留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性支承块式无砟轨道冲击振动传递衰减特性试验

曾志平 田春雨 陈卓 王俊东 李世业 吴志鹏

曾志平, 田春雨, 陈卓, 王俊东, 李世业, 吴志鹏. 弹性支承块式无砟轨道冲击振动传递衰减特性试验[J]. 交通运输工程学报, 2020, 20(5): 82-92. doi: 10.19818/j.cnki.1671-1637.2020.05.006
引用本文: 曾志平, 田春雨, 陈卓, 王俊东, 李世业, 吴志鹏. 弹性支承块式无砟轨道冲击振动传递衰减特性试验[J]. 交通运输工程学报, 2020, 20(5): 82-92. doi: 10.19818/j.cnki.1671-1637.2020.05.006
CENG Zhi-ping, TIAN Chun-yu, CHEN Zhuo, WANG Jun-dong, LI Shi-ye, WU Zhi-peng. Test on impact vibration transmission and attenuation characteristics of low vibration track[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 82-92. doi: 10.19818/j.cnki.1671-1637.2020.05.006
Citation: CENG Zhi-ping, TIAN Chun-yu, CHEN Zhuo, WANG Jun-dong, LI Shi-ye, WU Zhi-peng. Test on impact vibration transmission and attenuation characteristics of low vibration track[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 82-92. doi: 10.19818/j.cnki.1671-1637.2020.05.006

弹性支承块式无砟轨道冲击振动传递衰减特性试验

doi: 10.19818/j.cnki.1671-1637.2020.05.006
基金项目: 

国家自然科学基金项目 U1734208

湖南省自然科学基金项目 2019JJ40384

中国铁建股份有限公司科技研究开发计划项目 13-C63

中央高校基本科研业务费专项资金项目 2019zzts628

详细信息
    作者简介:

    曾志平(1975-), 男, 湖南宁乡人, 中南大学教授, 工学博士, 从事高速重载铁路轨道结构及其减振降噪研究

  • 中图分类号: U213

Test on impact vibration transmission and attenuation characteristics of low vibration track

Funds: 

National Natural Science Foundation of China U1734208

Natural Science Foundation of Hunan Province 2019JJ40384

Science and Technology Research and Development Project of China Railway Construction Corporation Limited 13-C63

Fundamental Research Funds for the Central Universities 2019zzts628

More Information
  • 摘要: 针对重载铁路弹性支承块式无砟轨道(LVT)在实际应用中出现的弹性部件变形过大、易损坏等问题, 优化设计了既有弹性支承块, 将支承块短侧边坡度由1∶17.00调整为1∶4.85, 取消了块下垫板, 并采用一体化弹性套靴; 为验证设计成果, 建立了传统型LVT和改进型LVT足尺模型, 采用质量为1 120 kg的重载货车轮对, 以20 mm的落高进行落轴冲击试验, 分别从时域和频域角度对比分析了冲击作用下竖向振动在钢轨、支承块、道床板、底座板及地面等结构部件沿线路纵、竖、横向的传递衰减特性。研究结果表明: 轮轨产生的高频振动能量沿钢轨纵向传递, 低频振动能量传递给下部其他轨道结构; 竖向冲击振动在纵、竖向传递的过程中不断衰减且衰减速率逐渐降低, 在支承块和道床板表面横向传递过程中, 向外侧边缘传递振动增大; 相比传统型LVT, 改进型LVT整体弹性系数减小21.1%, 而阻尼系数增大5.4%, 其振动周期、衰减时长、振动峰值分别比传统型LVT小37.0%、21.3%和3.4%, 各结构部位功率谱密度峰值比传统型LVT小30%以上; 改进型LVT轨道结构各部位Z振级比传统型LVT小, 在地面处减小了3.65 dB, 能更有效、迅速地衰减轮轨冲击力和轨道结构振动, 振动水平更低, 降低了冲击作用对环境的影响。研究结果对于开展LVT减振性能试验验证、优化与工程应用有参考价值。

     

  • 图  1  改进型LVT和传统型LVT支承块和橡胶套靴

    Figure  1.  Bearing blocks and rubber boots of improved LVT and traditional LVT

    图  2  足尺模型与实物

    Figure  2.  Full-scale models and entities

    图  3  落轴冲击试验机

    Figure  3.  Wheelset drop impact test machine

    图  4  竖向加速度传感器布置

    Figure  4.  Arrangement of vertical acceleration sensors

    图  5  轨枕支点处加速度峰值和有效值

    Figure  5.  Peak and effective accelerations of sleeper fulcrums

    图  6  轨道结构部件加速度峰值和有效值

    Figure  6.  Peak and effective accelerations of track structure components

    图  7  支承块表面加速度峰值与有效值

    Figure  7.  Peak and effective accelerations of bearing block surface

    图  8  道床板表面加速度峰值与有效值

    Figure  8.  Peak and effective accelerations of track slab surface

    图  9  两种LVT支承块加速度时域曲线

    Figure  9.  Acceleration time domain curves of two LVT bearing blocks

    图  10  改进型LVT和传统型LVT的功率谱密度

    Figure  10.  Power spectral densities of improved LVT and traditional LVT

    表  1  两种LVT轨枕支点处Z振级、插入损失和衰减率

    Table  1.   Z vibration levels, insertion losses and attenuation rates of sleeper fulcrums of two LVTs

    结构部位 轨道类型 各轨枕支点处Z振级及插入损失/dB 纵向衰减率/(dB·m-1)
    6 7(5) 8(4) 9(3) 10(2) 11(1)
    Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失
    钢轨 改进型 159.21 -4.80 145.38 -2.29 143.41 -2.49 141.94 -2.55 141.85 -1.63 139.89 -5.48 6.44
    传统型 164.01 147.67 145.90 144.19 143.48 145.37 6.21
    支承块 改进型 146.37 -2.25 141.63 -1.83 134.67 -1.54 132.49 -1.82 129.80 -1.47 132.70 -2.17 4.32
    传统型 148.92 143.46 136.21 134.31 131.27 134.87 4.76
    道床板 改进型 124.99 -1.36 124.95 -0.33 122.08 -3.85 120.94 -1.41 118.72 -0.57 114.45 -5.17 3.34
    传统型 126.35 125.28 125.93 122.35 119.29 119.62 2.24
    下载: 导出CSV

    表  2  轨道结构部位Z振级与插入损失

    Table  2.   Z vibration levels and insertion losses of components of track structure  dB

    轨道类型 钢轨 支承块 道床板 底座板 地面
    Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失
    改进型 159.21 -4.80 146.37 -2.55 124.99 -1.36 116.77 -2.61 104.27 -3.65
    传统型 164.01 148.92 126.35 119.38 107.92
    下载: 导出CSV

    表  3  支承块处Z振级和插入损失

    Table  3.   Z vibration levels and insertion losses of bearing block dB

    轨道类型 测点1 测点2 测点3
    Z振级 插入损失 Z振级 插入损失 Z振级 插入损失
    改进型 148.09 -0.27 146.37 -2.55 148.51 -0.81
    传统型 148.36 148.92 149.31
    下载: 导出CSV

    表  4  道床板表面Z振级与插入损失

    Table  4.   Z vibration levels and insertion loss at track slab surface dB

    轨道类型 测点1 测点2 测点3 测点4 测点5
    Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失 Z振级 插入损失
    改进型 114.93 -0.12 115.51 -1.11 124.99 -1.36 130.56 -0.58 131.28 -0.20
    传统型 115.05 116.62 126.35 131.14 131.48
    下载: 导出CSV
  • [1] 杨德修. 重载铁路轨道技术发展方向研究[J]. 铁道工程学报, 2012(2): 41-44. doi: 10.3969/j.issn.1006-2106.2012.02.009

    YANG De-xiu. Research on development direction of track technology of heavy-haul railway[J]. Journal of Railway Engineering Society, 2012(2): 41-44. (in Chinese). doi: 10.3969/j.issn.1006-2106.2012.02.009
    [2] WANKE P, CHEN Zhong-fei, LIU Wan-kun, et al. Investigating the drivers of railway performance: evidence from selected Asian countries[J]. Habitat International, 2018, 80: 49-69. doi: 10.1016/j.habitatint.2018.08.004
    [3] 张鹏飞, 桂昊, 雷晓燕, 等. 列车荷载下桥上CRTS Ⅲ型板式无砟轨道挠曲力与位移[J]. 交通运输工程学报, 2018, 18(6): 61-72. doi: 10.3969/j.issn.1671-1637.2018.06.007

    ZHANG Peng-fei, GUI Hao, LEI Xiao-yan, et al. Deflection force and displacement of CRTS Ⅲ slab track on bridge under train load[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 61-72. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.06.007
    [4] 杨文茂. 重载铁路隧道内无砟轨道结构选型研究[D]. 北京: 北京交通大学, 2012.

    YANG Wen-mao. Study on selection of unballasted track in heavy haul railway tunnel[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese).
    [5] TALOTTE C, GAUTIER P E, THOMPSON D J, et al. Identification, modelling and reduction potential of railway noise sources: a critical survey[J]. Journal of Sound and Vibration, 2003, 267(3): 447-468. doi: 10.1016/S0022-460X(03)00707-7
    [6] 向俊, 林士财, 余翠英, 等. 路基不均匀沉降下无砟轨道受力与变形传递规律及其影响[J]. 交通运输工程学报, 2019, 19(2): 69-81. doi: 10.3969/j.issn.1671-1637.2019.02.007

    XIANG Jun, LIN Shi-cai, YU Cui-ying, et al. Transfer rules and effect of stress and deformation of ballastless track under uneven subgrade settlement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 69-81. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.007
    [7] 任娟娟, 闫亚飞, 胡华锋, 等. 客货共线无砟轨道钢轨支点压力时程特性分析方法[J]. 交通运输工程学报, 2019, 19(2): 82-91. doi: 10.3969/j.issn.1671-1637.2019.02.008

    REN Juan-juan, YAN Ya-fei, HU Hua-feng, et al. Analysis method on time-history characteristics of rail supporting force for mixed passenger and freight railway with ballastless track[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 82-91. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.02.008
    [8] 赵勇. 重载铁路隧道内无砟轨道结构振动特性研究[J]. 铁道建筑, 2016(3): 136-141. doi: 10.3969/j.issn.1003-1995.2016.03.33

    ZHAO Yong. Research on vibration performance of heavy haul ballastless track structure in tunnel[J]. Railway Engineering, 2016(3): 136-141. (in Chinese). doi: 10.3969/j.issn.1003-1995.2016.03.33
    [9] 尤瑞林, 王继军, 杜香刚, 等. 重载铁路弹性支承块式无砟轨道轨距保持能力计算分析[J]. 铁道建筑, 2015(3): 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503032.htm

    YOU Rui-lin, WANG Ji-jun, DU Xiang-gang, et al. Calculation analysis of gauge-keeping ability of elastic bearing block-type ballastless track on heavy haul railway[J]. Railway Engineering, 2015(3): 110-114. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201503032.htm
    [10] JONES C J C, BLOCK J R. Prediction of ground vibration from freight trains[J]. Journal of Sound and Vibration, 1996, 193(1): 205-213. doi: 10.1006/jsvi.1996.0260
    [11] SCHULTE-WERNING B, BEIER M, DEGEN K, et al. Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 1058-1069.
    [12] LOMBAERT G, GALVÍN P, FRANÇOIS S, et al. Quantification of uncertainty in the prediction of railway induced ground vibration due to the use of statistical track unevenness data[J]. Journal of Sound and Vibration, 2014, 333(18): 4232-4253. doi: 10.1016/j.jsv.2014.04.052
    [13] 赫永峰, 王青娥, 尤瑞林. 客货共线铁路弹性支承块式无砟轨道结构安全与稳定性分析[J]. 铁道学报, 2018, 40(5): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201805020.htm

    HE Yong-feng, WANG Qing-e, YOU Rui-lin. Study on safety and stability of low vibration track for mixed passenger and freight railway[J]. Journal of China Railway Society, 2018, 40(5): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201805020.htm
    [14] 尤瑞林, 王继军, 江成, 等. 时速200 km客货共线铁路隧道内弹性支承块式无砟轨道适用性研究[J]. 铁道建筑, 2015(10): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510030.htm

    YOU Rui-lin, WANG Ji-jun, JIANG Cheng, et al. Study on suitability of elastic supported block-type ballastless track in railway tunnel for passenger train and freight train shared railway at 200 km·h-1 speed[J]. Railway Engineering, 2015(10): 136-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510030.htm
    [15] 蔡成标, 徐鹏. 弹性支承块式无砟轨道结构参数动力学优化设计[J]. 铁道学报, 2011, 33(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101019.htm

    CAI Cheng-biao, XU Peng. Dynamic optimization design of the structural parameters of low vibration track[J]. Journal of the China Railway Society, 2011, 33(1): 69-75. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101019.htm
    [16] DUKKIPATI R V, DONG Ren-guang. Impact loads due to wheel flats and shells[J]. Vehicle System Dynamics, 1999, 31(1): 1-22. doi: 10.1076/vesd.31.1.1.2097
    [17] 陈小平, 王平, 陈嵘. 弹性支承块式无砟轨道的减振机理[J]. 铁道学报, 2007, 29(5): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200705015.htm

    CHEN Xiao-ping, WANG Ping, CHEN Rong. Damping vibration mechanism of the elastic bearing block track[J]. Journal of the China Railway Society, 2007, 29(5): 69-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200705015.htm
    [18] BIAN Jian, GU Yuan-tong, MURRAY M H. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis[J]. China Railway Science, 2013, 51(6): 784-797.
    [19] PETRIAEV P. The vibration impact of heavy freight train on the roadbed[J]. Procedia Engineering, 2016, 143: 1136-1143.
    [20] GERMONPRÉ M, NIELSEN J C O, DEGRANDE G, et al. Contributions of longitudinal track unevenness and track stiffness variation to railway induced vibration[J]. Journal of Sound and Vibration, 2018, 437: 292-307.
    [21] 朱剑月, 练松良. 弹性支承块轨道结构落轴冲击动力性能分析[J]. 中国铁道科学, 2006, 27(3): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603004.htm

    ZHU Jian-yue, LIAN Song-liang. Analysis on the dynamic characteristics of low vibration track by use of wheel load drop[J]. China Railway Science, 2006, 27(3): 22-26. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603004.htm
    [22] 朱剑月, 练松良. 轨道结构落轴冲击动态响应有限元分析[J]. 铁道学报, 2005, 27(3): 76-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200503015.htm

    ZHU Jian-yue, LIAN Song-liang. Railway track structure dynamic response under wheel load drop by use of FEM[J]. Journal of the China Railway Society, 2005, 27(3): 76-79. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200503015.htm
    [23] 朱剑月, 耿传智. 高架弹性支承块轨道结构落轴冲击动态响应[J]. 同济大学学报(自然科学版), 2005, 33(12): 1621-1625. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200512012.htm

    ZHU Jian-yue, GENG Chuan-zhi. Comparison investigation on dynamic responses of elevated low vibration track under wheel load drop[J]. Journal of Tongji University (Natural Science), 2005, 33(12): 1621-1625. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200512012.htm
    [24] 王祥秋, 杨林德, 高文华. 基于变分原理的整体道床结构动力有限元分析[J]. 振动与冲击, 2005, 24(4): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200504029.htm

    WANG Xiang-qiu, YANG Lin-de, GAO Wen-hua. Dynamic FEM analysis for the integration ballast structure based on variation principle[J]. Journal of Vibration and Shock, 2005, 24(4): 99-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200504029.htm
    [25] 王淑迎. 斜坡型弹性支承块式无砟轨道动力性能研究[D]. 石家庄: 石家庄铁道大学, 2019.

    WANG Shu-ying. Research on dynamic performance of slope-type low vibration track[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019. (in Chinese).
    [26] 王泽萍. 客货共线弹性支承块式无砟轨道静动力学特性研究[D]. 成都: 西南交通大学, 2019.

    WANG Ze-ping. Research on static and dynamic properties of low vibration track for mixed passenger and freight railway[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese).
    [27] 杨旭. 弹性支承块式无砟轨道轴重及速度适用性研究[D]. 石家庄: 石家庄铁道大学, 2017.

    YANG Xu. Applicability study on axle load and speed of low vibration track[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2017. (in Chinese).
    [28] 苑志强. 弹性支承块式无砟轨道纵向分块及限位措施研究[D]. 石家庄: 石家庄铁道大学, 2017.

    YUAN Zhi-qiang. Study on track block and limiting measures of low vibration track[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2017. (in Chinese).
    [29] 雷震宇, 闫旭. 车辆-轨道-桥梁竖直耦合振动程序设计及仿真[J]. 城市轨道交通研究, 2015(6): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201506010.htm

    LEI Zhen-yu, YAN Xu. Programming and simulation of vehicle-track-bridge vertical coupling vibration[J]. Urban Mass Transit, 2015(6): 28-35. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201506010.htm
    [30] 赵东. 重载铁路隧道内弹性支承块式无砟轨道结构参数研究[D]. 石家庄: 石家庄铁道大学, 2016.

    ZHAO Dong. Study on structure parameters of low vibration track in heavy haul railway tunnel[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2016. (in Chinese).
    [31] 吴斌, 李世业, 曾志平, 等. 重载列车下弹性支承块式无砟轨道静载试验[J]. 铁道工程学报, 2018(11): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201811005.htm

    WU Bin, LI Shi-ye, ZENG Zhi-ping, et al. Static load test of low vibration track under heavy haul train[J]. Journal of Railway Engineering Society, 2018(11): 27-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201811005.htm
    [32] 中铁第五勘察设计院集团有限公司, 中南大学. 重载铁路隧道内无砟轨道结构型式及相关技术研究报告[R]. 北京: 中铁第五勘察设计院集团有限公司, 2018.

    China Railway Fifth Survey and Design Institute Group Co., Ltd., Central South University. Research report on structure and related technology of ballastless track in heavy-haul railway tunnel[R]. Beijing: China Railway Fifth Survey and Design Institute Group Co., Ltd., 2018. (in Chinese).
    [33] SCALEA F L D, MCNAMARA J. Measuring high-frequency wave propagation in railroad tracks by joint time-frequency analysis[J]. Journal of Sound and Vibration, 2004, 273(3): 637-651.
    [34] 练松良, 杨文忠, 刘扬. 不同类型轨枕轨道结构动力性能试验研究[J]. 铁道学报, 2010, 32(2): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201002025.htm

    LIAN Song-liang, YANG Wen-zhong, LIU Yang. Test of dynamic behavior of the track structures with different types of sleepers[J]. Journal of the China Railway Society, 2010, 32(2): 131-136. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201002025.htm
    [35] 徐中秋. 基于1/3倍频程的轨道动力学测试参量校核[J]. 铁道建筑, 2015(5): 144-146. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505040.htm

    XU Zhong-qiu. Calibration of orbital dynamics test parameters based on 1/3 octave[J]. Railway Engineering, 2015(5): 144-146. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201505040.htm
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  665
  • HTML全文浏览量:  190
  • PDF下载量:  2242
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-22
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回