留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车疫情风险评估与主动防护策略

谢国 金永泽 姬文江 黑新宏 马维纲 王丹 陈庞 叶闽英

谢国, 金永泽, 姬文江, 黑新宏, 马维纲, 王丹, 陈庞, 叶闽英. 高速列车疫情风险评估与主动防护策略[J]. 交通运输工程学报, 2020, 20(3): 110-119. doi: 10.19818/j.cnki.1671-1637.2020.03.010
引用本文: 谢国, 金永泽, 姬文江, 黑新宏, 马维纲, 王丹, 陈庞, 叶闽英. 高速列车疫情风险评估与主动防护策略[J]. 交通运输工程学报, 2020, 20(3): 110-119. doi: 10.19818/j.cnki.1671-1637.2020.03.010
XIE Guo, JIN Yong-ze, JI Wen-jiang, HEI Xin-hong, MA Wei-gang, WANG Dan, CHEN Pang, YE Min-ying. Epidemic risk assessment and active protection strategy of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 110-119. doi: 10.19818/j.cnki.1671-1637.2020.03.010
Citation: XIE Guo, JIN Yong-ze, JI Wen-jiang, HEI Xin-hong, MA Wei-gang, WANG Dan, CHEN Pang, YE Min-ying. Epidemic risk assessment and active protection strategy of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 110-119. doi: 10.19818/j.cnki.1671-1637.2020.03.010

高速列车疫情风险评估与主动防护策略

doi: 10.19818/j.cnki.1671-1637.2020.03.010
基金项目: 

国家自然科学基金项目 U1534208

详细信息
    作者简介:

    谢国(1982-), 男, 湖北宜昌人, 西安理工大学教授, 工学博士, 从事轨道交通系统研究

  • 中图分类号: U293.1

Epidemic risk assessment and active protection strategy of high-speed train

Funds: 

National Natural Science Foundation of China U1534208

More Information
  • 摘要: 考虑到列车密闭车厢内传染病的危害性, 研究了车厢内病毒的空间分布特性; 结合乘客间距离相关性分析结果, 构建了乘客感染预测模型, 对车厢内存在多感染者情况下每个乘客感染病毒的风险进行了评估; 为降低乘客乘车感染风险, 制定了列车乘客主动防护策略, 提出基于贪婪算法和变邻域局部搜索算法的混合启发式算法, 对车厢乘客布座问题进行优化求解; 通过基于距离的贪婪算法, 将列车固定坐标的乘客布座问题转换为最多乘客数最少病毒重叠区问题, 得到座位可行解, 并汇总各可行解得到可行域, 再基于变邻域的局部搜索算法改进座位可行解, 得到最优乘客布座方案。研究结果表明: 本文建立的感染概率评估模型可有效预测乘客感染病毒的风险, 结合基于混合启发式算法的主动防护措施可有效降低乘客乘车的感染风险; 针对短途旅客, 随着乘车人数和车厢内感染者的增加, 高风险感染者由1人增加至7人, 中风险感染者由0人增加至3人, 低风险感染者由47人增加至83人; 相较于无序就坐, 采用本文制定的布座策略可消除乘客感染风险。

     

  • 图  1  短途旅客感染风险预测结果

    Figure  1.  Prediction result of infection risks of short-distance passengers

    图  2  不同传播半径下短途旅客病毒覆盖区域

    Figure  2.  Virus coverage areas of short-distance passengers under different spread radii

    图  3  短途旅客病毒空间分布

    Figure  3.  Virus spatial distribution of short-distance passengers

    图  4  贪婪算法下短途旅客病毒覆盖区域

    Figure  4.  Virus coverage areas of short-distance passengers based on greedy algorithm

    图  5  长途旅客病毒覆盖区域

    Figure  5.  Virus coverage area of long-distance passengers

    图  6  长途旅客病毒空间分布

    Figure  6.  Virus spatial distribution of long-distance passengers

    图  7  长途旅客感染风险预测结果

    Figure  7.  Prediction result of infection risks of long-distance passengers

    表  1  CRH2主要车辆参数

    Table  1.   Main vehicle parameters of CRH2

    参数 取值
    动车组长度/m 25.7
    拖车组长度/m 25.0
    车体长度/m 20.14
    车体宽度/m 3.38
    车体高度/m 3.70
    编组总重/t 345
    一等座人数 51
    二等座人数 504
    餐车座位数 55
    下载: 导出CSV

    表  2  CRH2座位尺寸

    Table  2.   Seat size of CRH2

    座位等级 座位宽度/mm 座间距/mm 过道宽度/mm
    一等座 475 1 160 600
    二等座 440 980 600
    下载: 导出CSV

    表  3  乘客参数与病毒特性

    Table  3.   Passenger parameters and virus characteristics

    参数 取值
    感染者病毒产生率/(quanta·h-1) 100~5 000
    乘客呼吸率/(m3·h-1) 0.47~0.49
    乘客乘车时间/h 3
    列车最大通风量/(m3·h-1) 2 000
    乘客口罩的渗透系数 0.60~0.90
    列车上座率/% 50~100
    下载: 导出CSV

    表  4  感染风险预测结果

    Table  4.   Prediction result of infection risk

    列车上座率/% 感染者人数
    50 2
    70 5
    100 7
    下载: 导出CSV
  • [1] 谢国, 金永泽, 黑新宏, 等. 列车动力学模型时变环境参数自适应辨识[J]. 自动化学报, 2019, 45(12): 2268-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201912008.htm

    XIE Guo, JIN Yong-ze, HEI Xin-hong, et al. Adaptive identification of time-varying environmental parameters in train dynamics model[J]. Acta Automatica Sinica, 2019, 45(12): 2268-2280. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201912008.htm
    [2] CAO Yuan, WANG Zheng-chao, LIU Feng, et al. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains[J]. IEEE Transactions on Vehicular Technology, 2017, 68(7): 6331-6342.
    [3] 谢国, 王竹欣, 黑新宏, 等. 面向热轴故障的高速列车轴温阈值预测模型[J]. 交通运输工程学报, 2018, 18(3): 129-137. doi: 10.3969/j.issn.1671-1637.2018.03.014

    XIE Guo, WANG Zhu-xin, HEI Xin-hong, et al. Axle temperature threshold prediction model of high-speed train for hot axle fault[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 129-137. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.014
    [4] CAO Yuan, SUN Yong-kui, XIE Guo, et al. Fault diagnosis of train plug door based on a hybrid criterion for IMFs selection and fractional wavelet package energy entropy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7544-7551. doi: 10.1109/TVT.2019.2925903
    [5] CAO Yuan, MA Lian-chuan, XIAO Shuo, et al. Standard analysis for transfer delay in CTCS-3[J]. Chinese Journal of Electronics, 2017, 26(5): 1057-1063. doi: 10.1049/cje.2017.08.024
    [6] LI Tian-tian, BAI Yu-hua, LIU Zhao-rong, et al. In-train air quality assessment of the railway transit system in Beijing: a note[J]. Transportation Research Part D: Transport and Environment, 2007, 12(1): 64-67. doi: 10.1016/j.trd.2006.11.001
    [7] 陶红歌, 陈焕新, 谢军龙, 等. 空调列车硬座车厢内污染物扩散规律研究[J]. 铁道学报, 2010, 32(3): 28-32. doi: 10.3969/j.issn.1001-8360.2010.03.005

    TAO Hong-ge, CHEN Huan-xin, XIE Jun-long, et al. Research on contamination dispersion in hard-seat compartments of air-conditioning train[J]. Journal of the China Railway Society, 2010, 32(3): 28-32. (in Chinese). doi: 10.3969/j.issn.1001-8360.2010.03.005
    [8] HUANG Chao-lin, WANG Ye-ming, LI Xing-wang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395: 497-506. doi: 10.1016/S0140-6736(20)30183-5
    [9] ZHANG Jin-nong, ZHOU Lu-qian, YANG Yu-qiong, et al. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics[J]. The Lancet Respiratory Medicine, 2020, 8(3): e11-e12. doi: 10.1016/S2213-2600(20)30071-0
    [10] WANG Chen, PETER W H, FREDERICK G H, et al. A novel coronavirus outbreak of global health concern[J]. Lancet, 2020, 395: 470-473. doi: 10.1016/S0140-6736(20)30185-9
    [11] 马进, 王声湧, 邓留, 等. 入境旅客列车上152例发热病例的流行病学分析[J]. 中华疾病控制杂志, 2011, 15(2): 135-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JBKZ201102016.htm

    MA Jin, WANG Sheng-yong, DENG Liu, et al. Epidemiological analysis on 152 cases of fever from international trains[J]. Chinese Journal of Disease Control and Prevention, 2011, 15(2): 135-137. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JBKZ201102016.htm
    [12] MOORE M, VALWAY S E, IHLE W, et al. A train passenger with pulmonary tuberculosis: evidence of limited transmission during travel[J]. Clinical Infectious Diseases, 1999, 28: 52-56. doi: 10.1086/515089
    [13] CHRN S C, LIAO C M, LI S S, et al. A probabilistic transmission model to assess infection risk from mycobacterium tuberculosis in commercial passenger trains[J]. Society for Risk Analysis, 2010, 31(6): 930-939.
    [14] CUI Fu-qiang, LUO Hui-ming, ZHOU Lei, et al. Transmission of pandemic influenza: A (H1N1) virus in a train in China[J]. Journal of Epidemiology, 2011, 21(4): 271-277. doi: 10.2188/jea.JE20100119
    [15] PESTRE V, MOREL B, ENCRENAZ N, et al. Transmission by super-spreading event of pandemic A/H1N1 2009 influenza during road and train travel[J]. Scandinavian Journal of Infectious Diseases, 2012, 44: 225-227. doi: 10.3109/00365548.2011.631936
    [16] AHMAD N I S, MAHAT A, KHALID A K, et al. A novel mathematical model of airborne infection[J]. Journal of Information System and Technology Management, 2019, 4(11): 62-72.
    [17] FURUYA H. Risk of transmission of airborne infection during train commute based on mathematical model[J]. Environmental Health and Preventive Medicine, 2007, 12: 78-83. doi: 10.1007/BF02898153
    [18] GOSCÉ L, JOHANSSON A. Analysing the link between public transport use and airborne transmission: mobility and contagion in the London underground[J]. Environmental Health, 2018, 17: 1-11. doi: 10.1186/s12940-017-0345-y
    [19] HU Ming-sheng, LIU Xin-xin, CAI Chuang-feng, et al. On infectious diseases transmission based on traffic network[C]//IEEE. 29th Chinese Control and Decision Conference. New York: IEEE, 2017: 1495-1498.
    [20] HENRIK S, DEREK A T C, JUSTIN L. Estimating infectious disease transmission distances using the overall distribution of cases[J]. Epidemics, 2016, 17: 10-18. doi: 10.1016/j.epidem.2016.10.001
    [21] MILLER-LEIDEN S, LOHASCIO C, NAZAROFF W W. et al. Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control[J]. Journal of the Air and Waste Management Association, 2012, 46: 869-882.
    [22] WELLS W F. On air-borne infection. StudyⅡ: droplets and droplet nuclei[J]. American Journal of Hygiene, 1934, 20(3): 611-618.
    [23] RILEY E C. The role of ventilation in the spread of measles in an elementary school[J]. Annals of the New York Academy of Ences, 1980, 353: 25-34. doi: 10.1111/j.1749-6632.1980.tb18902.x
    [24] RILEY E C, MURPHY G, RILEY R L. Airborne spread of measles in a suburban elementary school[J]. American Journal of Epidemiology, 1978, 107(5): 421-432. doi: 10.1093/oxfordjournals.aje.a112560
    [25] RAY A, SANGHAVI S, SHAKKOTTAI S. Improved greedy algorithms for learning graphical models[J]. IEEE Transactions on Information Theory, 2015, 61(6): 3457-3468. doi: 10.1109/TIT.2015.2427354
    [26] 王淼, 吴松涛, 李永哲, 等. 基于贪婪算法的离散单位圆盘覆盖问题研究[J]. 华南理工大学学报(自然科学版), 2019, 47(12): 78-85. doi: 10.12141/j.issn.1000-565X.190370

    WANG Miao, WU Song-tao, LI Yong-zhe, et al. A greedy heuristic-based approach to solving the discrete unit disk cover problem[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(12): 78-85. (in Chinese). doi: 10.12141/j.issn.1000-565X.190370
    [27] CHEN Mao, TANG Xiang-yang, SONG Ting, et al. Greedy heuristic algorithm for packing equal circles into a circular container[J]. Computers and Industrial Engineering, 2018, 119: 114-120. doi: 10.1016/j.cie.2018.03.030
    [28] MENG Xiang-hu, LI Jun, DAI Xian-zhong, et al. Variable neighborhood search for a colored traveling salesman problem[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4), 1018-1026. doi: 10.1109/TITS.2017.2706720
    [29] LUIZ F O, SANTOS M, IWAYAMA R S, et al. A variable neighborhood search algorithm for the bin packing problem with compatible categories[J]. Expert Systems with Applications, 2019, 124: 209-225. doi: 10.1016/j.eswa.2019.01.052
    [30] DAHMANI N, SAOUSSEN K, GHAZOUANI D. A variable neighborhood descent approach for the two-dimensional bin packing problem[J]. Electronic Notes in Discrete Mathematics, 2015, 47: 117-124. doi: 10.1016/j.endm.2014.11.016
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1031
  • HTML全文浏览量:  139
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-20
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回