留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内燃机活塞-缸套系统减摩抗磨研究进展

吕延军 康建雄 张永芳 罗宏博

吕延军, 康建雄, 张永芳, 罗宏博. 内燃机活塞-缸套系统减摩抗磨研究进展[J]. 交通运输工程学报, 2020, 20(4): 21-34. doi: 10.19818/j.cnki.1671-1637.2020.04.002
引用本文: 吕延军, 康建雄, 张永芳, 罗宏博. 内燃机活塞-缸套系统减摩抗磨研究进展[J]. 交通运输工程学报, 2020, 20(4): 21-34. doi: 10.19818/j.cnki.1671-1637.2020.04.002
LYU Yan-jun, KANG Jian-xiong, ZHANG Yong-fang, LUO Hong-bo. Research progress of anti-friction and anti-wear of piston-cylinder liner system in internal combustion engine[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 21-34. doi: 10.19818/j.cnki.1671-1637.2020.04.002
Citation: LYU Yan-jun, KANG Jian-xiong, ZHANG Yong-fang, LUO Hong-bo. Research progress of anti-friction and anti-wear of piston-cylinder liner system in internal combustion engine[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 21-34. doi: 10.19818/j.cnki.1671-1637.2020.04.002

内燃机活塞-缸套系统减摩抗磨研究进展

doi: 10.19818/j.cnki.1671-1637.2020.04.002
基金项目: 

国家自然科学基金项目 51775428

陕西省重点研发计划项目 2020GY-106

机械制造系统工程国家重点实验室开放课题 sklms2020010

详细信息
    作者简介:

    吕延军(1972-), 男, 陕西韩城人, 西安理工大学教授, 工学博士, 从事摩擦学研究

  • 中图分类号: U664.12

Research progress of anti-friction and anti-wear of piston-cylinder liner system in internal combustion engine

Funds: 

National Natural Science Foundation of China 51775428

Key Research and Development Program of Shaanxi Province 2020GY-106

Open Project of State Key Laboratory for Manufacturing Systems Engineering sklms2020010

More Information
  • 摘要: 总结了内燃机活塞-缸套系统摩擦磨损的研究成果, 从润滑油改良、表面改性、动力学特性方面综述了系统的减摩抗磨研究方法与技术的发展现状, 讨论了润滑模型、润滑添加剂、表面织构、缸套珩磨、表面涂层与动力学特性对系统减摩抗磨的影响, 分析了系统的摩擦磨损机理。研究结果表明: 活塞-缸套系统的润滑特性具有非线性特征, 润滑状态与添加剂对系统减摩抗磨有较大的影响, 系统润滑状态的不确定性导致多种润滑模型并存, 需进一步建立系统综合润滑模型, 同时需深入探讨润滑油添加剂最佳减磨剂量及减磨机理; 表面改性技术(表面织构、珩磨与涂层)可以大大减少系统表面的摩擦磨损, 由于织构位置分布、加工参数、加工工艺、表面形貌与涂层材料等对接触表面的影响, 表面改性技术减摩抗磨的综合发展相对缓慢, 需进一步研究表面改性减磨的机理与参数优化方法; 活塞-缸套系统的工作条件苛刻, 系统各部件的相互作用相互耦合, 深入探究动力学特性与摩擦磨损的演化规律关系相对困难, 仍需全面考量服役状态下动力学特性与摩擦磨损之间的关系; 未来内燃机整机性能的提高将迫使活塞-缸套系统需具备更高的减摩抗磨性能, 为实现系统经济性与节能减排的目标, 尚需进一步开展系统高效减摩技术。

     

  • 图  1  内燃机能量损失分布

    Figure  1.  Energy loss distribution of internal combustion engine

    图  2  摩擦损失分布

    Figure  2.  Friction loss distribution

    图  3  活塞失效

    Figure  3.  Piston failure

    图  4  缸套失效

    Figure  4.  Cylinder liner failure

    图  5  减摩抗磨技术路线

    Figure  5.  Technical route of anti-friction and anti-wear

    图  6  斯特里贝克润滑状态区分曲线[4]

    Figure  6.  Distinction curve of Stribeck lubrication status

    图  7  油液添加剂抗磨性能[50]

    Figure  7.  Anti-wear performances of oil additives

    图  8  缸套表面织构

    Figure  8.  Surface texturing of cylinder liner

    图  9  珩磨缸套

    Figure  9.  Honed cylinder liner

    图  10  涂层活塞环

    Figure  10.  Coated piston ring

    图  11  活塞-缸套系统受力模型

    Figure  11.  Force model of piston-liner system

    表  1  纳米颗粒添加剂的应用

    Table  1.   Application of nanoparticle additives

    纳米颗粒 基油 颗粒尺寸/nm 体积浓度/%
    碳包覆铜 机油 5~50 0.01~0.50
    石墨 机油 5~50 0.01~0.50
    金刚石 机油 5~50 0.01~0.50
    三氧化二铝 机油 5~78 0.05~1.00
    二氧化硅 机油 5~78 0.05~1.00
    下载: 导出CSV

    表  2  活塞涂层材料

    Table  2.   Piston coating materials

    活塞类型 涂层材料
    柴油机活塞 石墨
    汽油机活塞 碳纤维
    摩托车活塞 石墨、二硫化钼
    压缩机活塞 聚四氟乙烯
    下载: 导出CSV

    表  3  涂层技术与材料

    Table  3.   Technologies and materials of coatings

    涂层技术 涂层材料
    电镀 Cr-Al2O3、Cr-Si3N4、金刚石、铬-氧碳化硅、铬-金刚石
    电刷镀 Al2O3/Ni纳米颗粒、Ni-Co-SiC、Ni-W-SiC
    热喷涂技术 陶瓷、金属(钼、镍、铜)、金属-陶瓷复合
    气相沉积与注入 CrN、Al/AlCrN、AlSn20、DLC
    有机涂层 MoS2、聚酰亚胺树脂
    下载: 导出CSV
  • [1] TOMANIK E, EL MANSORI M, SOUZA R, et al. Effect of waviness and roughness on cylinder liner friction[J]. Tribology International, 2018, 120: 547-555. doi: 10.1016/j.triboint.2018.01.012
    [2] BIBERGER J, FÜßER H J. Development of a test method for a realistic, single parameter-dependent analysis of piston ring versus cylinder liner contacts with a rotational tribometer[J]. Tribology International, 2017, 113: 111-124. doi: 10.1016/j.triboint.2016.10.043
    [3] RICHARDSON D E. Review of power cylinder friction for diesel engines[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122: 506-519. doi: 10.1115/1.1290592
    [4] DELPRETE C, RAZAVYKIA A. Piston ring-liner lubrication and tribological performance evaluation: a review[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232(2): 193-209. doi: 10.1177/1350650117706269
    [5] MAHDISOOZANI H, MOHSENIZADEH M, BAHIRAEI M, et al. Performance enhancement of internal combustion engines through vibration control: state of the art and challenges[J]. Applied Sciences, 2019, 9(3): 1-30.
    [6] ZAVOS A, NIKOLAKOPOULOS P G. Waviness and straightness of cylinder and textured piston ring tribo pair[J]. International Journal of Structural Integrity, 2015, 6(2): 300-324. doi: 10.1108/IJSI-07-2013-0014
    [7] BHASKAR K V, SUNDARRAJAN S, RAO B S. Effect of reinforcement and wear parameters on dry sliding wear of aluminum composites: a review[J]. Materials Today: Proceedings, 2018, 5(2): 5891-5900. doi: 10.1016/j.matpr.2017.12.188
    [8] MALLESWARARAO N D, NIRANJAN KUMAR I N. Investigation of tribological behaviour of DLC coating on hypereutectic Al-Si alloys, a review[J]. Materials Today: Proceedings, 2019, 18(2): 2581-2589.
    [9] HAMID Y, USMAN A, AFAQ S K, et al. Numeric based low viscosity adiabatic thermo-tribological performance analysis of piston-skirt liner system lubrication at high engine speed[J]. Tribology International, 2018, 126: 166-176. doi: 10.1016/j.triboint.2018.05.022
    [10] NING Li-pu, MENG Xiang-hui, XIE You-bai. Effects of lubricant shear thinning on the mixed lubrication of piston skirt-liner system[J]. Journal of Mechanical Engineering Science, 2012, 227(7): 1585-1598.
    [11] GRABON W, PAWLUS P, WOS S, et al. Evolutions of cylinder liner surface texture and tribological performance of piston ring-liner assembly[J]. Tribology International, 2018, 127: 545-556. doi: 10.1016/j.triboint.2018.07.011
    [12] JIA Bo-ru, MIKALSEN R, SMALLBONE A, et al. A study and comparison of frictional losses in free-piston engine and crankshaft engines[J]. Applied Thermal Engineering, 2018, 140: 217-224. doi: 10.1016/j.applthermaleng.2018.05.018
    [13] BUJ-CORRAL I, ÁLVAREZ-FLÓREZ J, DOMÍNGUEZ-FERNÁNDEZ A. Acoustic emission analysis for the detection of appropriate cutting operations in honing processes[J]. Mechanical Systems and Signal Processing, 2018, 99: 873-885. doi: 10.1016/j.ymssp.2017.06.039
    [14] PATIR N, CHENG H S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Tribology, 1978, 100: 12-17.
    [15] PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Tribology, 1979, 101: 220-229.
    [16] HU Y, MENG X H, XIE Y B. A new efficient flow continuity lubrication model for the piston ring-pack with consideration of oil storage of the cross-hatched texture[J]. Tribology International, 2018, 119: 443-463. doi: 10.1016/j.triboint.2017.11.027
    [17] SUN Jun, HUANG Xiang, LIU Guang-sheng, et al. Research on the status of lubricating oil transport in piston skirt-cylinder liner of engine[J]. Journal of Tribology, 2018, 140: 041702-1-10. doi: 10.1115/1.4038960
    [18] GUO Chao, SONG Qing-hua, LIU Zhan-qiang, et al. Hydrodynamic lubrication analysis of two-dimensional section between piston skirt and textured cylinder wall considering slip boundary conditions[J]. Tribology International, 2019, 140: 105879-1-13. doi: 10.1016/j.triboint.2019.105879
    [19] CASTLEMAN R A. A hydrodynamical theory of piston ring lubrication[J]. Physics, 1936, 7: 364-367. doi: 10.1063/1.1745404
    [20] TING L L, MAYER J E. Piston ring lubrication and cylinder bore wear analysis, Part Ⅰ—theory[J]. Journal of Lubrication Technology, 1974, 96(3): 305-313. doi: 10.1115/1.3451948
    [21] TING L L, MAYER J E. Piston ring lubrication and cylinder bore wear analyses, Part Ⅱ—theory verification[J]. Journal of Lubrication Technology, 1974, 96(2): 258-266. doi: 10.1115/1.3451941
    [22] WAKURI Y, HAMATAKE T, SOEJIMA M, et al. Piston ring friction in internal combustion engines[J]. Tribology International, 1992, 25(5): 299-308. doi: 10.1016/0301-679X(92)90027-K
    [23] VENKATESH S. Analysis of piston ring lubrication[J]. Applied Scientific Research, 1975, 31: 309-319. doi: 10.1007/BF00389221
    [24] MA M T, SMITH E H, SHERRINGTON I. A three-dimensional analysis of piston ring lubrication. Part 1: modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1995, 209(1): 1-14. doi: 10.1243/PIME_PROC_1995_209_401_02
    [25] MA M, SMITH E H, SHERRINGTON I. A three-dimensional analysis of piston ring lubrication. Part 2: sensitivity analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1995, 209(1): 15-27. doi: 10.1243/PIME_PROC_1995_209_402_02
    [26] HARIGAYA Y, SUZUKI M, TODA F, et al. Analysis of oil film thickness and heat transfer on a piston ring of a diesel engine: effect of lubricant viscosity[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 685-693. doi: 10.1115/1.1924403
    [27] MA M T, SHERRINGTON I, SMITH E H. Implementation of an algorithm to model the starved lubrication of a piston ring in distorted bores: prediction of oil flow and onset of gas blow-by[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1996, 210(1): 29-44. doi: 10.1243/PIME_PROC_1996_210_475_02
    [28] PELOSI M, IVANTYSYNOVA M. Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines[J]. Journal of Tribology, 2012, 134(4): 041101-1-15. doi: 10.1115/1.4006980
    [29] QASIM S A, AFZAAL MALIK M, ALI KHAN M, et al. Low viscosity shear heating in piston skirts EHL in the low initial engine start up speeds[J]. Tribology International, 2011, 44(10): 1134-1143. doi: 10.1016/j.triboint.2011.04.018
    [30] ADNAN QASIM S, AFZAAL MALIK M, ALI KHAN M, et al. Modeling shear heating in piston skirts EHL considering different viscosity oils in initial engine start up[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(3): 032802-1-8. doi: 10.1115/1.4004717
    [31] MENG F M, ZHANG Y Y, HU Y Z, et al. Thermo-elasto-hydrodynamic lubrication analysis of piston skirt considering oil film inertia effect[J]. Tribology International, 2007, 40(7): 1089-1099. doi: 10.1016/j.triboint.2006.10.006
    [32] 余志壮, 宋正华, 董光能, 等. 内燃机气缸套失圆对活塞动压润滑和摩擦特性的影响[J]. 摩擦学学报, 2005, 25(3): 243-247. doi: 10.3321/j.issn:1004-0595.2005.03.012

    YU Zhi-zhuang, SONG Zheng-hua, DONG Guang-neng, et al. Influence of cylinder liner out-of-roundness on dynamic lubrication and friction characteristics of piston[J]. Tribology, 2005, 25(3): 243-247. (in Chinese). doi: 10.3321/j.issn:1004-0595.2005.03.012
    [33] 王虎, 孙军, 赵小勇, 等. 非圆缸套下的活塞环-缸套油膜分布[J]. 农业工程学报, 2011, 27(9): 48-53. doi: 10.3969/j.issn.1002-6819.2011.09.010

    WANG Hu, SUN Jun, ZHAO Xiao-yong, et al. Oil film thickness distribution between piston ring and cylinder considering non-circular of cylinder bore[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 48-53. (in Chinese). doi: 10.3969/j.issn.1002-6819.2011.09.010
    [34] ZHU D, CHENG H S, ARAI T, et al. A numerical analysis for piston skirts in mixed lubrication—Part Ⅰ: basic modeling[J]. Journal of Tribology, 1992, 114(3): 553-562. doi: 10.1115/1.2920917
    [35] ZHU D, HU Y Z, CHENG H S, et al. A numerical analysis for piston skirts in mixed lubrication—part Ⅱ: deformation considerations[J]. Journal of Tribology, 1993, 115(1): 125-133. doi: 10.1115/1.2920965
    [36] GULWADI S D. Mixed lubrication and oil transport model for piston rings using a mass-conserving algorithm[C]//ASME. Proceedings of the 1995 17th Annual Fall Technical Conference of the ASME Internal Combustion Engine Division. New York: ASME, 1995: 129-139.
    [37] MA M T, SHERRINGTON I, SMITH E H. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model. Part 1: circumferentially uniform film[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1997, 211(1): 1-15. doi: 10.1243/1350650971542273
    [38] MA M T, SMITH E H, SHERRINGTON I. Analysis of lubrication and friction for a complete piston-ring pack with an improved oil availability model. Part 2: circumferentially variable film[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1997, 211(1): 17-27. doi: 10.1243/1350650971542282
    [39] HAMATAKE T, WAKURI Y, SOEJIMA M, et al. Effects of lubricant viscosity on the mixed lubrication of a piston ring pack in an internal combustion engine[J]. Lubrication Science, 2003, 15(2): 101-117. doi: 10.1002/ls.3010150202
    [40] BOLANDER N W, STEENWYK B D, KUMAR A, et al. Film thickness and friction measurement of piston ring cylinder liner contact with corresponding modeling including mixed lubrication[C]∥ASME. Fall Technical Conference of the ASME International Combustion Engine Division. New York: ASME, 2004: 811-821.
    [41] ZHANG Ya-zhao, KOVALEV A, HAYASHI N, et al. Numerical prediction of surface wear and roughness parameters during running-in for line contacts under mixed lubrication[J]. Journal of Tribology, 2018, 140(6): 061501-1-13. doi: 10.1115/1.4039867
    [42] LIU Cheng, LYU Yan-jun, WANG Peng, et al. Numerical analysis of the effects of compression ring wear and cylinder liner deformation on the thermal mixed lubrication performance of ring-liner system[J]. Mechanics and Industry, 2018, 19(2): 1-15.
    [43] LIU Cheng, LYU Yan-jun, ZHANG Yong-fang, et al. Numerical study on the tribological performance of ring/liner system with consideration of oil transport[J]. Journal of Tribology, 2019, 141(1): 011701-1-16. doi: 10.1115/1.4040510
    [44] MENG Xiang-hui, HU Yang, XIE You-bai. Modeling of the cylinder liner "zero-wear" process by two-scale homogenization technique[J]. Wear, 2016, 368/369: 408-422. doi: 10.1016/j.wear.2016.10.018
    [45] MENG Xiang-hui, GU Chun-xing, ZHANG Di. Modeling the wear process of the ring/liner conjunction considering the evaluation of asperity height distribution[J]. Tribology International, 2017, 112: 20-32. doi: 10.1016/j.triboint.2017.03.025
    [46] HU Yang, MENG Xiang-hui, XIE You-bai. A computationally efficient mass-conservation-based, two-scale approach to modeling cylinder liner topography changes during running-in[J]. Wear, 2017, 386/387: 139-156. doi: 10.1016/j.wear.2017.06.014
    [47] ZHANG Zhi-nan, LIU Jun, XIE You-bai. Design approach for optimization of a piston ring profile considering mixed lubrication[J]. Friction, 2016, 4(4): 335-346. doi: 10.1007/s40544-016-0130-x
    [48] YIN Bi-feng, GAO Da-shu, SUN Shao, et al. Research on the profile design of surface texture in piston ring of internal combustion engine[J]. Journal of Tribology, 2018, 140(6): 061701-1-9. doi: 10.1115/1.4039957
    [49] KALELI H, EYRE T, GHASRIPOOR F. Effect of lubricant additives on the transition pressure from mild to severe wear for grey cast iron sliding pairs[J]. Wear, 1997, 208(1/2): 1-10.
    [50] NICHOLLS M A, DO T, NORTON P R, et al. Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates[J]. Tribology International, 2005, 38(1): 15-39. doi: 10.1016/j.triboint.2004.05.009
    [51] BURKINSHAW M, NEVILLE A, MORINA A, et al. The lubrication of both aluminium-silicon and model silicon surfaces with calcium sulphonate and an organic antiwear additive[J]. Tribology International, 2013, 67: 211-216. doi: 10.1016/j.triboint.2013.07.006
    [52] QU Jun, LUO Hui-min, CHI Miao-fang, et al. Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive[J]. Tribology International, 2014, 71: 88-97. doi: 10.1016/j.triboint.2013.11.010
    [53] OGUT H, OGUZ H, AYDIN F, et al. The investigation of the use of plant-based wild mustard and boron doped oil as engine lubrication oil in diesel engines[J]. Renewable Energy, 2019, 136: 79-83. doi: 10.1016/j.renene.2018.12.117
    [54] WHITE D, PODOLAK K, KRAUS G A, et al. Tribological analysis of a novel lubricant additive: pyrone esters[J]. Wear, 2020, 442/443: 203115-1-7. doi: 10.1016/j.wear.2019.203115
    [55] AWANG N W, RAMASAMY D, KADIRGAMA K, et al. Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil[J]. International Journal of Heat and Mass Transfer, 2019, 131: 1196-1204. doi: 10.1016/j.ijheatmasstransfer.2018.11.128
    [56] YUNUSOV F A, BREKI A D, VASILYEVA E S, et al. The influence of nano additives on tribological properties of lubricant oil[J]. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2020.01.447.
    [57] CHAROO M S, HANIEF M. Improving the tribological characteristics of a lubricating oil by nano sized additives[J]. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2020.01.219.
    [58] HAMILTON D B, WALOWIT J A, ALLEN C M. A theory of lubrication by micro-irregularities[J]. Journal of Basic Engineering, 1966, 88(1): 177-185. doi: 10.1115/1.3645799
    [59] RYK G, ETSION I. Testing piston rings with partial laser surface texturing for friction reduction[J]. Wear, 2006, 261(7/8): 792-796.
    [60] ETSION I, SHER E. Improving fuel efficiency with laser surface textured piston rings[J]. Tribology International, 2009, 42(4): 542-547. doi: 10.1016/j.triboint.2008.02.015
    [61] KLIGERMAN Y, ETSION I, SHINKARENKO A. Improving tribological performance of piston rings by partial surface texturing[J]. Journal of Tribology, 2005, 127(3): 632-638. doi: 10.1115/1.1866171
    [62] JOHANSSON S, NILSSON P H, OHLSSON R, et al. New cylinder liner surfaces for low oil consumption[J]. Tribology International, 2008, 41(9/10): 854-859.
    [63] 刘一静, 袁明超, 王晓雷. 表面织构对发动机活塞/缸套摩擦性能的影响[J]. 中国矿业大学学报, 2009, 38(6): 866-871. doi: 10.3321/j.issn:1000-1964.2009.06.021

    LIU Yi-jing, YUAN Ming-chao, WANG Xiao-lei. Influence of the surface texture on the tribological performances of piston skirt/line[J]. Journal of China University of Mining and Technology, 2009, 38(6): 866-871. (in Chinese). doi: 10.3321/j.issn:1000-1964.2009.06.021
    [64] ZHOU Yuan-kai, ZHU Hua, TANG Wei, et al. Development of the theoretical model for the optimal design of surface texturing on cylinder liner[J]. Tribology International, 2012, 52: 1-6. doi: 10.1016/j.triboint.2011.12.017
    [65] MEZGHANI S, DEMIRCI I, ZAHOUANI H, et al. The effect of groove texture patterns on piston-ring pack friction[J]. Precision Engineering, 2012, 36(2): 210-217. doi: 10.1016/j.precisioneng.2011.09.008
    [66] GRABON W, KOSZELA W, PAWLUS P, et al. Improving tribological behaviour of piston ring-cylinder liner frictional pair by liner surface texturing[J]. Tribology International, 2013, 61: 102-108. doi: 10.1016/j.triboint.2012.11.027
    [67] GRABON W, PAWLUS P, WOS S. Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests[J]. Tribology International, 2017, 113: 137-148. doi: 10.1016/j.triboint.2016.11.025
    [68] GUO Zhi-wei, YUAN Cheng-qing, LIU Peng, et al. Study on influence of cylinder liner surface texture on lubrication performance for cylinder liner-piston ring components[J]. Tribology Letters, 2013, 51(1): 9-23. doi: 10.1007/s11249-013-0141-y
    [69] 刘成, 吕延军, 李莎, 等. 表面织构对曲轴轴承润滑性能的影响[J]. 交通运输工程学报, 2017, 17(3): 65-74. doi: 10.3969/j.issn.1671-1637.2017.03.007

    LIU Cheng, LYU Yan-jun, LI Sha, et al. Effect of surface texture on tribological performance of crankshaft bearing[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 65-74. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.007
    [70] 张永芳, 刘成, 李莎, 等. 基于混合遗传算法的径向滑动轴承表面织构优化[J]. 交通运输工程学报, 2017, 17(3): 90-98. http://transport.chd.edu.cn/article/id/201703010

    ZHANG Yong-fang, LIU Cheng, LI Sha, et al. Surface texture optimization of journal bearing based on hybrid genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 90-98. (in Chinese). http://transport.chd.edu.cn/article/id/201703010
    [71] USMAN A, PARK C W. Optimizing the tribological performance of textured piston ring-liner contact for reduced frictional losses in SI engine: warm operating conditions[J]. Tribology International, 2016, 99: 224-236. doi: 10.1016/j.triboint.2016.03.030
    [72] LIU Cheng, LYU Yan-jun, ZHANG Yong-fang, et al. Numerical study on the lubrication performance of compression ring-cylinder liner system with spherical dimples[J]. Plos One, 2017, 12(7): 1-24.
    [73] VENKATESWARA BABU P, SYED I, BEERA S B. Influence of positive texturing on friction and wear properties of piston ring-cylinder liner tribo pair under lubricated conditions[J]. Industrial Lubrication and Tribology, 2019, 71(4): 515-524. doi: 10.1108/ILT-07-2017-0203
    [74] ASHIHARA K, HASHIMOTO H. Friction characteristics of microgrooved bearings under mixed lubrication[J]. Japanese Society of Tribologists, 2008, 3: 304-309.
    [75] ETSION I. Improving tribological performance of mechanical components by laser surface texturing[J]. Tribology Letters, 2004, 17(4): 733-737. doi: 10.1007/s11249-004-8081-1
    [76] PAWLUS P, CIESLAK T, MATHIA T. The study of cylinder liner plateau honing process[J]. Journal of Materials Processing Technology, 2009, 209(20): 6078-6086. doi: 10.1016/j.jmatprotec.2009.04.025
    [77] PAWLUS P, REIZER R, WIECZOROWSKI M. The analysis of directionality of honed cylinder liners surfaces[J]. Scanning, 2014, 36(1): 95-104. doi: 10.1002/sca.21101
    [78] MICHALSKI J, WOS P. The effect of cylinder liner surface topography on abrasive wear of piston-cylinder assembly in combustion engine[J]. Wear, 2011, 271(3/4): 582-589.
    [79] MEZGHANI S, DEMIRCI I, YOUSFI M, et al. Running-in wear modeling of honed surface for combustion engine cylinder liners[J]. Wear, 2013, 302(1/2): 1360-1369.
    [80] VRAC D S, SIDJANIN L P, KOVAC P P, et al. The influence of honing process parameters on surface quality, productivity, cutting angle and coefficients of friction[J]. Industrial Lubrication and Tribology, 2012, 64(2): 77-83. doi: 10.1108/00368791211208679
    [81] ZAHOUANI H, EL MANSORI M. Multi-scale and multi-fractal analysis of abrasive wear signature of honing process[J]. Wear, 2017, 376/377: 178-187. doi: 10.1016/j.wear.2017.01.087
    [82] KADYROV R R, CHARIKOV P N, PRYANICHNIKOVA V V. Honing process optimization algorithms[J]. IOP Conference Series: Materials Science and Engineering, 2017, 327(2): 1-12.
    [83] SIVATTE-ADROER M, LLANAS-PARRA X, BUJ-CORRAL I, et al. Indirect model for roughness in rough honing processes based on artificial neural networks[J]. Precision Engineering, 2016, 43: 503-513.
    [84] BUJ-CORRAL I, SIVATTE-ADROER M, LLANAS-PARRA X. Adaptive indirect neural network model for roughness in honing processes[J]. Tribology International, 2020, DOI: 10.1016/j.triboint.2019.105891.
    [85] PEREIRA L C, ARENCIBIA R V, SCHRAMM C R, et al. Assessment of the effect of cutting parameters on roughness in flexible honed cylinders[J]. International Journal of Advanced Manufacturing Technology, 2018, 95: 181-196. doi: 10.1007/s00170-017-1200-6
    [86] KIM E S, KIM S M, LEE Y Z. The effect of plateau honing on the friction and wear of cylinder liners[J]. Wear, 2018, 400/401: 207-212. doi: 10.1016/j.wear.2017.09.028
    [87] SADIZADE B, ARAEE A, BAVIL OLIAEI S N, et al. Plateau honing of a diesel engine cylinder with special topography and reasonable machining time[J]. Tribology International, 2020, DOI: 10.1016/j.triboint.2020.106204.
    [88] 张瑞军, 李生华, 金元生, 等. 二烷基二硫代甲酸钼和二烷基二硫代磷酸钼对缸套/活塞环摩擦学行为的影响[J]. 摩擦学学报, 2001, 21(3): 191-195. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX200103006.htm

    ZHANG Rui-jun, LI Sheng-hua, JIN Yuan-sheng, et al. Effect of MoDTC and MoDTP on tribological behavior of cylinder liner/piston ring[J]. Tribology, 2001, 21(3): 191-195. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX200103006.htm
    [89] CHO D H, LEE Y Z. Evaluation of ring surfaces with several coatings for friction, wear and scuffing life[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(4): 992-996. doi: 10.1016/S1003-6326(08)60393-3
    [90] JOHANSSON S, FRENNFELT C, KILLINGER A, et al. Frictional evaluation of thermally sprayed coatings applied on the cylinder liner of a heavy duty diesel engine: pilot tribometer analysis and full scale engine test[J]. Wear, 2011, 273(1): 82-92. doi: 10.1016/j.wear.2011.06.021
    [91] PATEL P D, PATEL R N, PATEL H C, et al. Experimental investigation on life cycle analysis of the Moly (Mo) coated piston ring in C. I. Engine[C]//Springer. Proceedings of International Conference on Advances in Tribology and Engineering Systems, Berlin: Springer, 2013, 321-329.
    [92] LIN Jian-liang, WEI Rong-hua, BITSIS D C, et al. Development and evaluation of low friction TiSiCN nanocomposite coatings for piston ring applications[J]. Surface and Coatings Technology, 2016, 298: 121-131. doi: 10.1016/j.surfcoat.2016.04.061
    [93] WAN Shan-hong, LI Dong-shan, ZHANG Guang-an, et al. Comparison of the scuffing behaviour and wear resistance of candidate engineered coatings for automotive piston rings[J]. Tribology International, 2017, 106: 10-22. doi: 10.1016/j.triboint.2016.10.026
    [94] BIBERGER J, FUßER H J, KLAUS M, et al. Near-surface and depth-dependent residual stress evolution in a piston ring hard chrome coating induced by sliding wear and friction[J]. Wear, 2017, 376/377: 1502-1521. doi: 10.1016/j.wear.2017.01.056
    [95] LI Cheng-di, WANG Wei-wei, JIN Mei, et al. Friction property of MoS2 coatings deposited on the chemical-etched surface of Al-Si alloy cylinder liner[J]. Journal of Tribology, 2018, 140(4): 041302-1-6. doi: 10.1115/1.4039227
    [96] KUMAR V, SINHA S K, AGARWAL A K. Wear evaluation of engine piston rings coated with dual layer hard and soft coatings[J]. Journal of Tribology, 2019, 141(3): 031301-1-10. doi: 10.1115/1.4041762
    [97] XU Yu-fu, ZHENG Quan, GENG Jian, et al. Synergistic effects of electroless piston ring coatings and nano-additives in oil on the friction and wear of a piston ring/cylinder liner pair[J]. Wear, 2019, 422/423: 201-211. doi: 10.1016/j.wear.2019.01.064
    [98] MA Si-qi, CHEN Wen-bin, LI Cheng-di, et al. Wear properties and scuffing resistance of the Cr-Al2O3 coated piston rings: the effect of convexity position on barrel surface[J]. Journal of Tribology, 2019, 141(2): 021301-1-25. doi: 10.1115/1.4041215
    [99] TYAGI A, PANDEY S M, MURTAZA Q, et al. Tribological behavior of carbon coating for piston ring applications using Taguchi approach[J]. Materials Today: Proceedings, 2020, 25: 759-764. doi: 10.1016/j.matpr.2019.09.004
    [100] PIAO Y, GULWADI S D. Numerical investigation of the effects of axial cylinder bore profiles on piston ring radial dynamics[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(4): 1081-1089. doi: 10.1115/1.1610016
    [101] MENG Xiang-hui, XIE You-bai. A new numerical analysis for piston skirt-liner system lubrication considering the effects of connecting rod inertia[J]. Tribology International, 2012, 47: 235-243. doi: 10.1016/j.triboint.2011.12.013
    [102] TAN Y C, RIPIN Z M. Analysis of piston secondary motion[J]. Journal of Sound and Vibration, 2013, 332(20): 5162-5176. doi: 10.1016/j.jsv.2013.04.042
    [103] BA Lin, HE Zhen-peng, GUO Ling-yan, et al. Piston ring-cylinder liner tribology investigation in mixed lubrication regime: part I—correlation with bench experiment[J]. Industrial Lubrication and Tribology, 2015, 67(6): 520-530. doi: 10.1108/ILT-07-2013-0078
    [104] ALI M K A, HOU Xian-jun, TURKSON R F, et al. An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230(4): 329-349. doi: 10.1177/1464419315605922
    [105] MAZOUZI R, KELLACI A, KARAS A. Effects of piston design parameters on skirt-liner dynamic behavior[J]. Industrial Lubrication and Tribology, 2016, 68(2): 250-258. doi: 10.1108/ILT-07-2015-0103
    [106] LYUBARSKYY P, BARTEL D. 2D CFD-model of the piston assembly in a diesel engine for the analysis of piston ring dynamics, mass transport and friction[J]. Tribology International, 2016, 104: 352-368.
    [107] MAHMOUD K G, KNAUS O, PARIKYAN T, et al. Three dimensional ring dynamics modeling approach for analyzing lubrication, friction and wear of piston ring-pack[C]//ASME. 2017 Internal Combustion Engine Division Fall Technical Conference. New York: ASME, 2017: 1-9.
    [108] MAHMOUD K G, KNAUS O, PARIKYAN T, et al. An integrated model for the performance of piston ring pack in internal combustion engines[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2017, 22(3): 371-384.
    [109] LYU Yan-jun, LI Sha, WANG Peng, et al. The analysis of secondary motion and lubrication performance of piston considering the piston skirt profile[J]. Shock and Vibration, 2018, 2018: 3240469-1-27.
    [110] XU Xiao-hua. Influence of piston-bore clearance on second motion characteristics of piston and skirt wear[J]. Mechanics and Industry, 2019, 20(2): 1-7.
    [111] LI Rui, MENG Xiang-hui, LI Wen-da, et al. A new comprehensive tribo-dynamic analysis for lubricated translational joints in low-speed two-stroke marine engines[J]. International Journal of Engine Research, 2020, 21(8): 1336-1361.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  210
  • PDF下载量:  849
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回