留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湿热老化对BFRP粘接接头横向冲击力学性能的影响

那景新 谭伟 慕文龙 栾建泽

那景新, 谭伟, 慕文龙, 栾建泽. 湿热老化对BFRP粘接接头横向冲击力学性能的影响[J]. 交通运输工程学报, 2020, 20(4): 134-144. doi: 10.19818/j.cnki.1671-1637.2020.04.010
引用本文: 那景新, 谭伟, 慕文龙, 栾建泽. 湿热老化对BFRP粘接接头横向冲击力学性能的影响[J]. 交通运输工程学报, 2020, 20(4): 134-144. doi: 10.19818/j.cnki.1671-1637.2020.04.010
NEI Jing-xin, TAN Wei, MU Wen-long, LUAN Jian-ze. Effect of hygrothermal aging on transverse impact mechanical properties of BFRP adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 134-144. doi: 10.19818/j.cnki.1671-1637.2020.04.010
Citation: NEI Jing-xin, TAN Wei, MU Wen-long, LUAN Jian-ze. Effect of hygrothermal aging on transverse impact mechanical properties of BFRP adhesive joints[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 134-144. doi: 10.19818/j.cnki.1671-1637.2020.04.010

湿热老化对BFRP粘接接头横向冲击力学性能的影响

doi: 10.19818/j.cnki.1671-1637.2020.04.010
基金项目: 

国家自然科学基金项目 51775230

吉林大学研究生创新研究计划项目 101832018C198

详细信息
    作者简介:

    那景新(1957-), 男, 黑龙江哈尔滨人, 吉林大学教授, 从事车身结构设计理论与轻量化研究

    通讯作者:

    谭伟(1991-), 男, 山东淄博人, 吉林大学工学博士研究生

  • 中图分类号: U270.12

Effect of hygrothermal aging on transverse impact mechanical properties of BFRP adhesive joints

Funds: 

National Natural Science Foundation of China 51775230

Graduate Innovation Fund of Jilin University 101832018C198

More Information
  • 摘要: 为了给车辆粘接结构的碰撞安全提供参考, 选取玄武岩纤维复合材料(BFRP)制作了单搭接接头; 根据车辆服役环境, 选取温度/湿度为80℃/30%和80℃/95%两种环境(GWCS和GWGS), 对接头分别进行了0、5、10和15 d的老化, 通过准静态拉伸测试了失效载荷和失效形式随时间的变化规律; 利用差示扫描量热法分析了BFRP和粘接剂在老化前、后的玻璃态转变温度; 对未老化和老化15 d后的接头进行了冲击能量为0、20、40和60 J的横向冲击试验, 分析了能量吸收、最大冲击载荷和最大变形随冲击能量的变化规律, 同时测试了接头失效载荷和失效形式的变化规律。分析结果表明: GWCS环境下, 老化后接头失效载荷下降比较小, 粘接剂发生后固化反应, BFRP发生分子链断裂, 接头更容易发生基体开裂或者纤维撕裂; GWGS环境下, 老化能明显加速接头性能的退化, 容易造成粘接剂与BFRP界面发生水解和膨胀, 老化15 d后失效载荷下降了54.99%, 失效断面为界面与内聚为主的混合失效; GWCS环境下, 老化后接头具有较好的承受冲击载荷和抵抗变形的能力, 冲击后失效载荷变化不大; GWGS环境下, 老化后接头受横向冲击影响明显, 承受冲击载荷和抵抗变形的能力较差, 在60 J冲击后接头表面损伤严重, 失效载荷下降明显, 下降幅度为58.71%, 失效断面为界面与内聚为主的混合失效, 损伤裂纹较为明显。可见, 车辆服役过程中, 粘接结构需尽量避免受高温高湿环境的作用, 尤其注意横向冲击对老化后粘接结构的影响。

     

  • 图  1  粘接接头尺寸

    Figure  1.  Sizes of adhesive joint

    图  2  粘接夹具

    Figure  2.  Adhesive fixture

    图  3  粘接接头冲击试验

    Figure  3.  Impact test of adhesive joints

    图  4  粘接剂与BFRP的DSC测试

    Figure  4.  DSC tests of adhesive and BFRP

    图  5  老化后粘接接头的平均失效载荷

    Figure  5.  Average failure loads of adhesive joints after aging

    图  6  老化前、后粘接接头宏观断面和SEM形貌

    Figure  6.  Macroscopic sections and SEM morphologies of adhesive joints before and after aging

    图  7  冲击载荷-变形曲线

    Figure  7.  Impact load-deformation curves

    图  8  能量吸收、最大冲击载荷和最大变形随冲击能量的变化曲线

    Figure  8.  Change curves of energy absorption, maximum impact load and maximum deformation with impact energy

    图  9  粘接接头在冲击作用后的载荷-位移曲线

    Figure  9.  Load-displacement curves of adhesive joints after impact

    图  10  不同冲击能量作用后的失效载荷

    Figure  10.  Failure loads under different impact energies

    图  11  冲击后的平均失效载荷曲线

    Figure  11.  Average failure load curves after impact

    图  12  粘接接头在不同冲击能量下的损伤形貌

    Figure  12.  Damage morphologies of adhesive joints under different impact energies

    图  13  未老化接头在冲击能量作用后的失效断面

    Figure  13.  Failure sections of unaged adhesive joints after action of impact energy

    图  14  GWCS老化后接头在冲击能量作用后的失效断面

    Figure  14.  Failure sections of aged joints after action of impact energy in GWCS environment

    图  15  GWGS老化后接头在冲击能量作用后的失效断面

    Figure  15.  Failure sections of aged joints after action of impact energy in GWGS environment

    表  1  粘接剂参数

    Table  1.   Parameters of adhesive

    杨氏模量/MPa 剪切模量/MPa 泊松比
    1 850 560 0.33
    下载: 导出CSV

    表  2  玄武岩纤维单向布参数

    Table  2.   Parameters of BFRP unidirectional fabric

    拉伸强度/MPa 杨氏模量/GPa 延伸率/% 公称厚度/mm 单纤维直径/μm
    2 100 105 2.6 0.115 13
    下载: 导出CSV

    表  3  树脂固化后材料参数

    Table  3.   Material parameters of resin after curing

    拉伸强度/MPa 压缩强度/MPa 弯曲强度/MPa 玻璃化转变温度/℃
    600~700 1 260~1 300 800~940 90~100
    下载: 导出CSV
  • [1] RIBEIRO M L, TITA V, VANDEPITTE D. A new damage model for composite laminates[J]. Composite Structures, 2012, 94(2): 635-642. doi: 10.1016/j.compstruct.2011.08.031
    [2] LU Zhang-yu, XIAN Gui-jun. Combined effects of sustained tensile loading and elevated temperatures on the mechanical properties of pultruded BFRP plates[J]. Construction and Building Materials, 2017, 150: 310-320. doi: 10.1016/j.conbuildmat.2017.06.026
    [3] FIORE V, ALAGNA F, DI BELLA G, et al. On the mechanical behavior of BFRP to aluminum AA6086 mixed joints[J]. Composites Part B: Engineering, 2013, 48: 79-87. doi: 10.1016/j.compositesb.2012.12.009
    [4] FIORE V, ALAGNA F, GALTIERI G, et al. Effect of curing time on the performances of hybrid/mixed joints[J]. Composites Part B: Engineering, 2013, 45: 911-918. doi: 10.1016/j.compositesb.2012.05.016
    [5] ALTALMAS A, EL REFAI A, ABED F. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions[J]. Construction and Building Materials, 2015, 81: 162-171. doi: 10.1016/j.conbuildmat.2015.02.036
    [6] HESHMATI M, HAGHANI R, AL-EMRANI M, et al. Durability of bonded FRP-to-steel joints: effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B: Engineering, 2017, 119: 153-167. doi: 10.1016/j.compositesb.2017.03.049
    [7] 谭伟, 那景新, 范以撒, 等. 考虑温度和载荷影响的动车信息窗粘接结构寿命预测[J]. 交通运输工程学报, 2019, 19(6): 101-110. doi: 10.3969/j.issn.1671-1637.2019.06.011

    TAN Wei, NA Jing-xin, FAN Yi-sa, et al. Adhesive structure life prediction of EMU information window considering influence of temperature and load[J]. Journal of Traffic and Transportion Engineering, 2019, 19(6): 101-110. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.06.011
    [8] JOHN S J, KINLOCH A J, MATTHEWS F L. Measuring and predicting the durability of bonded carbon fibre/epoxy composite joints[J]. Composites, 1991, 22(2): 121-127. doi: 10.1016/0010-4361(91)90670-C
    [9] ZHANG Fan, YANG Xin, WANG Hui-ping, et al. Durability of adhesively-bonded single lap-shear joints in accelerated hygrothermal exposure for automotive applications[J]. International Journal of Adhesion and Adhesives, 2013, 44: 130-137. doi: 10.1016/j.ijadhadh.2013.02.009
    [10] ZHANG Fan, WANG Hui-ping, HICKS C, et al. Experimental study of initial strengths and hygrothermal degradation of adhesive joints between thin aluminum and steel substrates[J]. International Journal of Adhesion and Adhesives, 2013, 43: 14-25. doi: 10.1016/j.ijadhadh.2013.01.001
    [11] KORTA J, MLYNIEC A, UHL T. Experimental and numerical study on the effect of humidity-temperature cycling on structural multi-material adhesive joints[J]. Composites Part B: Engineering, 2015, 79: 621-630. doi: 10.1016/j.compositesb.2015.05.020
    [12] POPINEAU S, RONDEAU-MOURO C, SULPICE-GAILLET C, et al. Free/bound water absorption in an epoxy adhesive[J]. Polymer, 2005, 46(24): 10733-10740. doi: 10.1016/j.polymer.2005.09.008
    [13] SAYER M, BEKTAS N B, SAYMAN O. An experimental investigation on the impact behavior of hybrid composite plates[J]. Steel Construction, 2010, 92(5): 1256-1262.
    [14] PARK H, KIM H. Damage resistance of single lap adhesive composite joints by transverse ice impact[J]. International Journal of Impact Engineering, 2010, 37(2): 177-184. doi: 10.1016/j.ijimpeng.2009.08.005
    [15] REIS P N B, SOARES J R L, PEREIRA A M, et al. Effect of adherends and environment on static and transverse impact response of adhesive lap joints[J]. Theoretical and Applied Fracture Mechanics, 2015, 80: 79-86. doi: 10.1016/j.tafmec.2015.07.004
    [16] VAIDYA U K, GAUTAM A R S, HOSUR M, et al. Experimental-numerical studies of transverse impact response of adhesively bonded lap joints in composite structures[J]. International Journal of Adhesion and Adhesives, 2006, 26(3): 184-198. doi: 10.1016/j.ijadhadh.2005.03.013
    [17] KIM J S, CHUNG S K. A study on the low-velocity impact response of laminates for composite railway bodyshells[J]. Composite Structures, 2007, 77(4): 484-492. doi: 10.1016/j.compstruct.2005.08.020
    [18] SAYMAN O, ARIKAN V, DOGAN A, et al. Failure analysis of adhesively bonded composite joints under transverse impact and different temperatures[J]. Composites Part B: Engineering, 2013, 54: 409-414. doi: 10.1016/j.compositesb.2013.06.017
    [19] SAYMAN O, SOYKOK I F, DOGAN T, et al. Effects of axial impacts at different temperatures on failure response of adhesively bonded woven fabric glass fiber/epoxy composite joints[J]. Journal of Composite Materials, 2014, 49(11): 1331-1344.
    [20] APALAK M K, YILDIRIM M. Effect of adhesive thickness on transverse low-speed impact behavior of adhesively bonded similar and dissimilar clamped plates[J]. Journal of Adhesion Science and Technology, 2011, 25(19): 2587-2613. doi: 10.1163/016942411X556015
    [21] KIM H, KAYIR T, MOUSSEAU S L. Mechanisms of damage formation in transversely impacted glass-epoxy bonded, lap joints[J]. Journal of Composite Materials, 2005, 39(39): 2039-2052.
    [22] AKDERYA T, KEMIKIOGLU U, SAYMAN O. Effects of thermal ageing and impact loading on tensile properties of adhesively bonded fibre/epoxy composite joints[J]. Composites Part B: Engineering, 2016, 95: 117-122. doi: 10.1016/j.compositesb.2016.03.073
    [23] SILVA L F M D, ADAMS R D. Techniques to reduce the peel stresses in adhesive joints with composites[J]. International Journal of Adhesion and Adhesives, 2007, 27(3): 227-235. doi: 10.1016/j.ijadhadh.2006.04.001
    [24] SILVA L F M D, LOPES M J C Q. Joint strength optimization by the mixed-adhesive technique[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 509-514. doi: 10.1016/j.ijadhadh.2008.09.009
    [25] NA Jing-xin, MU Wen-long, QIN Guo-feng, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry[J]. International Journal of Adhesion and Adhesives, 2018, 85: 138-148. doi: 10.1016/j.ijadhadh.2018.05.027
    [26] RIEGER J. The glass transition temperature Tg of polymers—comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum)[J]. Polymer Testing, 2001, 20(2): 199-204. doi: 10.1016/S0142-9418(00)00023-4
    [27] PLAZEK D J, FRUND Z N. Epoxy resins (DGEBA): the curing and physical aging process[J]. Journal of Polymer Science Part B: Polymer Physics, 1990, 28(4): 431-448. doi: 10.1002/polb.1990.090280401
    [28] BUCH X, SHANAHAN M E R. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive[J]. Journal of Applied Polymer Science, 2000, 76(7): 987-992. doi: 10.1002/(SICI)1097-4628(20000516)76:7<987::AID-APP1>3.0.CO;2-1
    [29] QIN Guo-feng, NA Jing-xin, MU Wen-long, et al. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints[J]. Composites Part B: Engineering, 2018: 43-55.
    [30] 肖琳. 高低温循环作用后CFRP层合板力学性能演变研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    XIAO Lin. Study on mechanical properties evolution of CFRP laminates after high and low temperature cycling[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese).
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  131
  • PDF下载量:  3000
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-23
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回