留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑配载计划的铁路集港箱位指派

常祎妹 朱晓宁

常祎妹, 朱晓宁. 考虑配载计划的铁路集港箱位指派[J]. 交通运输工程学报, 2020, 20(4): 205-216. doi: 10.19818/j.cnki.1671-1637.2020.04.017
引用本文: 常祎妹, 朱晓宁. 考虑配载计划的铁路集港箱位指派[J]. 交通运输工程学报, 2020, 20(4): 205-216. doi: 10.19818/j.cnki.1671-1637.2020.04.017
CHANG Yi-mei, ZHU Xiao-ning. Slot allocation of railway container terminal considering stowage plan[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 205-216. doi: 10.19818/j.cnki.1671-1637.2020.04.017
Citation: CHANG Yi-mei, ZHU Xiao-ning. Slot allocation of railway container terminal considering stowage plan[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 205-216. doi: 10.19818/j.cnki.1671-1637.2020.04.017

考虑配载计划的铁路集港箱位指派

doi: 10.19818/j.cnki.1671-1637.2020.04.017
基金项目: 

国家重点研发计划项目 2018YFB1201403

民航科技项目 201501

北京物资学院校级青年科研基金项目 2020XJQN05

详细信息
    作者简介:

    常祎妹(1991-), 女, 辽宁沈阳人, 北京物资学院讲师, 工学博士, 从事集装箱运输与多式联运研究

  • 中图分类号: U169.6

Slot allocation of railway container terminal considering stowage plan

Funds: 

National Key Research and Development Program of China 2018YFB1201403

Civil Aviation Science and Technology Project 201501

Youth Research Fund Project of Beijing Wuzi University 2020XJQN05

More Information
  • 摘要: 为了提高集装箱港口内堆场的装卸作业效率, 建立了以压箱数最小为目标的出口集装箱箱位指派模型; 考虑铁路运输箱成批到达和公路运输箱到达存在随机性的不同特点以及配载计划的影响, 设计了基于预测方法的启发式算法; 根据公路运输箱的到达特点, 利用马尔科夫链预测公路运输箱的到达顺序; 考虑箱位指派模型的特点, 设计了箱位指派求解算法对铁路运输箱和公路运输箱进行箱位指派, 利用MATLAB软件仿真测试了提出的模型与算法; 通过小规模试验验证了模型和算法的可行性和有效性, 并进行了2组大规模对比试验, 一组对比试验为铁路运输箱和公路运输箱混合堆存模式与铁路运输箱和公路运输箱分开堆存模式, 另一组对比试验为提出的算法与传统堆存算法。分析结果表明: 混合堆存模式比分开堆存模式的压箱数少27.9%, 提出的算法比传统堆存算法的压箱数少37.7%;混合堆存模式可有效减少压箱数, 提出的算法不仅可以有效解决小规模集装箱堆存问题, 还可以解决大规模集装箱堆存问题, 有效提高了堆场的装卸效率, 为集装箱的装船作业提供了便利。

     

  • 图  1  四层堆存高度的翻箱位

    Figure  1.  Rehandling slots with 4-layer storage height

    图  2  压箱数示例

    Figure  2.  An example of overlapping amount

    图  3  铁路运输箱和公路运输箱共用堆场的港口布局

    Figure  3.  layout of container terminals of railway containers sharing container yards with road containers

    图  4  箱位指派模型的求解流程

    Figure  4.  Solution procedure of slot allocation model

    图  5  到达顺序示意

    Figure  5.  Schematic of arrival orders

    图  6  24个计划周期内到达顺序的历史统计数据

    Figure  6.  History statistics of arrival orders in 24 planning cycles

    图  7  客户到达顺序历史数据

    Figure  7.  History statistics of customers arrival orders

    表  1  到达顺序出现次数

    Table  1.   Occurrences of arrival orders

    到达顺序 出现次数
    到达顺序1 28
    到达顺序2 4
    到达顺序3 25
    到达顺序4 29
    到达顺序5 25
    到达顺序6 30
    到达顺序7 27
    到达顺序8 25
    下载: 导出CSV

    表  2  状态转移次数

    Table  2.   Occurrences of state transition

    到达顺序 出现次数 转移为到达顺序 次数
    到达顺序1 7 1 2
    2 1
    3 3
    4 1
    到达顺序2 5 1 1
    2 1
    3 1
    4 2
    到达顺序3 6 1 1
    2 2
    3 2
    4 1
    到达顺序4 5 1 2
    2 1
    3 1
    4 1
    下载: 导出CSV

    表  3  小规模试验结果对比

    Table  3.   Comparison of small-scale experiment result

    计划时段 混合堆存压箱数 分开堆存压箱数 运输箱数 分开堆存与混合堆存压箱数相对差值/%
    1 0 0 30 0.0
    2 5 5 115 0.0
    3 5 7 149 28.6
    4 6 13 213 53.8
    5 10 18 261 44.4
    6 18 26 350 30.8
    下载: 导出CSV

    表  4  三个计划周期内2种堆存模式压箱数对比

    Table  4.   Comparison of overlapping amount between two storage modes in three planning cycles

    计划时段 混合堆存压箱数 分开堆存压箱数 运输箱数 分开堆存与混合堆存压箱数相对差值/%
    1 0 0 30 0.0
    2 5 5 115 0.0
    3 5 7 149 28.6
    4 6 13 213 53.8
    5 10 18 261 44.4
    6 18 26 350 30.8
    7 4 5 81 20.0
    8 9 13 157 30.8
    9 14 18 193 22.2
    10 17 22 229 22.7
    11 17 27 265 37.0
    12 25 42 350 40.5
    13 3 3 45 0.0
    14 8 7 130 -14.3
    15 9 10 174 10.0
    16 9 20 219 55.0
    17 12 28 304 57.1
    18 13 35 350 62.9
    下载: 导出CSV

    表  5  两种方法对比

    Table  5.   Comparison of two methods

    计划时段 启发式算法压箱数 随机堆存方法压箱数 运输箱数 随机堆存与启发式算法堆存压箱数相对差值/%
    1 0 0 30 0.0
    2 5 7 115 28.6
    3 5 9 149 44.4
    4 6 16 213 62.5
    5 10 22 261 54.5
    6 18 33 350 45.4
    7 4 5 81 20.0
    8 9 15 157 40.0
    9 14 21 193 33.3
    10 17 26 229 34.6
    11 17 28 265 39.3
    12 25 42 350 40.5
    13 3 5 45 40.0
    14 8 10 130 20.0
    15 9 14 174 35.7
    16 9 17 219 47.0
    17 12 22 304 45.4
    18 13 25 350 48.0
    下载: 导出CSV
  • [1] KIM K H, PARK Y M, RYU K R. Deriving decision rules to locate export containers in container yards[J]. European Journal of Operational Research, 2000, 124(1): 89-101. doi: 10.1016/S0377-2217(99)00116-2
    [2] ZHANG Chu-qian, LIU Ji-yin, WAN Y W, et al. Storage space allocation in container terminals[J]. Transportation Research Part B: Methodological, 2003, 37(10): 883-903. doi: 10.1016/S0191-2615(02)00089-9
    [3] KOZAN E, PRESTON P. Mathematical modelling of container transfers and storage locations at seaport terminals[J]. OR Spectrum, 2006, 28(4): 519-537. doi: 10.1007/s00291-006-0048-1
    [4] BAZZAZI M, SAFAEI N, JAVADIAN N. A genetic algorithm to solve the storage space allocation problem in a container terminal[J]. Computers and Industrial Engineering, 2009, 56(1): 44-52. doi: 10.1016/j.cie.2008.03.012
    [5] SHARIF O, HUYNH N. Storage space allocation at marine container terminals using ant-based control[J]. Expert Systems with Applications, 2013, 40(6): 2323-2330. doi: 10.1016/j.eswa.2012.10.032
    [6] JIANG Xin-jia, CHEW E P, LEE L H, et al. Short-term space allocation for storage yard management in a transshipment hub port[J]. OR Spectrum, 2014, 36(4): 879-901. doi: 10.1007/s00291-014-0366-7
    [7] ZHANG Can-rong, WU Tao, ZHONG Ming, et al. Location assignment for outbound containers with adjusted weight proportion[J]. Computers and Operations Research, 2014, 52: 84-93. doi: 10.1016/j.cor.2014.06.012
    [8] 周鹏飞, 赵金秋, 尚尔进. 混堆集装箱堆场的出口箱位优选干扰管理[J]. 哈尔滨工程大学学报, 2017, 38(6): 866-873, 938. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201706009.htm

    ZHOU Peng-fei, ZHAO Jin-qiu, SHANG Er-jin. Disruption management model and algorithm for export container slots optimization in container yards of mixture storage mode[J]. Journal of Harbin Engineering University, 2017, 38(6): 866-873, 938. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201706009.htm
    [9] GHAREHGOZLI A, ZAERPOUR N. Stacking outbound barge containers in an automated deep-sea terminal[J]. European Journal of Operational Research, 2018, 267(3): 977-995. doi: 10.1016/j.ejor.2017.12.040
    [10] MALDONADO S, GONZÁLEZ-RAMÍREZ R G, QUIJADA F, et al. Analytics meets port logistics: a decision support system for container stacking operations[J]. Decision Support Systems, 2019, 121: 84-93. doi: 10.1016/j.dss.2019.04.006
    [11] JIN Bo, ZHU Wen-bin, LIM A. Solving the container relocation problem by an improved greedy look-ahead heuristic[J]. European Journal of Operational Research, 2015, 240(3): 837-847. doi: 10.1016/j.ejor.2014.07.038
    [12] GALLE V, BARNHART C, JAILLET P. A new binary formulation of the restricted container relocation problem based on a binary encoding of configurations[J]. European Journal of Operational Research, 2018, 267(2): 467-477. doi: 10.1016/j.ejor.2017.11.053
    [13] DA SILVA M D M, ERDOǦAN G, BATTARRA M, et al. The block retrieval problem[J]. European Journal of Operational Research, 2018, 265(3): 931-950. doi: 10.1016/j.ejor.2017.08.048
    [14] JOVANOVIC R, TUBA M, VOß S. An efficient ant colony optimization algorithm for the blocks relocation problem[J]. European Journal of Operational Research, 2019, 274(1): 78-90. doi: 10.1016/j.ejor.2018.09.038
    [15] WANG Ning, JIN Bo, LIM A. Target-guided algorithms for the container pre-marshalling problem[J]. Omega, 2015, 53: 67-77. doi: 10.1016/j.omega.2014.12.002
    [16] WANG Ning, JIN Bo, ZHANG Zi-zhen, et al. A feasibility-based heuristic for the container pre-marshalling problem[J]. European Journal of Operational Research, 2017, 256(1): 90-101. doi: 10.1016/j.ejor.2016.05.061
    [17] TANAKA S, TIERNEY K. Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm[J]. European Journal of Operational Research, 2018, 264(1): 165-180. doi: 10.1016/j.ejor.2017.05.046
    [18] TANAKA S, TIERNEY K, PARREÑO-TORRES C, et al. A branch and bound approach for large pre-marshalling problems[J]. European Journal of Operational Research, 2019, 278(1): 211-225. doi: 10.1016/j.ejor.2019.04.005
    [19] PARREÑO-TORRES C, ALVAREZ-VALDES R, RUIZ R. Integer programming models for the pre-marshalling problem[J]. European Journal of Operational Research, 2019, 274(1): 142-154. doi: 10.1016/j.ejor.2018.09.048
    [20] HOTTUNG A, TANAKA S, TIERNEY K. Deep learning assisted heuristic tree search for the container pre-marshalling problem[J]. Computers and Operations Research, 2020, 113: 104781. doi: 10.1016/j.cor.2019.104781
    [21] 段刚, 陈莉, 陈志忠, 等. 铁路集装箱堆场混堆区箱位分配优化模型与算法[J]. 铁道学报, 2011, 33(7): 1-7. doi: 10.3969/j.issn.1001-8360.2011.07.001

    DUAN Gang, CHEN Li, CHEN Zhi-zhong, et al. Model and algorithm for optimization of container storage allocation in mixed storage area of railway container yard[J]. Journal of the China Railway Society, 2011, 33(7): 1-7. (in Chinese). doi: 10.3969/j.issn.1001-8360.2011.07.001
    [22] 王力, 朱晓宁, 闫伟, 等. 铁路集装箱中心站堆场混堆优化模型[J]. 交通运输系统工程与信息, 2013, 13(2): 172-178. doi: 10.3969/j.issn.1009-6744.2013.02.026

    WANG Li, ZHU Xiao-ning, YAN Wei, et al. Optimization model of mixed storage in railway container terminal yard[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(2): 172-178. (in Chinese). doi: 10.3969/j.issn.1009-6744.2013.02.026
    [23] WANG Li, ZHU Xiao-ning, XIE Zheng-yu. Storage space allocation of inbound container in railway container[J]. Mathematical Problems in Engineering, 2014, 2014: 956536.
    [24] 计明军, 黄思佳, 郭文文. 海铁联运中心站堆场箱位指派优化[J]. 系统工程理论与实践, 2016, 36(6): 1555-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201606021.htm

    JI Ming-jun, HUANG Si-jia, GUO Wen-wen. Container allocation optimization of the center terminal yard under rail-sea intermodal transportation[J]. Systems Engineering—Theory and Practice, 2016, 36(6): 1555-1567. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201606021.htm
    [25] WANG Li, ZHU Xiao-ning, XIE Zheng-yu. Container assignment optimization considering overlapping amount and operation distance in rail-road transshipment terminal[J]. Advances in Production Engineering and Management, 2017, 12(4): 363-374. doi: 10.14743/apem2017.4.264
    [26] LI Yan-jing, ZHU Xiao-ning, WANG Li, et al. Stowage plan based slot optimal allocation in rail-water container terminal[J]. Journal of Control Science and Engineering, 2017, 2017: 5489597.
    [27] CHANG Yi-mei, ZHU Xiao-ning, HAGHANI A. The outbound container slot allocation based on the stowage plan in rail-water intermodal container terminals[J]. Measurement and Control, 2019, 52(5/6): 509-525.
    [28] CHANG Yi-mei, ZHU Xiao-ning. A novel two-stage heuristic for solving storage space allocation problems in rail-water intermodal container terminals[J]. Symmetry, 2019, 11(10): 1229. doi: 10.3390/sym11101229
    [29] 常祎妹, 朱晓宁, 王力. 集装箱码头集成调度研究综述[J]. 交通运输工程学报, 2019, 19(1): 136-146. doi: 10.3969/j.issn.1671-1637.2019.01.014

    CHANG Yi-mei, ZHU Xiao-ning, WANG Li. Review on integrated scheduling of container terminal[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 136-146. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.014
    [30] 邵乾虔. 不确定条件下的集装箱码头堆场出口箱堆存优化研究[D]. 大连: 大连海事大学, 2013.

    SHAO Qian-qian. Storage optimization for export containers in container yard with delivery sequence uncertainties[D]. Dalian: Dalian Maritime University, 2013. (in Chinese).
    [31] CASERTA M, SCHWARZE S, VOß S. A mathematical formulation and complexity considerations for the blocks relocation problem[J]. European Journal of Operational Research, 2012, 219(1): 96-104. doi: 10.1016/j.ejor.2011.12.039
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  636
  • HTML全文浏览量:  99
  • PDF下载量:  599
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-22
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回