留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吊舱推进电机的无模型自适应滑模矢量控制

姚文龙 王加利 庞震 池荣虎 邵巍

姚文龙, 王加利, 庞震, 池荣虎, 邵巍. 吊舱推进电机的无模型自适应滑模矢量控制[J]. 交通运输工程学报, 2020, 20(3): 72-79. doi: 10.19818/j.cnki.1671-1637.2020.03.006
引用本文: 姚文龙, 王加利, 庞震, 池荣虎, 邵巍. 吊舱推进电机的无模型自适应滑模矢量控制[J]. 交通运输工程学报, 2020, 20(3): 72-79. doi: 10.19818/j.cnki.1671-1637.2020.03.006
YAO Wen-long, WANG Jia-li, PANG Zhen, CHI Rong-hu, SHAO Wei. Model-free adaptive sliding mode vector control for podded propulsion motor[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 72-79. doi: 10.19818/j.cnki.1671-1637.2020.03.006
Citation: YAO Wen-long, WANG Jia-li, PANG Zhen, CHI Rong-hu, SHAO Wei. Model-free adaptive sliding mode vector control for podded propulsion motor[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 72-79. doi: 10.19818/j.cnki.1671-1637.2020.03.006

吊舱推进电机的无模型自适应滑模矢量控制

doi: 10.19818/j.cnki.1671-1637.2020.03.006
基金项目: 

国家自然科学基金项目 61873139

山东省自然科学基金项目 ZR2017MEE071

山东省重点扶持区域引进急需紧缺人才项目 Major Office of Shandong Development and Reform Commission[2019]391

详细信息
    作者简介:

    姚文龙(1981-), 男, 山东青岛人, 青岛科技大学副教授, 工学博士, 从事电力推进控制技术研究

  • 中图分类号: U665.11

Model-free adaptive sliding mode vector control for podded propulsion motor

Funds: 

National Natural Science Foundation of China 61873139

Natural Science Foundation of Shandong Province ZR2017MEE071

Shortage Talents Program in Key Supporting Regions of Shandong Province Major Office of Shandong Development and Reform Commission[2019]391

More Information
  • 摘要: 为解决半潜船吊舱推进电机控制系统中负载扰动造成的转速跟踪性能差的问题, 提出一种基于数据驱动的吊舱推进电机转速矢量控制方法; 对包含未知负载扰动的推进电机转速方程进行离散化处理, 给出关于输出转速与输入电流离散后的非线性转速系统; 由于非线性转速系统方程中变量较多且负载扰动模型未知, 设计了基于数据驱动的无模型自适应控制器, 并给出了伪偏导数估计算法; 采用滑模观测器观测螺旋桨负载扰动, 同时给出了滑模控制器; 结合无模型自适应控制和滑模控制给出了负载扰动下的无模型自适应滑模(MFASM)控制方案; 构建了吊舱推进电机无模型自适应滑模矢量控制调速系统, 并在MATLAB/Simulink环境下给出了仿真结果。研究结果表明: 在船舶正常作业恒定转速下, 在0.3~0.5 s时间区域内, 采用MFASM矢量控制方案和PI矢量控制方案的吊舱推进电机的转速误差分别为2、6 r·min-1; 在0.8~1.0 s时间区域内, 采用无模型自适应滑模矢量控制方案和PI矢量控制方案的吊舱推进电机的转速误差分别1、3 r·min-1; 对于船舶操车作业的可变转速情形, 采用MFASM矢量控制方案的推进电机转速和转矩达到稳态的时间比PI矢量控制方案少0.01~0.03 s。可以看出, 采用MFASM矢量控制方案可改善吊舱推进电机转速跟踪性能, 是一种有效的抑制负载扰动的数据驱动控制方法。

     

  • 图  1  滑模扰动观测器原理

    Figure  1.  Principle of sliding mode disturbance observer

    图  2  推进电机无模型自适应滑模矢量控制调速系统

    Figure  2.  MFASM vector control speed regulating system for propulsion motor

    图  3  正常作业下推进电机转速和转矩曲线

    Figure  3.  Curves of propulsion motor speed and torque under normal operation

    图  4  操车作业下推进电机转速和转矩曲线

    Figure  4.  Curves of propulsion motor speed and torque under maneuvering operation

  • [1] DU Jia-lu, HU Xin, KRSTĆ M, et al. Robust dynamicpositioning of ships with disturbances under input saturation[J]. Automatic, 2016, 73: 207-214.
    [2] BENETAZZO F, IPPOLITI G, LONGLI S, et al. Advanced control for fault-tolerant dynamic positioning of an offshore supply vessel[J]. Ocean Engineering, 2015, 106: 472-484. doi: 10.1016/j.oceaneng.2015.07.001
    [3] 谢新连, 赵瑞嘉, 李猛, 等. 基于半潜船型的多功能浮力舱技术[J]. 中国造船, 2018, 59(3): 178-184. doi: 10.3969/j.issn.1000-4882.2018.03.019

    XIE Xin-lian, ZHAO Rui-jia, LI Meng, et al. Technique of multi-functional buoyancy tank applied to semi-submersible ships[J]. Shipbuliding of China, 2018, 59(3): 178-184. (in Chinese). doi: 10.3969/j.issn.1000-4882.2018.03.019
    [4] ZHAO Dong-ya, LIANG Hao, SPURGRON S K. Robust adaptive terminal sliding mode control for dynamic positioning of a semi-submersible offshore platform[J]. Transactions of the Institute of Measurement and Control, 2019, 41(5): 1361-1372. doi: 10.1177/0142331218778108
    [5] WANG Rui, XIONG Ying, WANG Zhan-zhi. A surface panel method for the analysis of hybrid contra-rotating shaft pod propulsor[J]. Ocean Engineering, 2017, 140: 97-104. doi: 10.1016/j.oceaneng.2017.05.022
    [6] 慕东东, 王国峰, 范云生, 等. 吊舱推进无人水面艇的航向保持[J]. 哈尔滨工程大学学报, 2018, 39(2): 274-281. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201802013.htm

    MU Dong-dong, WANG Guo-feng, FAN Yun-sheng, et al. Study on course keeping of POD propulsion unmanned surface vessel[J]. Journal of Harbin Engineering University, 2018, 39(2): 274-281. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201802013.htm
    [7] 白洪芬, 朱景伟. 电力推进船舶永磁容错电机矢量控制策略对比分析[J]. 哈尔滨工程大学报, 2017, 38(9): 1484-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201709022.htm

    BAI Hong-fen, ZHU Jing-wei. Comparative study of vector control strategies for FTPMM applied in ship electric propulsion system[J]. Journal of Harbin Engineering University, 2017, 38(9): 1484-1490. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201709022.htm
    [8] CHASIOTIS I D, KARNAVAS Y L. A generic multi-criteria design approach toward high power density and fault-tolerant low-speed PMSM for pod applications[J]. IEEE Transactions on Transportation Electrification, 2019, 5(2): 356-370. doi: 10.1109/TTE.2019.2894995
    [9] PING Zhao-wu, WANG Tao, HUANG Yun-zhi, et al. Internal model control of PMSM position servo system: theory and experimental results[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2202-2211. doi: 10.1109/TII.2019.2935248
    [10] WANG Yao-qiang, FENG Yu-tao, ZHANG Xiao-guang, et al. A new reaching law for antidisturbance sliding-mode control of PMSM speed regulation system[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 4117-4126. doi: 10.1109/TPEL.2019.2933613
    [11] 刘国海, 宋成炎, 徐亮, 等. 基于SVPWM的五相永磁同步电机两相开路故障容错控制策略[J]. 电工技术学报, 2019, 34(1): 23-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201901003.htm

    LIU Guo-hai, SONG Cheng-yan, XU Liang, et al. SVPWM-based fault-tolerant control strategy under two-phase open-circuit fault of five-phase permanent-magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 23-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201901003.htm
    [12] 周凯, 孙彦成, 王旭东, 等. 永磁同步电机的自抗扰控制调速策略[J]. 电机与控制学报, 2018, 22(2): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201802009.htm

    ZHOU Kai, SUN Yan-cheng, WANG Xu-dong, et al. Active disturbance rejection control of PMSM speed control system[J]. Electric Machines and Control, 2018, 22(2): 57-63. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201802009.htm
    [13] TRIPATHI S M, DUTTA C. Enhanced efficiency in vector control of a surface-mounted PMSM drive[J]. Journal of the Franklin Institute—Engineering and Applied Mathematics, 2018, 35(5): 2392-2423.
    [14] AN Qun-tao, LIU Jin, PENG Zhuang, et al. Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8329-8342.
    [15] OKSUZTEPE E, OMAC Z, KURUM H. Sensorless vector control of PMSM with non-sinusoidal flux using observer based on FEM[J]. Electrical Engineering, 2014, 96(3): 227-238. doi: 10.1007/s00202-013-0294-6
    [16] LIU Kai, HOU Chuang, HUA Wei. A novel inertia identification method and its application in PI controllers of PMSM drives[J]. IEEE Access, 2019, 7: 13345-13454.
    [17] XIE Yuan-long, TANG Xiao-qi, SONG Bao, et al. Model-free tuning strategy of fractional-order PI controller for speed regulation of permanent magnet synchronous motor[J]. Transactions of The Institute of Measurement and Control, 2019, 41(1): 23-35. doi: 10.1177/0142331217751040
    [18] WU Shao-fang, ZHANG Jian-wu. A terminal sliding mode observer based robust backstepping sensorless speed control for interior permanent magnet synchronous motor[J]. International Journal of Control Automation and Systems, 2018, 16(6): 2743-2753. doi: 10.1007/s12555-017-0806-7
    [19] NING Bo-wen, CHENG Shang-mei, QIN Yi. Direct torque control of PMSM using sliding mode backstepping control with extended state observer[J]. Journal of Vibration and Control, 2018, 24(4): 694-707. doi: 10.1177/1077546316650097
    [20] MORAWIEC M. The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 1047-1055. doi: 10.1109/TII.2012.2223478
    [21] 钟臻峰, 金孟加, 沈建新. 基于分段PI调节器的模型参考自适应永磁同步电动机全转速范围无传感器控制[J]. 中国电机工程学报, 2018, 38(4): 1203-1211. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201804025.htm

    ZHONG Zhen-feng, JIN Meng-jia, SHEN Jian-xin. Full speed range sensorless control of permanent magnet synchronous motor with phased PI regulator-based model reference adaptive system[J]. Proceedings of the CSEE, 2018, 38(4): 1203-1211. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201804025.htm
    [22] KIVANCO C, OZTURK S B. Sensorless PMSM drive based on stator feedforward voltage estimation improved with MRAS multi-parameter estimation[J]. IEEE/ASME Transactions on Mechatronics, 23(3): 1326-1337.
    [23] ZOLFAGHARI M, TAHER S A, MUNUZ D V. Neural network-based sensorless direct power control of permanent magnet synchronous motor[J]. Ain Shams Engineering Journal, 2016, 7(2): 729-740. doi: 10.1016/j.asej.2016.01.002
    [24] 兰永红, 王亮亮, 陈才学. 基于观测器的永磁同步电机积分反推控制[J]. 系统仿真学报, 2017, 39(8): 1753-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201708015.htm

    LAN Yong-hong, WANG Liang-liang, CHEN Cai-xue. Observer-based integral backstepping control for permanent magnet synchronous motor[J]. Journal of System Simulation, 2017, 39(8): 1753-1761. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201708015.htm
    [25] 余洋, 郭旭东, 郑晓明, 等. 基于反推控制的机械弹性储能永磁同步电机最大转矩电流比控制[J]. 电工技术学报, 2017, 32(22): 82-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201722009.htm

    YU Yang, GUO Xu-dong, ZHENG Xiao-ming, et al. Backstepping control based maximum torque per ampere control of permanent magnet synchronous motor for mechanical elastic energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 82-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201722009.htm
    [26] 林茂, 李颖晖, 吴辰, 等. 基于滑模模型参考自适应系统观测器的永磁同步电机预测控制[J]. 电工技术学报, 2017, 32(6): 156-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201706019.htm

    LIN Mao, LI Ying-hui, WU Chen, et al. A model reference adaptive system based sliding mode observer for model predictive controlled permanent magnet synchronous motor drive[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 156-163. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201706019.htm
    [27] 刘春强, 刘伊伦, 孔凡一, 等. 基于时变参数扰动观测器补偿的永磁同步电机非光滑速度调节器[J]. 电工技术学报, 2019, 34(4): 664-672. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201904004.htm

    LIU Chun-qiang, LIU Yi-lun, KONG Fan-yi, et al. Non-smooth speed controller based on time-varying parameter disturbance observer compensation for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 664-672. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201904004.htm
    [28] 侯忠生. 无模型自适应控制的现状与展望[J]. 控制理论与应用, 2006, 23(4): 586-592. doi: 10.3969/j.issn.1000-8152.2006.04.017

    HOU Zhong-sheng. On model-free adaptive control: the state of the art and perspective[J]. Control Theory and Applications, 2006, 23(4): 586-592. (in Chinese). doi: 10.3969/j.issn.1000-8152.2006.04.017
    [29] 翁永鹏, 高宪文, 吕明阳. 一类非仿射非线性离散系统的改进无模型自适应控制[J]. 控制与决策, 2014, 29(12): 2226-2234. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201412020.htm

    WENG Yong-peng, GAO Xian-wen, LYU Ming-yang. Improved model-free adaptive control for a class of non-affine nonlinear discrete systems[J]. Control and Decision, 2014, 29(12): 2226-2234. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201412020.htm
    [30] 张晓光, 孙力, 赵克. 基于负载转矩滑模观测的永磁同步电机滑模控制[J]. 中国电机工程学报, 2012, 32(3): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201203018.htm

    ZHANG Xiao-guang, SUN Li, ZHAO Ke. Sliding mode control of PMSM based on novel load torque sliding mode observer[J]. Proceedings of the CSEE, 2012, 32(3): 111-116. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201203018.htm
    [31] EBRAHIMI N, OZGOLI S, RAMEZANI A. Model-free sliding mode control, theory and application[J]. Journal of Systems and Control Engineering, 2018, 232(10): 1292-1301.
  • 加载中
图(4)
计量
  • 文章访问数:  831
  • HTML全文浏览量:  135
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回