留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水域精细划分的VTS雷达站选址配置优化

黄川 吕靖 艾云飞

黄川, 吕靖, 艾云飞. 基于水域精细划分的VTS雷达站选址配置优化[J]. 交通运输工程学报, 2020, 20(3): 192-205. doi: 10.19818/j.cnki.1671-1637.2020.03.018
引用本文: 黄川, 吕靖, 艾云飞. 基于水域精细划分的VTS雷达站选址配置优化[J]. 交通运输工程学报, 2020, 20(3): 192-205. doi: 10.19818/j.cnki.1671-1637.2020.03.018
HUANG Chuan, LYU Jing, AI Yun-fei. Optimization of VTS radar station location and configuration based on fine division of water area[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 192-205. doi: 10.19818/j.cnki.1671-1637.2020.03.018
Citation: HUANG Chuan, LYU Jing, AI Yun-fei. Optimization of VTS radar station location and configuration based on fine division of water area[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 192-205. doi: 10.19818/j.cnki.1671-1637.2020.03.018

基于水域精细划分的VTS雷达站选址配置优化

doi: 10.19818/j.cnki.1671-1637.2020.03.018
基金项目: 

国家重点研发计划项目 2017YFC0804904

国家重点研发计划项目 2018YFB1601504

国家自然科学基金项目 71974023

详细信息
    作者简介:

    黄川(1994-), 男, 湖北武汉人, 大连海事大学工学博士研究生, 从事交通运输规划与管理研究

    吕靖(1959-), 男, 辽宁大连人, 大连海事大学教授

  • 中图分类号: U69

Optimization of VTS radar station location and configuration based on fine division of water area

Funds: 

National Key Research and Development Program of China 2017YFC0804904

National Key Research and Development Program of China 2018YFB1601504

National Natural Science Foundation of China 71974023

More Information
  • 摘要: 为了提高水上安全监管效率和保障水上运输安全生产, 以船舶交通管理系统(VTS)雷达站为研究对象, 研究了基于水域精细划分的VTS雷达站选址优化问题; 考虑实际环境中遮挡因素和水域风险因素对雷达监测效果的影响, 基于软件ArcGIS 10.4.1提出了水域精细划分方法; 以雷达站建站位置和雷达配置类型为决策变量, 以水域覆盖率最大和总成本最小为目标函数, 构建了混合整数规划模型; 基于模型特点设计了多目标粒子群算法, 给出了生成初始粒子群的启发式规则, 并在算法中引入有效的变异操作; 为了验证方法的有效性, 以ZDT系列测试函数对算法搜寻最优解的性能以及算法的收敛性进行了研究。研究结果表明: 水域精细划分方法能够在考虑遮挡因素和风险因素的情况下实现对水域的空间划分, 实例中在存在62个雷达站候选点的情况下将雷达站所需监测水域划分为2 812个水域单元; 改进的粒子群算法在ZDT测试函数中能够有效地寻找全局最优解, 并且在最优解的分布上具有良好的收敛性和分布性; 针对实例中的VTS雷达站选址项目模型达到了95.92%的覆盖率, 成本为33 800元。可见, 考虑环境遮挡和水域风险因素的VTS雷达站选址模型是有效的, 改进的多目标粒子群算法可以提高VTS雷达站选址的科学性和合理性, 是解决VTS雷达站选址优化问题的一种有效方法。

     

  • 图  1  水域划分流程

    Figure  1.  Water area division flow

    图  2  VTS雷达站监测水域划分结果

    Figure  2.  Division result of VTS radar station monitoring water area

    图  3  雷达站环境全局视域分析

    Figure  3.  Global sight analysis of radar station environment

    图  4  VTS雷达站监测水域精细划分结果

    Figure  4.  Fine division result of VTS radar station monitoring water area

    图  5  风险评价指标体系

    Figure  5.  Index system of risk assessment

    图  6  并联系统结构

    Figure  6.  Parallel system structure

    图  7  粒子群示例

    Figure  7.  Example of particle swarm

    图  8  ZDT1结果

    Figure  8.  Result of ZDT1

    图  9  ZDT2结果

    Figure  9.  Result of ZDT2

    图  10  ZDT3结果

    Figure  10.  Result of ZDT3

    图  11  ZDT4结果

    Figure  11.  Result of ZDT4

    图  12  ZDT6结果

    Figure  12.  Result of ZDT6

    图  13  肇庆市水域分布

    Figure  13.  Water area distribution of Zhaoqing City

    图  14  VTS雷达站候选点遥感影像

    Figure  14.  Remote sensing image of VTS radar station candidate points

    图  15  VTS雷达站候选点高程

    Figure  15.  Elevations of VTS radar station candidate points

    图  16  VTS监测水域范围

    Figure  16.  VTS monitoring water area range

    图  17  VTS监测水域范围(融合)

    Figure  17.  VTS monitoring water area range (dissolve)

    图  18  水域划分结果

    Figure  18.  Division result of water area

    图  19  VTS雷达站视域分析

    Figure  19.  Visibility analysis of VTS radar station

    图  20  水域视域分析结果提取

    Figure  20.  Extraction of water area visibility analysis result

    图  21  VTS雷达站监管水域精细划分

    Figure  21.  Fine division of VTS radar station monitoring water area

    图  22  Pareto前沿

    Figure  22.  Pareto front

    图  23  雷达站选址方案

    Figure  23.  Radar station location program

    表  1  雷达数据

    Table  1.   Data of radar

    雷达型号 最大服务距离/km 最小服务距离/m 成本/元 可靠性
    1 20 100 300 0.90
    2 20 100 400 0.95
    下载: 导出CSV

    表  2  雷达站选址结果及雷达类型分布

    Table  2.   Results of radar station locations and radar types distribution

    雷达站 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
    选址结果 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1
    雷达型号1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0
    雷达型号2 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1
    雷达站 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
    选址结果 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 1
    雷达型号1 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0
    雷达型号2 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1
    雷达站 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    选址结果 1 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1
    雷达型号1 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0
    雷达型号2 1 1 0 1 1 1 0 1 0 1 1 1 0 0 1 1
    雷达站 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    选址结果 0 0 0 1 1 1 1 1 0 1 0 0 1 1
    雷达型号1 0 1 1 1 1 1 0 1 1 1 0 1 1 1
    雷达型号2 1 0 0 0 0 0 1 0 0 0 1 0 0 0
    下载: 导出CSV
  • [1] PRAETORIUS G, HOLLNAGEL E, DAHLAMN J. Modelling vessel traffic service to understand resilience in everyday operations[J]. Reliability Engineering and System Safety, 2015, 141: 10-21. doi: 10.1016/j.ress.2015.03.020
    [2] JEON H S, LEE B G. Redundancy method for VTS system[C]//IEEE. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2016). New York: IEEE, 2016: 99-103.
    [3] PRAETORIUS G, HOLLNAGEL E, DAHLMAN J. Modelling vessel traffic service to understand resilience in everyday operations[J]. Reliability Engineering and System Safety, 2015, 141: 10-21. doi: 10.1016/j.ress.2015.03.020
    [4] UCHACZ W, GALOR W. Optimization model of radar stations location in vessel traffic system[C]//IEEE. 18th International Conference on Methods and Models in Automation and Robotics. New York: IEEE, 2013: 426-429.
    [5] 曹德胜, 吕靖, 姜晓琳. 基于层次聚类的我国沿海VTS分类问题研究[J]. 武汉理工大学学报(交通科学与工程版), 2014, 38(3): 576-584. doi: 10.3963/j.issn.2095-3844.2014.03.023

    CAO De-sheng, LYU Jing, JIANG Xiao-lin. Coastal VTS classification based on hierarchical clustering analysis[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2014, 38(3): 576-584. (in Chinese). doi: 10.3963/j.issn.2095-3844.2014.03.023
    [6] 曹德胜, 吕靖, 艾云飞, 等. VTS雷达站选址问题优化模型[J]. 北京航空航天大学学报, 2014, 40(6): 727-731. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201406002.htm

    CAO De-sheng, LYU Jing, AI Yun-fei, et al. Optimization model of VTS radar station location problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 727-731. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201406002.htm
    [7] 曹德胜, 吕靖, 艾云飞, 等. 基于集合覆盖的VTS雷达站选址优化模型[J]. 北京理工大学学报, 2014, 34(7): 752-756. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407019.htm

    CAO De-sheng, LYU Jing, AI Yun-fei, et al. Optimization location model of VTS radar stations based on set covering theory[J]. Transactions of Beijing Institute of Technology, 2014, 34(7): 752-756. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407019.htm
    [8] 艾云飞, 曹德胜, 沈兵, 等. VTS中心布局及雷达站选址-配置双层规划模型[J]. 大连海事大学学报, 2017, 43(3): 107-111. doi: 10.3969/j.issn.1671-7031.2017.03.020

    AI Yun-fei, CAO De-sheng, SHEN Bing, et al. Bi-level optimization model of VTS center layout and radar station location-configuration[J]. Journal of Dalian Maritime University, 2017, 43(3): 107-111. (in Chinese). doi: 10.3969/j.issn.1671-7031.2017.03.020
    [9] 孙耀华, 陈昌源, 陈晓, 等. 基于LINGO的VTS雷达站选址优化模型[J]. 船海工程, 2017, 46(增2): 275-278. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407019.htm

    SUN Yao-hua, CHEN Chang-yuan, CHEN Xiao, et al. Optimization model of VTS radar station allocation configuration based on LINGO[J]. Ship and Ocean Engineering, 2017, 46(S2): 275-278. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407019.htm
    [10] 郑元洲, 程小东, 甘浪雄, 等. 沿岸建筑物对VTS雷达的遮蔽影响[J]. 中国航海, 2018, 41(1): 1-6, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201801001.htm

    ZHENG Yuan-zhou, CHENG Xiao-dong, GAN Lang-xiong, et al. Shadowing effect of coastal building on VTS radar[J]. Navigation of China, 2018, 41(1): 1-6, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201801001.htm
    [11] ŁUBCZONEK J. Application of GIS techniques in VTS radar stations planning[C]//IEEE. International Radar Symposium. New York: IEEE, 2008: 1-4.
    [12] 曹士连, 金一丞, 尹勇. 三维图形绘制生成航海雷达回波的强度仿真[J]. 系统仿真学报, 2016, 28(9): 2076-2084. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201609023.htm

    CAO Shi-lian, JIN Yi-cheng, YIN Yong. On simulating marine radar echo intensity generated by 3D graphic rendering[J]. Journal of System Simulation, 2016, 28(9): 2076-2084. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201609023.htm
    [13] 曹士连, 金一丞, 尹勇. 视景图形绘制方法生成航海雷达图像关键技术[J]. 哈尔滨工程大学学报, 2017, 38(5): 711-718, 790. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201705009.htm

    CAO Shi-lian, JIN Yi-cheng, YIN Yong. Key technologies for generating marine radar image by scene rendering[J]. Journal of Harbin Engineering University, 2017, 38(5): 711-718, 790. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201705009.htm
    [14] WIERSMA E, MASTENBROEK N. Measurement of vessel traffic service operator performance[J]. IFAC Proceedings Volumes, 1997, 30(24): 61-64. doi: 10.1016/S1474-6670(17)42223-3
    [15] LEE G, KIM S Y, LEE M K. Economic evaluation of vessel traffic service (VTS): a contingent valuation study[J]. Marine Policy, 2015, 61: 149-154. doi: 10.1016/j.marpol.2015.08.011
    [16] 胡惟璇, 凌丹, 杜妍. 基于组合评价的VTS综合评估应用研究[J]. 科研管理, 2016, 37(增): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGL2016S1078.htm

    HU Wei-xuan, LIN Dan, DU Yan. Application research of comprehensive evaluation of VTS based on combination evaluation[J]. Science Research Management, 2016, 37(S): 533-546. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KYGL2016S1078.htm
    [17] MOU Jun-min, ZHOU Cui, DU Yu, et al. Evaluate VTS benefits: a case study of Zhoushan Port[J]. International Journal of e-Navigation and Maritime Economy, 2015, 3: 22-31. doi: 10.1016/j.enavi.2015.12.003
    [18] 程圆娥, 周绍光, 袁春琦, 等. 结合LiDAR与遥感影像的水域边界提取方法[J]. 地理空间信息, 2017, 15(2): 76-79. doi: 10.3969/j.issn.1672-4623.2017.02.024

    CHENG Yuan-e, ZHOU Shao-guang, YUAN Chun-qi, et al. Water boundary extraction method combining LiDAR and remote sensing image[J]. Geospatial Information, 2017, 15(2): 76-79. (in Chinese). doi: 10.3969/j.issn.1672-4623.2017.02.024
    [19] 张维, 杨昕, 汤国安, 等. 基于DEM的平缓地区水系提取和流域分割的流向算法分析[J]. 测绘科学, 2012, 37(2): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201202033.htm

    ZHANG Wei, YANG Xin, TANG Guo-an, et al. DEM-based flow direction algorithms study of stream extraction and watershed delineation in the low relief areas[J]. Science of Surveying and Mapping, 2012, 37(2): 94-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201202033.htm
    [20] MARTÍNEZ-LÓPEZ J, CARREÑO M F, PALAZÓN-FERRANDO J A, et al. Free advanced modeling and remote-sensing techniques for wetland watershed delineation and monitoring[J]. International Journal of Geographical Information Science, 2014, 28(8): 1610-1625. doi: 10.1080/13658816.2013.852677
    [21] LIANG Jia-yong, LIU De-sheng. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 53-62. doi: 10.1016/j.isprsjprs.2019.10.017
    [22] 胡大伟, 陈希琼, 高扬. 定位-路径问题综述[J]. 交通运输工程学报, 2018, 18(1): 111-129. doi: 10.3969/j.issn.1671-1637.2018.01.011

    HU Da-wei, CHEN Xi-qiong, GAO Yang. Review on location-routing problem[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 111-129. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.011
    [23] 张潜, 高立群, 胡祥培. 集成化物流中的定位-运输路线安排问题(LRP)优化算法评述[J]. 东北大学学报(自然科学版), 2003, 24(1): 31-34. doi: 10.3321/j.issn:1005-3026.2003.01.009

    ZHANG Qian, GAO Li-qun, HU Xiang-pei. Review on optimal algorithms of location-routing problem (LRP) in integrated logistics[J]. Journal of Northeastern University(Natural Science), 2003, 24(1): 31-34. (in Chinese). doi: 10.3321/j.issn:1005-3026.2003.01.009
    [24] 米阳. 电动汽车充电设施的双目标最优选址问题[J]. 哈尔滨工程大学学报, 2018, 39(8): 1264-1268, 1342. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201808002.htm

    MI Yang. Bi-objective optimal locations of charging stations for electric vehicles[J]. Journal of Harbin Engineering University, 2018, 39(8): 1264-1268, 1342. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201808002.htm
    [25] FINK M, DESAULNIERS G, FREY M, et al. Column generation for vehicle routing problems with multiple synchronization constraints[J]. European Journal of Operational Research, 2019, 272: 699-711. doi: 10.1016/j.ejor.2018.06.046
    [26] LI Shu-qin, JIA Shuai. The seaport traffic scheduling problem: formulations and a column-row generation algorithm[J]. Transportation Research Part B: Methodological, 2019, 128: 158-184. doi: 10.1016/j.trb.2019.08.003
    [27] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249. doi: 10.1016/j.knosys.2015.07.006
    [28] 袁群, 左奕. 基于改进混合遗传算法的冷链物流配送中心选址优化[J]. 上海交通大学学报, 2016, 50(11): 1795-1800. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201611023.htm

    YUAN Qun, ZUO Yi. Selection of cold chain logistics distribution center location based on improved hybrid genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2016, 50(11): 1795-1800. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201611023.htm
    [29] WEI Mei-yi, LI Xiang, YU Le-an. Time-dependent fuzzy random location-scheduling programming for hazardous materials transportation[J]. Transportation Research Part C: Emerging Technologies, 2015, 57: 146-165. doi: 10.1016/j.trc.2015.06.012
    [30] ZHENG Yu-jun, CHEN Sheng-yong. Cooperative particle swarm optimization for multiobjective transportation planning[J]. Applied Intelligence, 2013, 39(1): 202-216. doi: 10.1007/s10489-012-0405-5
    [31] AMELI A, BAHRAMI S, KHAZAELI F, et al. A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner's and distribution company's viewpoints[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1831-1840. doi: 10.1109/TPWRD.2014.2300845
  • 加载中
图(23) / 表(2)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  167
  • PDF下载量:  517
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回