留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于在线有向无环图的船舶轨迹压缩算法

张远强 史国友 李松

张远强, 史国友, 李松. 基于在线有向无环图的船舶轨迹压缩算法[J]. 交通运输工程学报, 2020, 20(4): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.04.019
引用本文: 张远强, 史国友, 李松. 基于在线有向无环图的船舶轨迹压缩算法[J]. 交通运输工程学报, 2020, 20(4): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.04.019
ZHANG Yuan-qiang, SHI Guo-you, LI Song. Compression algorithm of ship trajectory based on online directed acyclic graph[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.04.019
Citation: ZHANG Yuan-qiang, SHI Guo-you, LI Song. Compression algorithm of ship trajectory based on online directed acyclic graph[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 227-236. doi: 10.19818/j.cnki.1671-1637.2020.04.019

基于在线有向无环图的船舶轨迹压缩算法

doi: 10.19818/j.cnki.1671-1637.2020.04.019
基金项目: 

国家自然科学基金项目 51579025

详细信息
    作者简介:

    张远强(1982-), 男, 贵州贵阳人, 大连海事大学工学博士研究生, 从事船舶导航与监控系统研究

    史国友(1968-), 男, 安徽桐城人, 大连海事大学教授, 工学博士

  • 中图分类号: U675.7

Compression algorithm of ship trajectory based on online directed acyclic graph

Funds: 

National Natural Science Foundation of China 51579025

More Information
  • 摘要: 为了解决船舶轨迹数据的压缩问题, 提出了一种船舶轨迹在线压缩算法; 使用多次滑动推算船位判断方法清洗船舶轨迹, 使用在线有向无环图在干净轨迹上建立压缩路径树并输出采样点; 为了提高轨迹队列和路径树在内存中的查询速度, 使用哈希表对其进行管理; 为了验证提出算法的效果, 比较了真实船舶自动识别系统数据与方向保留算法、道格拉斯-普克算法的压缩时间和误差, 采用可视化方法分析了原始轨迹、清洗轨迹和压缩轨迹。试验结果表明: 在压缩时间方面, 方向保留算法和道格拉斯-普克算法的压缩时间分别约为提出算法的1.1、1.3倍, 说明提出的算法比其他2种算法的处理时间更短; 提出的算法在压缩过程中保留了时间信息, 平均同步欧氏距离误差在任何压缩率下都能保持在10 m以下, 最大同步欧氏距离误差在压缩率为1%时仅有127 m, 而其他2种算法的平均同步欧氏距离误差和最大同步欧氏距离误差不受控制, 会随机变化; 在垂直距离误差方面, 提出的算法与道格拉斯-普克算法在压缩率不小于5%的条件下, 都能保证垂直距离误差小于20 m, 而方向保留算法的垂直距离误差会随机变化; 在显示效果方面, 提出的算法能有效清除轨迹噪声点, 压缩轨迹能够较好地代表原始轨迹的宏观交通流情况。可见, 提出的算法能更高效地保留原始轨迹的形状和时间信息。

     

  • 图  1  压缩误差尺度

    Figure  1.  Compression error measure

    图  2  DOTS算法形成的简化轨迹

    Figure  2.  Simplification trajectory built by DOTS algorithm

    图  3  DOTS算法形成的压缩路径树

    Figure  3.  Compression path tree built by DOTS algorithm

    图  4  解码和输出流程

    Figure  4.  Process of decoding and output

    图  5  多次滑动推算船位

    Figure  5.  Dead reckoning by multiple sliding

    图  6  距离阈值与删除点数量曲线

    Figure  6.  Curve between distance threshold and deleted point number

    图  7  在线有向无环图流程

    Figure  7.  Process of online directed acyclic graph

    图  8  轨迹压缩流程

    Figure  8.  Process of trajectory compression

    图  9  船舶轨迹简化算法流程

    Figure  9.  Simplification algorithm process of ship trajectory

    图  10  压缩时间比较

    Figure  10.  Comparison of compression times

    图  11  平均误差比较

    Figure  11.  Comparison of average errors

    图  12  最大误差比较

    Figure  12.  Comparison of maximum errors

    图  13  垂直距离误差比较

    Figure  13.  Comparison of perpendicular distance errors

    图  14  轨迹压缩可视化效果

    Figure  14.  Visualization results of trajectory compression

    图  15  具有相同最大误差的压缩效果比较

    Figure  15.  Comparison of compression effects with same maximum error

    表  1  不同压缩率的最大误差

    Table  1.   Maximum errors of different compression ratios

    压缩率/% 1 10 30 60 90
    最大误差/m DPTS算法 100 194 75 038 35 750 9 436 297
    DP算法 30 523 24 614 7 323 4 795 866
    本文算法 127 25 20 17 15
    下载: 导出CSV
  • [1] HAMMOND T R, PETERS D J. Estimating AIS coverage from received transmissions[J]. The Journal of Navigation, 2012, 65(3): 409-425. doi: 10.1017/S0373463312000057
    [2] SHENG Pan, YIN Jing-bo. Extracting shipping route patterns by trajectory clustering model based on automatic identification system data[J]. Sustainability, 2018, 10(7): 1-13.
    [3] 牟军敏, 陈鹏飞, 贺益雄, 等. 船舶AIS-轨迹快速自适应谱聚类算法[J]. 哈尔滨工程大学学报, 2018, 39(3): 428-432. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201803005.htm

    MOU Jun-min, CHEN Peng-fei, HE Yi-xiong, et al. Fast self-tuning spectral clustering algorithm for AIS ship trajectory[J]. Journal of Harbin Engineering University, 2018, 39(3): 428-432. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201803005.htm
    [4] ZHAO Liang-bin, SHI Guo-you. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172: 456-467. doi: 10.1016/j.oceaneng.2018.12.019
    [5] ZHANG Shu-kai, SHI Guo-you, LIU Zheng-jiang, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155: 240-250. doi: 10.1016/j.oceaneng.2018.02.060
    [6] LI Song, ZHOU Jiang-hua, ZHANG Yuan-qiang. Research of vessel traffic safety in ship routeing precautionary areas based on navigational traffic conflict technique[J]. The Journal of Navigation, 2015, 68(3): 589-601. doi: 10.1017/S0373463314000939
    [7] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: a framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
    [8] ZHAO Liang-bin, SHI Guo-you. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm[J]. Ocean Engineering, 2018, 166: 37-46. doi: 10.1016/j.oceaneng.2018.08.005
    [9] ZHU Fei-xiang, MIAO Li-ming, LIU Wen. Research on vessel trajectory multi-dimensional compression algorithm based on Douglas-Peucker theory[J]. Applied Mechanics and Materials, 2014, 694: 59-62. doi: 10.4028/www.scientific.net/AMM.694.59
    [10] 张树凯, 刘正江, 张显库, 等. 基于Douglas-Peucker算法的船舶AIS航迹数据压缩[J]. 哈尔滨工程大学学报, 2015, 36(5): 595-599. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201505002.htm

    ZHANG Shu-kai, LIU Zheng-jiang, ZHANG Xian-ku, et al. A method for AIS track data compression based on Douglas-Peucker algorithm[J]. Journal of Harbin Engineering University, 2015, 36(5): 595-599. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201505002.htm
    [11] ZHANG Shu-kai, LIU Zheng-jiang, CAI Yao, et al. AIS trajectories simplification and threshold determination[J]. The Journal of Navigation, 2016, 69(4): 729-744. doi: 10.1017/S0373463315000831
    [12] VRIES G K D D, SOMEREN M V. Machine learning for vessel trajectories using compression, alignments and domain knowledge[J]. Expert Systems with Applications, 2012, 39(18): 13426-13439. doi: 10.1016/j.eswa.2012.05.060
    [13] SÁNCHEZ-HERES L F. Simplification and event identification for AIS trajectories: the equivalent passage plan method[J]. The Journal of Navigation, 2019, 72: 307-320. doi: 10.1017/S037346331800067X
    [14] SINGH A K, AGGARWAL V, SAXENA P, et al. Performance analysis of trajectory compression algorithms on marine surveillance data[C]//IEEE. 2017 International Conference on Advances in Computing, Communications and Informatics. New York: IEEE, 2017: 1074-1079.
    [15] ZHENG Yu. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): 1-41.
    [16] SUN Peng-hui, XIA Shi-xiong, YUAN Guan, et al. An overview of moving object trajectory compression algorithms[J]. Mathematical Problems in Engineering, 2016, 2016: 1-13.
    [17] 高邈, 史国友, 李伟峰. 改进的Sliding Window在线船舶AIS轨迹数据压缩算法[J]. 交通运输工程学报, 2018, 18(3): 218-227. doi: 10.3969/j.issn.1671-1637.2018.03.023

    GAO Miao, SHI Guo-you, LI Wei-feng. Online compression algorithm of AIS trajectory data based on improved sliding window[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 218-227. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.023
    [18] GAO Miao, SHI Guo-you. Ship spatio temporal key feature point online extraction based on AIS multi-sensor data using an improved sliding window algorithm[J]. Sensors, 2019, 19: 1-17. doi: 10.1109/JSEN.2019.2912688
    [19] KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series[C]//IEEE. 2001 IEEE International Conference on Date Ming. New York: IEEE, 2001: 289-296.
    [20] MERATNIA N, DE BY R A. Spatio temporal compression techniques for moving point objects[C]//Springer. Advances in Database Technology—EDBT 2004. Berlin: Springer, 2004: 765-782.
    [21] MENG Qing-bin, YU Xiao-qiang, YAO Chun-long, et al. Improvement of OPW-TR algorithm for compressing GPS trajectory data[J]. Journal of Information Processing Systems, 2017, 13(3): 533-545.
    [22] MUCKELL J, OLSEN P W J, HWANG J H, et al. Compression of trajectory data: a comprehensive evaluation and new approach[J]. Geoinformatica, 2014, 18(3): 435-460. doi: 10.1007/s10707-013-0184-0
    [23] CAO Wei-quan, LI Yun-zhao. DOTS: an online and near-optimal trajectory simplification algorithm[J]. Journal of Systems and Software, 2017, 126: 34-44. doi: 10.1016/j.jss.2017.01.003
    [24] POTAMIAS M, PATROUMPAS K, SELLIS T. Sampling trajectory streams with spatiotemporal criteria[C]//IEEE. 18th International Conference on Scientific and Statistical Database Management. New York: IEEE, 2006: 275-284.
    [25] LONG C, WONG R C W, JAGADISH H V. Direction-preserving trajectory simplification[J]. Proceedings of the VLDB Endowment, 2013, 6(10): 949-960. doi: 10.14778/2536206.2536221
    [26] DENG Ze, HAN Wei, WANG Li-zhe, et al. An efficient online direction-preserving compression approach for trajectory streaming data[J]. Future Generation Computer Systems, 2017, 68: 150-162. doi: 10.1016/j.future.2016.09.019
    [27] CHEN Min-jie, XU Man-tao, FRÄNTI P. A fast O(N) multiresolution polygonal approximation algorithm for GPS trajectory simplification[J]. IEEE Tansactions on Image Processing, 2012, 21(5): 2770-2785.
    [28] WU Lin, XU Yong-jun, WANG Qi, et al. Mapping global shipping density from AIS data[J]. The Journal of Navigation, 2017, 70(1): 67-81.
    [29] ZHAO Liang-bin, SHI Guo-you, YANG Jia-xuan. Ship trajectories pre-processing based on AIS data[J]. The Journal of Navigation, 2018, 71(5): 1210-1230.
    [30] DOUGLAS D H, PEUCKER T K. Algorithm for the reduction of the number of points required to represent a digital line or its caricature[J]. Cartographer, 1973, 10: 112-122.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  729
  • HTML全文浏览量:  183
  • PDF下载量:  723
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-19
  • 刊出日期:  2020-04-25

目录

    /

    返回文章
    返回