留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重大疫情下的列车动态编组与调度

曹源 温佳坤 马连川

曹源, 温佳坤, 马连川. 重大疫情下的列车动态编组与调度[J]. 交通运输工程学报, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011
引用本文: 曹源, 温佳坤, 马连川. 重大疫情下的列车动态编组与调度[J]. 交通运输工程学报, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011
CAO Yuan, WEN Jia-kun, MA Lian-chuan. Dynamic marshalling and scheduling of trains in major epidemics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011
Citation: CAO Yuan, WEN Jia-kun, MA Lian-chuan. Dynamic marshalling and scheduling of trains in major epidemics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 120-128. doi: 10.19818/j.cnki.1671-1637.2020.03.011

重大疫情下的列车动态编组与调度

doi: 10.19818/j.cnki.1671-1637.2020.03.011
基金项目: 

国家重点研发计划项目 2018YFB1201601

详细信息
    作者简介:

    曹源(1982-), 男, 河南开封人, 北京交通大学教授, 工学博士, 从事高速铁路运行控制研究

    通讯作者:

    温佳坤(1996-), 男, 河北唐山人, 北京交通大学工学硕士研究生

  • 中图分类号: U113

Dynamic marshalling and scheduling of trains in major epidemics

Funds: 

National Key Research and Development program of China 2018YFB1201601

More Information
  • 摘要: 为了降低疫情大爆发背景下旅客在乘坐城市轨道交通出行的过程中感染疾病的风险, 以列车编组与调度为研究对象, 提出重大疫情下基于虚拟编组的列车动态编组与调度方法; 为了提高城市轨道交通列车编组与调度的灵活性, 应用虚拟编组技术对城市轨道交通列车进行编组; 建立了基于客流的列车动态编组非线性规划模型, 对城市轨道交通列车的调度进行优化, 以提高城市轨道交通的运输效率, 降低车站人员密度, 进而降低疾病的感染风险; 应用改进的Wells-Riley模型进行感染分析; 应用基于社会力的行人运动模型对改进的Wells-Riley模型中的相关参数进行计算, 用于分析虚拟编组动态调度下旅客地铁出行全过程的感染风险; 使用MATLAB对虚拟编组制式下的传染概率进行仿真并与传统制式下的传染概率进行对比。研究结果表明; 虚拟编组技术可以显著提高城市轨道交通列车运输效率, 可将列车间追踪时间间隔缩短至34.6 s, 基于虚拟编组的列车动态编组与调度方法可以有效降低旅客的感染风险, 在相同条件下应用所提方法旅客的感染风险仅为传统方式的85.1%, 在车厢和通道中的感染风险分别为传统方式的50.0%和8.7%。如果将提出的方法配合错峰出行和客流控制及进站防疫检测等措施, 可以进一步降低旅客的感染风险。

     

  • 图  1  虚拟编组列车

    Figure  1.  Virtual coupling train

    图  2  虚拟编组列车车站追踪间隔

    Figure  2.  Virtual coupling train station tracking interval

    图  3  追踪间隔仿真结果

    Figure  3.  Simulation results of tracking interval

    图  4  车厢平均人数曲线

    Figure  4.  Curve of average person of carriage

    图  5  车厢感染仿真

    Figure  5.  Carriage infection simulation

    图  6  车厢感染风险对比

    Figure  6.  Comparison of carriage infection risks

    图  7  站台感染仿真结果

    Figure  7.  Platform infection simulation result

    图  8  站台感染风险对比

    Figure  8.  Comparison of platform infection risks

    图  9  通道感染仿真结果

    Figure  9.  Channel infection simulation result

    图  10  进出站过程感染风险对比

    Figure  10.  Comparison of infection risks during inbound and outbound processes

    图  11  出行全过程感染风险对比

    Figure  11.  Comparison of infection risks during whole travel

    表  1  B型地铁列车参数

    Table  1.   Parameters of B-type subway train

    车长/m 车宽/m 编组/节 最大载客数量
    19.8 2.8 4~8 240
    下载: 导出CSV

    表  2  虚拟编组动态调度仿真结果

    Table  2.   Simulation results of dynamic scheduling of virtual coupling

    每秒进站流量/人次 虚拟编组列车数量/列 追踪间隔/s 客流周期内停站车辆数 车厢平均人数
    1 1 150.0 24 52.8
    2 1 82.0 44 57.6
    3 1 56.2 64 59.4
    4 1 42.8 84 60.4
    5 2 69.2 104 60.1
    6 2 56.2 128 59.4
    7 2 50.0 144 61.6
    8 2 42.8 168 60.3
    9 2 37.5 192 59.4
    ≥10 2 34.6 208 60.9
    下载: 导出CSV

    表  3  仿真参数取值

    Table  3.   Values of simulation parameters

    参数 取值
    沉降速度/(mm·s-1) 0.75
    每小时Quanta产生量(感染未发病)/quanta 1~200
    每小时Quanta产生量(发病)/quanta 200~4 680
    呼气通风量/(L·min-1) 6
    通风量/(m3·h-1) 50 000
    下载: 导出CSV
  • [1] CAO Yuan, WANG Zheng-chao, LIU Feng, et al. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6331-6342. doi: 10.1109/TVT.2019.2914936
    [2] CAO Yuan, SUN Yong-kui, XIE Guo, et al. Fault diagnosis of train plug door based on a hybrid criterion for IMFs selection and fractional wavelet package energy entropy[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7544-7551. doi: 10.1109/TVT.2019.2925903
    [3] SU Shuai, WANG Xue-kai, CAO Yuan, et al. An energy-efficient train operation approach by integrating the metro timetabling and eco-driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20: 1-17. doi: 10.1109/TITS.2018.2885837
    [4] ZHANG Yu-zhuo, CAO Yuan, WEN Ying-hong, et al. Optimization of information interaction protocols in cooperative vehicle-infrastructure systems[J]. Chinese Journal of Electronics, 2018, 27(2): 439-444. doi: 10.1049/cje.2017.10.009
    [5] CAO Yuan, MA Lian-chuan, XIAO Shuo, et al. Standard analysis for transfer delay in CTCS-3[J]. Chinese Journal of Electronics, 2017, 26(5): 1057-1063. doi: 10.1049/cje.2017.08.024
    [6] CAO Yuan, LI Peng, ZHANG Yu-zhuo. Parallel processing algorithm for railway signal fault diagnosis data based on cloud computing[J]. Future Generation Computer Systems, 2018(88): 279-283.
    [7] HALTUF M. Shift2Rail JU from member state's point of view[J]. Transportation Research Procedia, 2016, 14: 1819-1828. doi: 10.1016/j.trpro.2016.05.148
    [8] WANG Yu-jian, SONG Yong-duan, GAO Hui, et al. Distributed fault-tolerant control of virtually and physically interconnected systems with application to high-speed trains under traction/braking failures[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 535-545. doi: 10.1109/TITS.2015.2479922
    [9] FELEZ J, KIM Y J, BORRELLI F. A model predictive control approach for virtual coupling in railways[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(7): 2728-2739. doi: 10.1109/TITS.2019.2914910
    [10] SCHUMANN T. Increase of capacity on the Shinkansen high-speed line using virtual coupling[J]. International Journal of Transport Development and Integration, 2017, 1(4): 666-676. doi: 10.2495/TDI-V1-N4-666-676
    [11] 荀径, 陈明亮, 宁滨, 等. 虚拟重联条件下地铁列车追踪运行性能衡量[J]. 北京交通大学学报, 2019, 43(1): 96-103. doi: 10.11860/j.issn.1673-0291.2019.01.011

    XUN Jing, CHEN Ming-liang, NING Bin, et al. Train tracking performance measurement under virtual coupling in subway[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 96-103. (in Chinese). doi: 10.11860/j.issn.1673-0291.2019.01.011
    [12] 刘鹏. 客流自适应地铁运营调度策略研究[D]. 成都: 西南交通大学, 2015.

    LIU Peng. Research on the traffic self-adaptive of subway operation dispatch strategy[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese).
    [13] VAZIFEH M M, SANTI P, RESTA G, et al. Addressing the minimum fleet problem in on-demand urban mobility[J]. Nature, 2018, 557(7706): 534-538. doi: 10.1038/s41586-018-0095-1
    [14] SONE S. Comparison of the technologies of the Japanese Shinkansen and Chinese High-speed Railways[J]. Journal of Zhejiang University: Science A, 2015, 16(10): 769-780. doi: 10.1631/jzus.A1500220
    [15] GHOSEIRI K, SZIDAROVSZKY F, ASGHARPOUR M J. A multi-objective train scheduling model and solution[J]. Transportation Research Part B: Methodological, 2004, 38(10): 927-952. doi: 10.1016/j.trb.2004.02.004
    [16] ARIANO A, PACCIARELLI D, PRANZO M. A branch and bound algorithm for scheduling trains in a railway network[J]. European Journal of Operational Research, 2007, 183(2): 643-657. doi: 10.1016/j.ejor.2006.10.034
    [17] ESPINOSA-ARANDA J L, GARCÍA-RÓDENAS R. A demand-based weighted train delay approach for rescheduling railway networks in real time[J]. Journal of Rail Transport Planning and Management, 2013, 3(1/2): 1-13.
    [18] QUAGLIETTA E, CCRMAN F, GOVERDE R M P. Stability analysis of railway dispatching plans in a stochastic and dynamic environment[J]. Journal of Rail Transport Planning and Management, 2013, 3(4): 137-149. doi: 10.1016/j.jrtpm.2013.10.009
    [19] SALIM V, CAI Xiao-qiang. A genetic algorithm for railway scheduling with environmental considerations[J]. Environmental Modelling and Software, 1997, 12(4): 301-309. doi: 10.1016/S1364-8152(97)00026-1
    [20] CAPRARA A, MONACI M, TOTH P, et al. A Lagrangian heuristic algorithm for a real-world train timetabling problem[J]. Discrete Applied Mathematics, 2006, 154(5): 738-753. doi: 10.1016/j.dam.2005.05.026
    [21] ZOU You, XIE Jia-rong, WANG Bing-hong. Evacuation of pedestrians with two motion modes for panic system[J]. PloS One, 2016, 11(4): 1-13.
    [22] GOU Ren-yong. New insights into discretization effects in cellular automata models for pedestrian evacuation[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 400: 1-11. doi: 10.1016/j.physa.2014.01.001
    [23] QIU Guo, SONG Rui, HE Shi-wei, et al. The pedestrian flow characteristics of Y-shaped channel[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 508: 199-212. doi: 10.1016/j.physa.2018.05.015
    [24] SONG Xiao, XIE Hong-nan, SUN Jiang-han, et al. Simulation of pedestrian rotation dynamics near crowded exits[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 3142-3155. doi: 10.1109/TITS.2018.2873118
    [25] MITCHELL I. ERTMS level 4, train convoys or virtual coupling[J]. IRSE News, 2016, 219: 14-15.
    [26] CAO Yuan, ZHANG Yu-zhuo, WEN Tao, et al. Research on dynamic nonlinear input prediction of fault diagnosis based on fractional differential operator equation in high-speed train control system[J]. Chaos, 2019, 29(1): 013130-1-7. doi: 10.1063/1.5085397
    [27] QIAN Hua, LI Yu-guo, NIESEN P V, et al. Spatial distribution of infection risk of SARS transmission in a hospital ward[J]. Building and Environment, 2009, 44(8): 1651-1658. doi: 10.1016/j.buildenv.2008.11.002
    [28] BENTHAM R, WHILEY H. Quantitative microbial risk assessment and opportunist waterborne infections-are there too many gaps to fill?[J]. International Journal of Environmental Research and Public Health, 2018, 15(6): 1-11.
    [29] 钱华, 郑晓红, 张学军. 呼吸道传染病空气传播的感染概率的预测模型[J]. 东南大学学报(自然科学版), 2012, 42(3): 468-472. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201203016.htm

    QIAN Hua, ZHENG Xiao-hong, ZHANG Xue-jun. Prediction of risk of airborne transmitted diseases[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(3): 468-472. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201203016.htm
    [30] 孟琦. 基于社会力的车站交叉行人流特性分析及疏散研究[D]. 北京: 北京交通大学, 2019.

    MENG Qi. Intersecting pedestrian flows characteristics analysis and evacuation in stations based on social force[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  975
  • HTML全文浏览量:  92
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回