RAO Wen-jie, GUAN Xiang-xiang, et al. Search of key block in complex rock mass slope and support of excavated slope[J]. Journal of Northeastern University (Natural Science), 2013, 34(7): 1017-1021. (in Chinese). doi: 10.3969/j.issn.1005-3026.2013.07.024
    [10] 周勇, 王旭日, 朱彦鹏, 等. 强风化软硬互层岩质高边坡监测与数值模拟[J]. 岩土力学, 2018, 39(6): 2249-2258. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806041.htm

    ZHOU Yong, WANG Xu-ri, ZHU Yan-peng, et al. Monitoring and numerical simulation of an interbedding high slope composed of soft and hard strong-weathered rock[J]. Rock and Soil Mechanics, 2018, 39(6): 2249-2258. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806041.htm
    [11] 张媛, 董建华, 董旭光, 等. 季节性冻土区土钉边坡支护结构冻融反应分析[J]. 岩土力学, 2017, 38(2): 574-582, 592. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702035.htm

    ZHANG Yuan, DONG Jian-hua, DONG Xu-guang, et al. Analysis of freezing and thawing of slope improved by soil nailing structure in seasonal frozen soil region[J]. Rock and Soil Mechanics, 2017, 38(2): 574-582, 592. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702035.htm
    [12] 王定伟, 伍法权, 马艾阳. 腊寨水电站坝址右岸边坡三维数值模拟分析[J]. 工程地质学报, 2013, 21(4): 641-648. doi: 10.3969/j.issn.1004-9665.2013.04.023

    WANG Ding-wei, WU Fa-quan, MA Ai-yang. Three dimensional numerical simulation for right bank slope of Lazhai Hydropower Station[J]. Journal of Engineering Geology, 2013, 21(4): 641-648. (in Chinese). doi: 10.3969/j.issn.1004-9665.2013.04.023
    [13] 赵晓彦, 胡厚田, 唐茂颖. 类土质高边坡开挖效应的离心模型试验及数值模拟研究[J]. 岩石力学与工程学报, 2006, 25(增2): 4046-4051. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2110.htm

    ZHAO Xiao-yan, HU Hou-tian, TANG Mao-ying. Study on excavation effect of high soil-like slope by centrifugal model test and numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 4046-4051. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2110.htm
    [14] 赵川, 付成华, 何欢, 等. 锦屏水电站缆机平台高陡边坡开挖支护数值模拟[J]. 长江科学院院报, 2015, 32(8): 94-98. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201508022.htm

    ZHAO Chuan, FU Cheng-hua, HE Huan, et al. Numerical simulation on the excavation and support of high and steep slope of cable-crane platform of Jinping Hydropower Station[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(8): 94-98. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201508022.htm
    [15] 李安兴, 李杨秋, 王燕增, 等. 改建工程深基坑对地铁车站及区间隧道的影响分析[J]. 土木工程, 2019, 8(3): 821-829.

    LI An-xing, LI Yang-qiu, WANG Yan-zeng, et al. Effect of filling and grouting reinforcement on deep foundation pit support structure and adjacent tunnels[J]. Hans Journal of Civil Engineering, 2019, 8(3): 821-829. (in Chinese).
    [16] 姚裕春, 姚令侃, 袁碧玉. 降雨条件下边坡破坏机理离心模型研究[J]. 中国铁道科学, 2004, 25(4): 64-68. doi: 10.3321/j.issn:1001-4632.2004.04.012

    YAO Yu-chun, YAO Ling-kan, YUAN Bi-yu. Analysis of a centrifugal model of slope damage mechanism during rainfall[J]. China Railway Science, 2004, 25(4): 64-68. (in Chinese). doi: 10.3321/j.issn:1001-4632.2004.04.012
    [17] 姚裕春, 姚令侃, 袁碧玉, 等. 施工时序对边坡稳定性影响的离心模型试验及数值分析[J]. 岩石力学与工程学报, 2006, 25(5): 1075-1080. doi: 10.3321/j.issn:1000-6915.2006.05.034

    YAO Yu-chun, YAO Ling-kan, YUAN Bi-yu, et al. Centrifuge model test and numerical analysis of effects of excavation and support sequence on slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 1075-1080. (in Chinese). doi: 10.3321/j.issn:1000-6915.2006.05.034
    [18] 姚裕春, 姚令侃, 袁碧玉. 边坡开挖迁移式影响离心模型试验研究[J]. 岩土工程学报, 2006, 28(1): 76-80. doi: 10.3321/j.issn:1000-4548.2006.01.015

    YAO Yu-chun, YAO Ling-kan, YUAN Bi-yu. Study of centrifuge model tests on transition effect of cut slopes[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 76-80. (in Chinese). doi: 10.3321/j.issn:1000-4548.2006.01.015
    [19] 赵朋辉, 刁文治, 周志林. 开挖与支护方法对边坡稳定性影响的数值模拟[J]. 路基工程, 2006(4): 16-18. doi: 10.3969/j.issn.1003-8825.2006.04.006

    ZHAO Peng-hui, DIAO Wen-zhi, ZHOU Zhi-lin. Numerical simulation of the influence of excavation and support methods on slope stability[J]. Subgrade Engineering, 2006(4): 16-18. (in Chinese). doi: 10.3969/j.issn.1003-8825.2006.04.006
    [20] 赵尚毅, 郑颖人, 唐树名. 路堑边坡施工顺序对边坡稳定性影响数值模拟分析[J]. 地下空间, 2003, 23(4): 370-374. doi: 10.3969/j.issn.1673-0836.2003.04.006

    ZHAO Shang-yi, ZHENG Ying-ren, TANG Shu-ming. Numerical simulation analysis for the influence of construction process of deep cut slop on its stability[J]. Underground Space, 2003, 23(4): 370-374. (in Chinese). doi: 10.3969/j.issn.1673-0836.2003.04.006
    [21] 朱彦鹏, 王立文. 边坡分级柔性支护数值模拟研究[J]. 建筑科学与工程学报, 2012, 29(4): 25-31. doi: 10.3969/j.issn.1673-2049.2012.04.005

    ZHU Yan-peng, WANG Li-wen. Research on numerical simulation of slope grading flexible reinforcement[J]. Journal of Architecture and Civil Engineering, 2012, 29(4): 25-31. (in Chinese). doi: 10.3969/j.issn.1673-2049.2012.04.005
    [22] 杨逾, 郭锐. 多台阶岩质边坡的稳定性分析及加固效应[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(6): 607-612. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201606010.htm

    YANG Yu, GUO Rui. Research on the stability of multi-level rock slope and the reinforcement effect[J]. Journal of Liaoning Technical University (Natural Science Edition), 2016, 35(6): 607-612. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201606010.htm
    [23] 李韬, 徐奴文, 戴峰, 等. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. 岩土力学, 2018, 39(2): 665-674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802034.htm

    LI Tao, XU Nu-wen, DAI Feng, et al. Stability analysis of left bank abutment slope at Baihetan Hydropower Station subjected to excavation[J]. Rock and Soil Mechanics, 2018, 39(2): 665-674. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201802034.htm
    [24] 马国民, 李国锋, 杨磊, 等. 富龙石质高陡边坡下棚洞适用性及联合支护效果分析[J]. 中国公路学报, 2016, 29(9): 112-120. doi: 10.3969/j.issn.1001-7372.2016.09.015

    MA Guo-min, LI Guo-feng, YANG Lei, et al. Analysis on applicability of shed-tunnel and effect of combined supporting under high and steep rocky slope condition of Funing-Longliu Expressway[J]. China Journal of Highway and Transport, 2016, 29(9): 112-120. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.09.015
    [25] 刘军, 徐志军, 原方, 等. 立交桥桥台桩基托换基坑支护设计与监测[J]. 岩土工程学报, 2019, 41(增2): 217-220, 225. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2056.htm

    LIU Jun, XU Zhi-jun, YUAN Fang, et al. Design and monitoring of foundation pit support project for pile foundation underpinning of abutment of interchange bridges[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 217-220, 225. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2056.htm
    [26] 陈乐求, 杨恒山, 林杭. 抗滑桩加固边坡稳定性及影响因素的有限元分析[J]. 中南大学学报(自然科学版), 2011, 42(2): 490-494. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201102035.htm

    CHEN Le-qiu, YANG Heng-shan, LIN Hang. Finite element analysis for slope stability and its influencing factors with pile reinforcement[J]. Journal of Central South University (Science and Technology), 2011, 42(2): 490-494. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201102035.htm
    [27] 高春君, 张学富, 向立辉, 等. 深层排水孔堵塞对富水岩质高边坡稳定性的影响[J]. 土木建筑与环境工程, 2018, 40(5): 92-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805012.htm

    GAO Chun-jun, ZHANG Xue-fu, XIANG Li-hui, et al. Impact of deep drainage hole blockage on high slope stability in rich water formation[J]. Journal of Civil, Architectural and Environmental Engineering, 2018, 40(5): 92-101. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805012.htm
    [28] WEI Zuo-an, YIN Guang-zhi, WANG J G, et al. Stability analysis and supporting system design of a high-steep cut soil slope on an ancient landslide during highway construction of Tehran-Chalus[J]. Environmental Earth Sciences, 2012, 67(6): 1651-1662. doi: 10.1007/s12665-012-1606-2
    [29] KAYA A, ALEMDAG S, DAG S, et al. Stability assessment of high-steep cut slope debris on a landslide (Gumushane, NE Turkey)[J]. Bulletin of Engineering Geology and the Environment, 2016, 75(1): 89-99. doi: 10.1007/s10064-015-0753-6
    [30] MEYER N, AHANGARI K. An investigation on stability and support of intake rock slopes of the Karun III Dam and power project[C]//KONIETZKY H. Numerical Modeling of Discrete Materials in Geotechnical Engineering, Civil Engineering, and Earth Sciences. New York: CRC Press, 2004: 229-234.
    [31] 丁秀美, 刘光士, 黄润秋, 等. 剪应变增量在堆积体边坡稳定性研究中的应用[J]. 地球科学进展, 2004, 19(增): 318-323. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2004S1064.htm

    DING Xiu-mei, LIU Guang-shi, HUANG Run-qiu, et al. Shear strain increment applying in stability studying of debris slope[J]. Advance in Earth Sciences, 2004, 19(S): 318-323. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ2004S1064.htm
    [32] 张伟. 边坡位移参数与稳定性变化关系[J]. 新疆交通运输科技, 2016(2): 15-19.

    ZHANG Wei. Relationship between slope displacement parameters and stability change[J]. Xinjiang Transportation Science and Technology, 2016(2): 15-19. (in Chinese).
    [33] 饶运章, 张学焱, 利坚, 等. 边坡安全系数与滑坡概率关系分析[J]. 长江科学院院报, 2017, 34(5): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201705015.htm

    RAO Yun-zhang, ZHANG Xue-yan, LI Jian, et al. Relationship between slope safety factor and landslide probability[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 63-67. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201705015.htm
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  823
  • HTML全文浏览量:  94
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-07
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回