留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向eVTOL航空器的城市空中运输交通管理综述

李诚龙 屈文秋 李彦冬 黄龙杨 卫鹏

李诚龙, 屈文秋, 李彦冬, 黄龙杨, 卫鹏. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003
引用本文: 李诚龙, 屈文秋, 李彦冬, 黄龙杨, 卫鹏. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003
LI Cheng-long, QU Wen-qiu, LI Yan-dong, HUANG Long-yang, WEI Peng. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003
Citation: LI Cheng-long, QU Wen-qiu, LI Yan-dong, HUANG Long-yang, WEI Peng. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003

面向eVTOL航空器的城市空中运输交通管理综述

doi: 10.19818/j.cnki.1671-1637.2020.04.003
基金项目: 

国家自然科学基金项目 U1733105

民航安全能力建设项目 0241928

中央高校基本科研业务费专业资金项目 CJ2018-02

中央高校教育教学改革专项项目 E2020083

四川省大学生创新创业训练计划项目 S201910624031

详细信息
    作者简介:

    李诚龙(1990-), 男, 四川绵阳人, 中国民用航空飞行学院讲师, 从事无人机空中交通管理、城市空中交通与自主驾驶研究

  • 中图分类号: V355

Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft

Funds: 

National Natural Science Foundation of China U1733105

Safety Capacity Buiding Program of Civil Aviation Administration of China 0241928

Fundamental Research Funds for the Central Universities CJ2018-02

Central University Education and Teaching Reform Project E2020083

Sichuan Province College Students' Innovative Entrepreneurial Training Plan Program S201910624031

More Information
  • 摘要: 回顾了城市空中运输(UAM)的起源与发展演变, 定义了UAM交通管理基本概念, 分析了催生UAM的社会和技术因素, 提出了面向近未来时期国家层面UAM交通管理的基础架构, 将基于电推进垂直起降航空器的UAM交通管理问题划分为3个方面进行讨论(空域规划、地面基础设施、交通规则与运行控制), 并对近年来UAM交通管理相关文献所提出的代表性观点进行了梳理, 总结了UAM近未来时期所需解决的关键问题, 展望了UAM交通管理未来的发展趋势。研究结果表明: 空域规划方面, UAM需要对现有低空非管制空域进行更精细化的规划管理, 结构化的空域划设方式应该在UAM交通管理初期被应用, 高度层空域结构能较好地平衡运行安全和空域容量之间的矛盾; 地面基础设施方面, 需通过城市OD数据预测UAM的交通需求来进行地面垂直起降站点选址, 选址管理工作将直接影响空中航线网络结构和所需的地面通信导航监视台站的布设; 交通规则与运行控制方面, UAM将直接面对更为复杂的有人机、无人机融合运行场景, UAM交通规则需要革新并对现有的运输航空交通规则保持兼容, 高带宽的通信技术会促使UAM运行控制向空地协同决策和自动驾驶方向发生转变, 未来交通管理中如何处理人与系统的关系至关重要。总的来说, UAM交通管理将可能会和现有无人机交通管理体系产生交集并逐渐融合, 面对这一新型运输方式, 国家将更可能采用集中管理、试点运行、有序放开的交通管理发展路线。

     

  • 图  1  基于eVTOL载运具的UAM

    Figure  1.  UAM with eVTOL aircraft

    图  2  UAM成熟度模型

    Figure  2.  UAM maturity levels model

    图  3  UAM交通管理基本框架

    Figure  3.  Basic framework of UAM traffic management

    图  4  空域分级

    Figure  4.  Classification of airspace

    图  5  成都市楼宇高度分布

    Figure  5.  Building height distributions in Chengdu City

    图  6  高度层-空域模型[44]

    Figure  6.  Layers-airspace model

    图  7  UAM空域容量增长路线[34]

    Figure  7.  UAM airspace capacity growth road

    图  8  垂直起降机场场面运行管理

    Figure  8.  Surface operation management of vertiport

    图  9  垂直起降机场容量包线模型

    Figure  9.  Vertiport capacity envelope model

    图  10  eVTOL航空器进场运行概念

    Figure  10.  Operation concept of eVTOL arrivals

    图  11  UAM典型任务的飞行剖面

    Figure  11.  Flight profile of UAM typical mission

    图  12  eVTOL航空器进近下滑剖面优化

    Figure  12.  Optimization of eVTOL approach flight profile

    图  13  传统空中交通管理与城市空中运输交通管理问题框架对比

    Figure  13.  Framework comparison between conventional ATM and UAM traffic management

    表  1  城市低空空域水平航路结构设置

    Table  1.   Horizontal route planning for low-altitude urban airspace

    设置方式 方式1 方式2 方式3
    航路规划
    适用场景 UAM试运行阶段城市中有高频次交通需要的两节点之间进行运输, 如城市候机厅到机场、市区到卫星城的快速通勤 中等运行规模, 高安全要求的应用场景, 如已经进入试点运行阶段的空中出租车, 微小型eVTOL的物流配送 已达到成熟运输阶段的UAM运行, 按需生成路径起始节点与目的节点之间的路径并对所需空间栅格进行结构化占用, 适合个人eVTOL推广普及阶段
    优势 路径固定, 容易设计运行规则, 从路径结构上容易实现系统整体安全性 可配合中心式运输管理系统提高载运具运行速度和效率, 减小冲突次数, 减少飞过人员活动区域上空的概率 对空域使用更为灵活, 提高了空域利用率, 可以实现门到门式的空中路径规划
    弊端 不能完全满足点到点运输需要, 航线需占用多个高度层, 对空域利用不够 空域容量有所提高, 但仍处于相对较低水平, 因为空中飞行的安全间隔远比地面道路上车辆间隔更大, 基于该航路飞行的路径通常都不是最短路径 冲突概率随空域密度增大成指数式增长, 对空中交通避撞技术提出了巨大挑战
    下载: 导出CSV

    表  2  运输航空与UAM所需通信导航监视设备对比

    Table  2.   Comparison of CNS infrastructures required by civil air transportation and UAM

    运输方式 民航运输航空 城市空中运输
    通信服务 地面甚高频发射机提供VHF陆空通话、ACARS甚高频地空数据通信链路 地面基站提供5G通信网络(数字信号)、机载Ad-Hoc网络
    导航服务 VOR/DME/NDB导航台站提供无线电导航, ILS提供降落引导, GNSS/IMU提供组合导航 GNSS/IMU组合导航、城域空间高分辨率3D高程地图服务, 基于通信基站的定位和路径规划服务、在线视觉识别辅助定位
    监视服务 一次雷达、二次雷达监视、ADS-B 基于地面5G通信链路的中心交换合作相关监视、基于机载Ad-Hoc网络的空-空监视
    管制服务 管制员指挥的雷达管制、程序管制(航路、进近、机场等区域) 自主飞行/接受地面控制中心统一指令调度; 人工负责监视和应急处置
    飞行情报 提供ATS自动情报通播服务, 通波信息包括机场本场和航路气象条件 全空域流量信息, 垂直起降机场机位状态, 城域空间精细化气象信息, 航路上的尾流信息
    告警服务 当航空器处紧急状况时, 由管制单位对空域进行告警服务、基于二次模式应答机代码的告警 通过5G网络的全空域告警, 当自动运行的航空器出现故障时机载设备主动广播
    下载: 导出CSV

    表  3  现有空中交通规则应用于UAM的比较

    Table  3.   Comparison of existing air traffic rules applied to UAM

    规则类型 VFR IFR UTM
    优点 在现代ATC管制体系中拥有最大程度自由度 能够支持更多气象和时段条件下的运行 能够支持低空空域更高容量的运行密度
    缺点 对气象条件要求较高, 空域容量小, 不能夜间运行 主要针对人在环路的管理模式, 容量可扩展性较弱 暂不考虑UAM在120 m以上空域范围的运行需求, 技术手段和规则仍处于研究中
    下载: 导出CSV

    表  4  文献总结

    Table  4.   Literatures revie

  • [1] MENOUAR H, GUVENC I, AKKAYA K, et al. UAV-enabled intelligent transportation systems for the smart city: applications and challenges[J]. IEEE Communications Magazine, 2017, 55(3): 22-28. doi: 10.1109/MCOM.2017.1600238CM
    [2] HOLDEN J, GOEL N. Fast-forwarding to a future of on-demand urban air transportation[R]. San Francisco: Uber Elevate, 2016.
    [3] THIPPHAVONG P, APAZA R, BARMORE B, et al. Urban air mobility airspace integration concepts and considerations[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3676-3681.
    [4] BALAKRISHNAN K, POLASTRE J, MOOBERRY J, et al. Blueprint for the sky. The roadmap for the safe integration of autonomous aircraft[R]. Santa Clara Valley: Airbus A3, 2018.
    [5] EmbraerX. Flight plan 2030: an air traffic management concept for urban air mobility[R]. Duskamp: EmbraerX, 2019.
    [6] LASCARA B, SPENCER T, DEGARMO M, et al. Urban air mobility landscape report[R]. McLean: MITRE, 2018.
    [7] XU H X. The future of transportation: white paper on urban air mobility systems[R]. Guangzhou: EHang, 2020.
    [8] BAUR S, SCHICKRAM S, HOMULENKO A, et al. Urban air mobility: the rise of a new mode of transportation[R]. Hamburg: Roland Berger, 2018.
    [9] ZHAO Jing, XIE Feng-jie. Cognitive and artificial intelligence system for logistics industry[J]. International Journal of Innovative Computing and Applications, 2020, 11(2/3): 84-88. doi: 10.1504/IJICA.2020.107118
    [10] 吴永鑫. 物流无人机在中国农村电商物流市场应用研究[D]. 深圳: 深圳大学, 2017.

    WU Yong-xin. The research of the application of the logistics unmanned aerial vehicle in the China's rural electricity supplier logistics[D]. Shenzhen: Shenzhen University, 2017. (in Chinese).
    [11] 张丹, 吴陈炜, 谢安桓. 城市交通问题的空中解决方案——自主载人飞行器研究综述[J]. 无人系统技术, 2018, 1(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201802004.htm

    ZHANG Dan, WU Chen-wei, XIE An-huan. Aerial solution for urban traffic problems: overview of autonomous manned aircraft[J]. Unmanned Systems Technology, 2018, 1(2): 1-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201802004.htm
    [12] REICHE C, MCGILLEN C, SIEGEL J, et al. Are we ready to weather urban air mobility(UAM)?[C]//IEEE. 2019Integrated Communications, Navigation and Surveillance Conference(ICNS). New York: IEEE, 2019: 1-7.
    [13] SALLEH M, TAN D Y, KOH C H, et al. Preliminary concept of operations(ConOps)for traffic management of unmanned aircraft systems(TM-UAS)in urban environment[C]//AIAA. Information Systems—AIAA Infotech@Aerospace Infotech. Reston: AIAA, 2017: 1-13.
    [14] Joint DOT/NASA. Concepts studies for future intracity air transportation systems[R]. Cambridge: Massachusetts Institute of Technology, 1970.
    [15] DAJANI J S, WARNER D, EPSTEIN D, et al. The role of the helicopter in transportation[R]. Durham: Duke University, 1976.
    [16] MOORE M D. Personal air vehicles: a rural/regional and intraurban on-demand transportation system[J]. Journal of the American Institute of Aeronautics and Astronautics, 2003, 2646: 1-20.
    [17] CHAMBERS J R. Innovation in flight: research of the NASA Langley Research Center on revolutionary advanced concepts for aeronautics[R]. Hampton: National Aeronautics and Space Administration(NASA), 2005.
    [18] KOPARDEKAR P. Unmanned aerial system(UAS)traffic management(UTM): enabling low-altitude airspace and UAS operations[R]. Hampton: National Aeronautics and Space Administration(NASA), 2014.
    [19] JOHNSON W C. UAM coordination and assessment team(UCAT)[R]. Ames: National Aeronautics and Space Administration(NASA), 2019.
    [20] VASCIK P D, HANSMAN J. Scaling constraints for urban air mobility operations: air traffic control, ground infrastructure, and noise[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 3849-3875.
    [21] SHIHAB S A M, WEI Peng, SHI Jie, et al. Optimal eVTOL fleet dispatch for urban air mobility and power grid services[C]//AIAA. Aviation 2020Forum. Reston: AIAA, 2020: 1-17.
    [22] GEORGE H, WEI Peng. Service-oriented separation assurance for small UAS traffic management[C]//IEEE. 2019Integrated Communications, Navigation and Surveillance Conference(ICNS). New York: IEEE, 2019: 1-11.
    [23] National Academiesof Sciences. Advancing aerial mobility: a national blueprint[R]. Washington DC: The National Academies Press, 2020.
    [24] POLACZYK N, TROMBINO E, WEI P, et al. A review of current technology and research in urban on-demand air mobility applications[C]//RAM J, KENDRA B. 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium. Washington DC: FAA, 2019: 1-11.
    [25] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议综述[J]. 航空学报, 2020, 41(1): 6-34.

    QUAN Quan, LI Gang, BAI Yi-qin, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 6-34. (in Chinese).
    [26] SHIHAB S A M, WEI P, RAMIREZ D S J, et al. By schedule or on demand?a hybrid operation concept for urban air mobility[C]//AIAA. Aviation 2019Forum. Reston: AIAA, 2019: 1-13.
    [27] 联合国人居署. 2016世界城市状况报告, 城市化与发展: 新兴未来[R]. 内罗毕: 联合国人居署, 2019. UN-Habitat. Urbanization and development: emerging futures[R]. Nairobi: UN-Habitat, 2019. (in Chinese).
    [28] 北京交通发展研究院. 北京市居民公共交通出行特征分析[R]. 北京: 北京交通发展研究院, 2019. Beijing Transport Institute. Analysis on the characteristics ofpublic transportation in Beijing[R]. Beijing: Beijing Transport Institute, 2019. (in Chinese).
    [29] VASCIK P D, HANSMAN J. Evaluation of key operational constraints affecting on-demand mobility for aviation in the Los Angeles basin: ground infrastructure, air traffic control and noise[C]//AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 1-20.
    [30] VASCIK P D, HANSMAN R J. Constraint identification in on-demand mobility for aviation through an exploratory case study of los angeles[C]//AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 1-26.
    [31] 弓永峰, 陈俊斌, 刘海博, 等. 产业化加速, 氢能时代临近——燃料电池行业专题报告[R]. 北京: 中信证券, 2019. GONG Yong-feng, CHEN Jun-bin, LIU Hai-bo, et al. The era of hydrogen energy is approaching—a special report on fuel cell industry[R]. Beijing: Citic Securities, 2019. (in Chinese).
    [32] 王莉, 戴泽华, 杨善水, 等. 电气化飞机电力系统智能化设计研究综述[J]航空学报, 2019, 40(2): 5-19.

    WANG Li, DAI Ze-hua, YANG Shan-shui, et al. Review of intelligent design of electrified aircraft power system[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 5-19. (in Chinese).
    [33] 中国民用航空局航空器适航审定司. 基于运行风险的无人机适航审定指导意见[R]. 北京: 中国民用航空局航空器适航审定司, 2019.

    Aircraft Airworthiness Certification Department of CAAC. Guidance on UAV airworthiness certification based on operational risk[R]. Beijing: Aircraft Airworthiness Certification Department of CAAC, 2019. (in Chinese).
    [34] MUELLER E. Enabling airspace integration for high density urban air mobility[R]. Ames: National Aeronautics and Space Administration(NASA), 2017.
    [35] VASCIK P D, BALAKRISHNAN H, HANSMAN J. Assessment of air traffic control for urban air mobility and unmanned systems[C]//FAA & amp; amp; EUROCONTROL. The 8th International Conference for Research in Air Transportation(ICRAT). Barcelona: EUROCONTROL, 2018: 1-9.
    [36] CHO J, YOON Y. How to assess the capacity of urban airspace: a topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149. doi: 10.1016/j.trc.2018.05.001
    [37] VASCIK P D, CHO J, BULUSU V, et al. Geometric approach towards airspace assessment for emerging operations[C]//AIAA. Thirteenth USA/Europe Air Traffic Management Research and Development Seminar(ATM2019). Reston: AIAA, 2019: 1-12.
    [38] ZHU Guo-dong, WEI Peng. Pre-departure planning for urban air mobility flights with dynamic airspace reservation[C]//AIAA. Aviation 2019Forum. Reston: AIAA, 2019: 1-11.
    [39] ZHU Guo-dong, WEI Peng. Low-altitude UAS traffic coordination with dynamic geofencing[C]//AIAA. 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016: 1-16.
    [40] SUNIL E, ELLERBROEK J, HOEKSTRA J. Metropolisurban airspace design[R]. Delft: Technical University of Delft National, 2014.
    [41] VIDOSAVLJEVIC A, DELAHAYE D, SUNIL E, et al. Complexity analysis of the concepts of urban airspace design for metropolis project[C]//EIWAC. 4th ENRI International Workshop on ATM/CNS. Berlin: Springer, 2015: 1-11.
    [42] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. Metropolis: rel1ensities[C]//EUROCONTROL. 11th USA/EUROPE Air Traffic Management R & amp; amp; D Seminar. Barcelona: EUROCONTROL, 2015: 1-11.
    [43] SUNIL E, HOEKSTRA J, ELLERBROEK J, et al. The influence of traffic structure on airspace capacity[C]//FAA & amp; amp; EUROCONTROL. The 7th International Conference for Research in Air Transportation(ICRAT). Washington DC: FAA, 2016: 1-9.
    [44] SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. An analysis of decentralized airspace structure and capacity using fast-time simulations[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1): 38-51. doi: 10.2514/1.G000528
    [45] BOSSON C, LAUDERDALE T A. Simulation evaluations of an autonomous urban air mobility network management and separation service[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-14.
    [46] SALLEH M F B, CHI Wan-chao, WANG Zhen-kun, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//AIAA. 2018 AIAA Information Systems Infotech@Aerospace. Reston: AIAA, 2018: 1-12.
    [47] ARNTZEN M, AALMOES R, BUSSINK F, et al. Noise computation for future urban air traffic systems[R]. Amsterdam: National Aerospace Laboratory(NLR), 2015.
    [48] HOEKSTRA J, MAAS J, SUNIL E. How do layered airspace design parameters affect airspace capacity and safety?[C]//FAA & amp; amp; EUROCONTROL. The 7th International Conference for Research in Air Transportation(ICRAT). Reston: AIAA, 2016: 1-8.
    [49] Booz Allen Hamilton. Urbanair mobility(UAM)market study[R]. Ames: National Aeronautics and Space Administration(NASA), 2018.
    [50] GOODRICH K H, BARMORE B. Exploratory analysis of the airspace throughput and sensitivities of an urban air mobility system[C]//AIAA. 2018 Aviation Technology, Integration, and Opera-tions Conference. Reston: AIAA, 2018: 1-9.
    [51] KOCHENDERFER M J, HOLLAND J E, CHRYSSANTHACOPOULOS J P. Next-generation airborne collision avoidance system[R]. Lexington: Massachusetts Institute of Technology-Lincoln Laboratory, 2012.
    [52] YU Xiang, ZHANG You-min. Sense and avoid technologies with applications to unmanned aircraft systems: review and prospects[J]. Progress in Aerospace Sciences, 2015, 74: 152-166. doi: 10.1016/j.paerosci.2015.01.001
    [53] YANG Xu-xi, WEI Peng. Autonomous on-demand free flight operations in urban air mobility using Monte Carlo tree search[C]//FAA & amp; amp; EUROCONTROL. The 8th International Conference for Research in Air Transportation(ICRAT). Washington DC: FAA, 2018: 1-8.
    [54] YANG Xu-xi, DENG Li-seng, WEI Peng. Multi-agent autonomous on-demand free flight operations in urban air mobility[C]//AIAA. Aviation 2019Forum. Reston: AIAA, 2019: 1-13.
    [55] FU Meng-ying, ROTHFELD R, ANTONIOU C. Exploring preferences for transportation modes in an urban air mobility environment: Munich case study[J]. Transportation Research Record, 2019(2673): 427-442.
    [56] ROTHFELD R, BALAC M, PLOETNER K, et al. Agentbased simulation of urban air mobility[C]//AIAA. Modeling and Simulation Technologies Conference. Reston: AIAA, 2018: 1-10.
    [57] FADHIL D N. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich: Technical University of Munich, 2018.
    [58] VASCIK P, HANSMAN J. Correction: development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors[C]//AIAA. SciTech 2019Forum. Reston: AIAA, 2019: 1-26.
    [59] 杨秀玉. 基于5G移动通信的无人机与民用飞机防相撞技术研究[D]. 广汉: 中国民用航空飞行学院, 2019.

    YANG Xiu-yu. Research on anti-collision technology based on 5Gbetween UAV and civil aircraft[D]. Guanghan: Civil Aviation Flight University of China, 2019. (in Chinese).
    [60] HOSSEINI N, JAMAL H, HAQUE J, et al. UAV command and control, navigation and surveillance: a review of potential5G and satellite systems[C]//IEEE. 2019 Aerospace Conference. New York: IEEE, 2019: 1-10.
    [61] GUPTA L, JAIN R, VASZKUN G. Survey of important issues in UAV communication networks[J] IEEE Communications Surveys and Tutorials, 2015, 18(2): 1123-1152.
    [62] PRADEEP P. Arrival management for eVTOL aircraft in ondemand urban air mobility[D]. Ames: Iowa State University, 2019.
    [63] KLEINBEKMAN I, MITICI M A, WEI P. eVTOL arrival sequencing and scheduling for on-demand urban air mobility[C]//IEEE. IEEE/AIAA Digital Avionics Systems Conference. New York: IEEE, 2018: 1-7.
    [64] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]Nature, 2016, 529(7587): 484.
    [65] BRITTAIN M, WEI Peng. Autonomous aircraft sequencing and separation with hierarchical deep reinforcement learning[C]//FAA & amp; amp; EUROCONTROL. The 8th International Conference for Research in Air Transportation. Barcelona: ICRAT, 2018: 1-8.
    [66] XUE Min, RIOS J, SILVA J, et al. Fe3: an evaluation tool for low-altitude air traffic operations[C]//AIAA. 2018Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-13.
    [67] BELOBABA P, ODONI A, BARNHART C. The global airline industry[R]. Cambridge: John Wiley & amp; amp; Sons, 2015.
    [68] BALL M O, HOFFMAN R, ODONI A R, et al. A stochastic integer program with dual network structure and its application to the ground-holding problem[J]. Operations Research, 2003, 51(1): 167-171. doi: 10.1287/opre.51.1.167.12795
    [69] ZHU Guo-dong, WEI Peng, HOFFMAN R, et al. Riskhedged multistage stochastic programming model for setting flow rates in collaborative trajectory options programs(CTOP)[C]//AIAA. Science and Technology Forum and Exposition. Reston: AIAA, 2019: 1-16.
    [70] HOFFMAN R, HACKNEY B, WEI P, et al. Enhanced stochastic optimization model(ESOM)for setting flow rates in collaborative trajectory options programs(CTOP)[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-16.
    [71] ZHU Guo-dong, WEI Peng, HOFFMAN R, et al. Centralized disaggregate stochastic allocation models for collaborative trajectory options program(CTOP)[C]//IEEE. 37th AIAA/IEEE Digital Avionics Systems Conference(DASC). New York: IEEE, 2018: 1-10.
    [72] SILVA C, JOHNSON W R, SOLIS E, et al. VTOL urban air mobility concept vehicles for technology development[C]//AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-10.
    [73] PRADEEP P, WEI Peng. Energy-efficient arrival with RTA constraint for multirotor eVTOL in urban air mobility[J]. Journal of Aerospace Information Systems, 2019, 16(7): 263-277. doi: 10.2514/1.I010710
    [74] PRADEEP P, WEI Peng. Energy optimal speed profile for arrival of tandem tilt-wing eVTOL aircraft with RTA constraint[C]//IEEE. 2018CSAA Guidance, Navigation and Control Conference(CGNCC). New York: IEEE, 2018: 1-6.
    [75] 陈志杰. 未来空中交通管制系统发展面临的技术挑战[J]. 指挥信息系统与技术, 2016, 7(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT201606002.htm

    CHEN Zhi-jie. Technological chanllenges of future air traffic control system development[J]. Control Information System and Technology, 2016, 7(6): 1-5. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXT201606002.htm
    [76] PATHIYIL L, LOW K H, SOON B H, et al. Enabling safe operations of unmanned aircraft systems in an urban environment: apreliminary study[C]//German Institute of Navigation. The International Symposium on Enhanced Solutions for Aircraft and Vehicle Surveillance Applications. Berlin: German Institute of Navigation, 2016: 1-10.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  2194
  • HTML全文浏览量:  597
  • PDF下载量:  964
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回