留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向智慧高速的合流区协作车辆冲突解脱协调方法

杨敏 王立超 张健 冉斌 吴静娴

杨敏, 王立超, 张健, 冉斌, 吴静娴. 面向智慧高速的合流区协作车辆冲突解脱协调方法[J]. 交通运输工程学报, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020
引用本文: 杨敏, 王立超, 张健, 冉斌, 吴静娴. 面向智慧高速的合流区协作车辆冲突解脱协调方法[J]. 交通运输工程学报, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020
YANG Min, WANG Li-chao, ZHANG Jian, RAN Bin, WU Jing-xian. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020
Citation: YANG Min, WANG Li-chao, ZHANG Jian, RAN Bin, WU Jing-xian. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020

面向智慧高速的合流区协作车辆冲突解脱协调方法

doi: 10.19818/j.cnki.1671-1637.2020.03.020
基金项目: 国家重点研发计划项目(2018YFB1600900);国家自然科学基金项目(51925801);中央高校基本科研业务费专项资金项目(2242019R40046)
详细信息
    作者简介:

    杨敏(1981-), 男, 安徽池州人, 东南大学教授, 工学博士, 从事智慧交通车路协同研究

    通讯作者:

    张健(1984-), 男, 安徽寿县人, 东南大学副教授, 工学博士

  • 中图分类号: U491.255

Collaborative method of vehicle conflict resolution in merging area for intelligent expressway

Funds: National Key Research and Development Project of China (2018YFB1600900, 2016YFB0100906); National Natural Science Foundation of China(51925801); Special Foundation for Basic Scientific Research of Central Colleges of China (2242019R40046)
More Information
  • 摘要: 根据网联自动驾驶车辆接近合流区的全过程特征, 设定智慧高速合流车辆行驶的协调控制流程; 针对高速公路合流区冲突风险问题, 考虑车辆时间需求强度、车辆类型和行驶意图等因素, 提出了基于合作博弈理论的高速公路合流区网联自动驾驶车辆冲突解脱协调方法; 利用MATLAB软件对不同条件下的车辆通过合流区进行了仿真验证。仿真结果表明: 智慧高速合流区车辆行驶协调规则能够实现网联自动驾驶车辆的通过请求协调, 在合作博弈作用下能够进一步实现冲突系统虚拟支付成本最低的车辆调整决策; 合流区车辆系统虚拟风险程度随着速度的降低而降低; 当严格执行协调决策时, 网联自动驾驶车辆在合流区通过过程中具有更高的稳定性; 当潜在冲突点长度在一定范围内, 两网联自动驾驶车辆行驶速度相同时的合作博弈效果优于车辆行驶速度不同时的合作博弈效果; 利用该协调方法将冲突解脱过程的虚拟支付成本降低了9%~14%, 大大提高了网联自动驾驶车辆合流区通过过程的安全性。

     

  • 图  1  智慧高速合流区组成

    Figure  1.  Composition of intelligent expressway merging area

    图  2  协调控制流程

    Figure  2.  Coordination control process

    图  3  车辆调整意图协调过程

    Figure  3.  Coordination process of vehicle adjustment intention

    图  4  场景1中不同bcjk1变化曲线

    Figure  4.  Change curves of cj with k1 under different b in scenario 1

    图  5  场景2中不同bcjk1变化曲线

    Figure  5.  Change curves of cj with k1 under different b in scenario 2

    图  6  场景3中不同bcjk1变化曲线

    Figure  6.  Change curves of cj with k1 under different b in scenario 3

    图  7  场景4中不同bcjk1变化曲线

    Figure  7.  Change curves of cj with k1 under different b in scenario 4

    图  8  各场景下c1c1*对比

    Figure  8.  Comparison between c1 and c1* in each scenario

    图  9  各场景下c2c2*对比

    Figure  9.  Comparison between c2 and c2* in each scenario

    图  10  各场景下c3c3*对比

    Figure  10.  Comparison between c3 and c3* in each scenario

    表  1  决策联盟虚拟支付成本

    Table  1.   Virtual payment cost of decision alliances

    决策联盟 车辆2调整 车辆2不调整
    车辆1调整 (x1, x2) (x1, 0)
    车辆1不调整 (0, x2) (∞, ∞)
    下载: 导出CSV

    表  2  四种场景下的参数

    Table  2.   Parameters of 4 scenarios

    场景 主线车辆位置 Si/m v1/(km·h-1) v2/(km·h-1) l1/m l2/m a b
    1 内侧车道 100 60 60 15 15 1 2或3
    2 100 60 40 15 15
    3 外侧车道 100 60 60 15 20
    4 100 60 40 15 20
    下载: 导出CSV
  • [1] FERNÁNDEZ-ISABEL A, FUENTES-FERNÁNDEZ R, MARTÍN DE DIEGO I. Modeling multi-agent systems to simulate sensor-based Smart Roads[J]. Simulation Modelling Practice and Theory, 2020, 99: 1-23.
    [2] SUN Li-jun, ZHAO Hong-duo, TU Hui-zhao, et al. The smart road: practice and concept[J]. Engineering, 2018, 4(4): 436-437. doi: 10.1016/j.eng.2018.07.014
    [3] RAO B S Y, VARAIYA P. Roadside intelligence for flow control in an intelligent vehicle and highway system[J]. Transportation Research Part C: Emerging Technologies, 1994, 2(1): 49-72. doi: 10.1016/0968-090X(94)90019-1
    [4] ELLIOTT D, KEEN W, MIAO Lei. Recent advances in connected and automated vehicles[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(2): 109-131. doi: 10.1016/j.jtte.2018.09.005
    [5] HEDRICK J K. Vehicle control issues in intelligent vehicle highway systems[J]. IFAC Proceedings Volumes, 1995, 28(1): 195-202. doi: 10.1016/S1474-6670(17)45694-1
    [6] FINOGEEV A, FINOGEEV A, FIONOVA L, et al. Intelligent monitoring system for smart road environment[J]. Journal of Industrial Information Integration, 2019, 15: 15-20. doi: 10.1016/j.jii.2019.05.003
    [7] MAHMASSANI H S. 50th anniversary invited article—autonomous vehicles and connected vehicle systems: flow and operations considerations[J]. Transportation Science, 2016, 50(4): 1140-1162. doi: 10.1287/trsc.2016.0712
    [8] NOWAKOWSKI C, O'CONNELL J, SHLADOVER S E, et al. Cooperative adaptive cruise control: driver acceptance of following gap settings less than one second[C]∥Human Factors and Ergonomics Society. 54th Human Factors and Ergonomics Society Annual Meeting. Richmond: Human Factors and Ergonomics Society Inc., 2010: 2033-2037.
    [9] CHEN Dan-jue, AHN S, CHITTURI M, et al. Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221. doi: 10.1016/j.trb.2017.01.017
    [10] XIE Yuan-chang, ZHANG Hui-xing, GARTNER N H, et al. Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2017, 21(2): 136-147. doi: 10.1080/15472450.2016.1248288
    [11] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143-163. doi: 10.1016/j.trc.2016.07.007
    [12] ZHONG Zi-jia, LEE J Y. The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 257-270. doi: 10.1016/j.tra.2019.08.015
    [13] YE Lan-hang, YAMAMOTO T. Modeling connected and autonomous vehicles in heterogeneous traffic flow[J]. Physica A: Statistical Mechanics and its Applications, 2018, 490: 269-277. doi: 10.1016/j.physa.2017.08.015
    [14] WEI Jun-qing, DOLAN J M, LITKOUHI B. Autonomous vehicle social behavior for highway entrance ramp management[C]//IEEE. 2013 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 201-207.
    [15] RIOS-TORRES J, MALIKOPOULOS A A. Automated and cooperative vehicle merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(4): 780-789.
    [16] QIAN Xiang-jun, GREGOIRE J, DE LA FORTELLE A, et al. Decentralized model predictive control for smooth coordination of automated vehicles at intersection[C]∥IEEE. 2015 European Control Conference. New York: IEEE, 2015: 3452-3458.
    [17] WANG Yun-peng, E Wen-juan, TANG Wen-zhong, et al. Automated on-ramp merging control algorithm based on internet-connected vehicles[J]. IET Intelligent Transport Systems, 2013, 7(4): 371-379. doi: 10.1049/iet-its.2011.0228
    [18] LETTER C, ELEFTERIADOU L. Efficient control of fully automated connected vehicles at freeway merge segments[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 190-205. doi: 10.1016/j.trc.2017.04.015
    [19] NIE Jian-qiang, ZHANG Jian, DING Wan-ting. Decentralized cooperative lane-changing decision-making for connected autonomous vehicles[J]. IEEE Access, 2016, 4: 9413-9420. doi: 10.1109/ACCESS.2017.2649567
    [20] WANG Meng, HOOGENDOORN S P, DAAMEN W, et al. Game theoretic approach for predictive lane-changing and car-following control[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 73-92. doi: 10.1016/j.trc.2015.07.009
    [21] ENGLUND C, CHEN Lei, PLOEG J, et al. The grand cooperative driving challenge 2016: boosting the introduction of cooperative automated vehicles[J]. IEEE Wireless Communications, 2016, 23(4): 146-152. doi: 10.1109/MWC.2016.7553038
    [22] WANG Chong, ZHANG Jian, XU Ling-hui, et al. A new solution for freeway congestion: cooperative speed limit control using distributed reinforcement learning[J]. IEEE Access, 2019, 7: 41947-41957. doi: 10.1109/ACCESS.2019.2904619
    [23] LI Ye, LI Zhi-bin, WANG Hao. Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways[J]. Accident Analysis and Prevention, 2017, 104: 137-145. doi: 10.1016/j.aap.2017.04.025
    [24] LI Zhi-bin, LI Ye, LIU Pan, et al. Development of a variable speed limit strategy to reduce secondary collision risks during inclement weathers[J]. Accident Analysis and Prevention, 2014, 72: 134-145. doi: 10.1016/j.aap.2014.06.018
    [25] QUINTAS L G, MARCHI E. Equilibrium special in n-person games[J]. Journal of Optimization Theory and Applications, 1990, 67(1): 193-204. doi: 10.1007/BF00939744
    [26] NASH J F. Non-cooperative games[J]. Annals of Mathematics, 1951: 286-295.
    [27] SHAPLEY L S. A value for n-person games[J]. Contributions to the Theory of Games, 1953, 2(28): 307-317.
    [28] LI Yong-jun, LIN Lin, DAI Qian-zhi, et al. Allocating common costs of multinational companies based on arm's length principle and Nash non-cooperative game[J]. European Journal of Operational Research, 2020, 283(3): 1002-1010.
    [29] MOHAMMAD R, MOKHTAR B, ALI M R, et al. Balancing management of strategic aggregators using non-cooperative game theory[J]. Electric Power Systems Research, 2020, 184: 1-12.
    [30] HOU Qin-zhong, TARKO A P, MENG Xiang-hai, et al. Investigating factors of crash frequency with random effects and random parameters models: new insights from Chinese freeway study[J]. Accident Analysis and Prevention, 2018, 120: 1-12.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1093
  • HTML全文浏览量:  164
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回