留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电机动力吸振的高速列车蛇行运动控制

张卫华 罗仁 宋春元 范军

张卫华, 罗仁, 宋春元, 范军. 基于电机动力吸振的高速列车蛇行运动控制[J]. 交通运输工程学报, 2020, 20(5): 125-134. doi: 10.19818/j.cnki.1671-1637.2020.05.010
引用本文: 张卫华, 罗仁, 宋春元, 范军. 基于电机动力吸振的高速列车蛇行运动控制[J]. 交通运输工程学报, 2020, 20(5): 125-134. doi: 10.19818/j.cnki.1671-1637.2020.05.010
ZHANG Wei-hua, LUO Ren, SONG Chun-yuan, FAN Jun. Hunting control of high-speed train using traction motor as dynamic absorber[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 125-134. doi: 10.19818/j.cnki.1671-1637.2020.05.010
Citation: ZHANG Wei-hua, LUO Ren, SONG Chun-yuan, FAN Jun. Hunting control of high-speed train using traction motor as dynamic absorber[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 125-134. doi: 10.19818/j.cnki.1671-1637.2020.05.010

基于电机动力吸振的高速列车蛇行运动控制

doi: 10.19818/j.cnki.1671-1637.2020.05.010
基金项目: 

国家自然科学基金项目 11790282

牵引动力国家重点实验室自主研究课题 2019TPL-T15

详细信息
    作者简介:

    张卫华(1961-), 男, 江苏宜兴人, 西南交通大学教授, 工学博士, 从事车辆系统动力学研究

  • 中图分类号: U270.1

Hunting control of high-speed train using traction motor as dynamic absorber

Funds: 

National Natural Science Foundation of China 11790282

Independent Subject of State Key Laboratory of Traction Power 2019TPL-T15

More Information
  • 摘要: 复兴号CR400BF高速动车组动力转向架的牵引电机采用特有的四点弹性架悬方式, 在电机和构架之间安装有横向液压减振器和横向止挡, 首次采用牵引电机作为动力吸振器来控制转向架蛇行运动稳定性和蛇行频率, 从而避免引起车体弹性模态共振; 考虑悬挂参数和轮轨接触非线性, 建立了复兴号动车组非线性多刚体动力学仿真模型, 通过悬挂模态计算和动力学时域仿真, 分析了关键参数对动车蛇行运动的影响规律; 基于将电机作为动力吸振器的原理, 优化了电机节点横向刚度和横向减振器阻尼; 考虑动车组运营中的轮轨匹配随机因素, 组合400种轮轨随机匹配状态, 仿真分析了动车的动力学性能; 开展动车组长期线路动力学跟踪试验, 研究了动力转向架蛇行运动演变规律。仿真与试验结果表明: 牵引电机弹性架悬下的构架横向加速度频谱图从以蛇行频率为主频的单峰值变化为主频在蛇行频率两侧的双峰值, 说明电机起到了动力吸振器的作用; 将电机作为动力吸振器能够提高动车蛇行运动稳定性, 具有不同等效锥度的典型轮轨匹配下非线性临界速度超过500 km·h-1; 动车蛇行运动最高频率被控制在6 Hz附近, 远离车体中部菱形弹性模态频率8.5 Hz, 避免了转向架蛇行运动激起车体弹性共振; 动车组在轨道随机不平顺激扰下, 构架端部横向加速度小于0.5g, 平稳性指标小于2.5, 轮轴横向力和脱轨系数等运行安全性指标满足要求。

     

  • 图  1  动力转向架的牵引电机弹性架悬结构

    Figure  1.  Traction motor elastic suspension structure of power bogie

    图  2  阻尼动力吸振系统

    Figure  2.  Dynamic absorption system with damping

    图  3  动车悬挂模态频率和阻尼比关系

    Figure  3.  Relationships between frequencies and damping ratios of suspension modal of motor vehicle

    图  4  电机节点横向刚度对蛇行运动的影响

    Figure  4.  Influence of lateral stiffness of motor node on hunting

    图  5  仿真采用的典型车轮和钢轨廓形

    Figure  5.  Typical wheel and rail profiles used in simulation

    图  6  蛇行运动稳定性模拟结果

    Figure  6.  Simulation results of hunting stability

    图  7  高速铁路无砟轨道不平顺

    Figure  7.  Irregularities of ballastless track of high-speed railway

    图  8  轨道随机不平顺激扰下动车350 km·h-1运行的仿真结果

    Figure  8.  Simulation results of EMU running at 350 km·h-1 under track random irregularity excitation

    图  9  构架端部横向加速度频谱

    Figure  9.  Frequency spectrums of lateral accelerations at end of bogie frame

    图  10  动力转向架蛇行频率随运营里程的变化规律

    Figure  10.  Variation rule of hunting frequency of power bogie with operating mileage

  • [1] 张卫华, 缪炳荣. 下一代高速列车关键技术的发展趋势与展望[J]. 机车电传动, 2018(1): 1-5, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201801003.htm

    ZHANG Wei-hua, MIAO Bing-rong. Development trend and prospect of key technologies for next generation high speed trains[J]. Electric Drive for Locomotives, 2018(1): 1-5, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201801003.htm
    [2] 缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70. doi: 10.3969/j.issn.1001-8360.2018.03.009

    MIAO Bing-rong, ZHANG Wei-hua, CHI Mao-ru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2018, 41(3): 58-70. (in Chinese). doi: 10.3969/j.issn.1001-8360.2018.03.009
    [3] 曹辉, 张卫华, 缪炳荣. 基于二系垂向作动器与压电作动器的动车组车体振动控制[J]. 交通运输工程学报, 2018, 18(3): 105-113. doi: 10.3969/j.issn.1671-1637.2018.03.012

    CAO Hui, ZHANG Wei-hua, MIAO Bing-rong. Vibration control of EMU car body based on secondary vertical actuators and piezoelectric actuators[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 105-113. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.012
    [4] BRAGHIN F, BRUNI S, RESTA F. Active yaw damper for the improvement of railway vehicle stability and curving performances: simulations and experimental results[J]. Vehicle System Dynamics, 2006, 44(11): 857-869. doi: 10.1080/00423110600733972
    [5] WEI Lai, ZENG Jing, CHI Mao-ru, et al. Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability[J]. Vehicle System Dynamics, 2017, 55(9): 1321-1342. doi: 10.1080/00423114.2017.1310386
    [6] SHI Hua-long, WANG Jian-bin, WU Ping-bo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8): 1187-1206. doi: 10.1080/00423114.2017.1406963
    [7] GAN Feng, DAI Huan-yun, GAO Hao, et al. Wheel-rail wear progression of high speed train with type S1002CN wheel treads[J]. Wear, 2015(328/329): 569-581.
    [8] 黄彩虹, 罗仁, 曾京, 等. 系统参数对高速列车车轮踏面凹陷磨耗的影响[J]. 交通运输工程学报, 2016, 16(3): 55-62. doi: 10.3969/j.issn.1671-1637.2016.03.007

    HUANG Cai-hong, LUO Ren, ZENG Jing, et al. Effect of system parameters on tread-hollow wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 55-62. (in Chinese). doi: 10.3969/j.issn.1671-1637.2016.03.007
    [9] 李艳, 张卫华, 周文祥. 车轮型面磨耗对车辆服役性能的影响[J]. 西南交通大学学报, 2010, 45(4): 549-554. doi: 10.3969/j.issn.0258-2724.2010.04.011

    LI Yan, ZHANG Wei-hua, ZHOU Wen-xiang. Influence of wear of wheel profile on dynamic performance of EMU[J]. Journal of Southwest Jiaotong University, 2010, 45(4): 549-554. (in Chinese). doi: 10.3969/j.issn.0258-2724.2010.04.011
    [10] ZHANG Wei-hua, SHEN Zhi-yun, ZENG Jing. Study on dynamics of coupled systems in high-speed trains[J]. Vehicle System Dynamics, 2013, 51(7): 966-1016. doi: 10.1080/00423114.2013.798421
    [11] EVANS J, BERG M. Challenges in simulation of rail vehicle dynamics[J]. Vehicle System Dynamics, 2009, 47(8): 1023-1048. doi: 10.1080/00423110903071674
    [12] 吴杰, 上官文斌. 采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用[J]. 工程力学, 2008, 25(1): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200801028.htm

    WU Jie, SHANGGUAN Wen-bin. Modeling and applications of dynamic characteristics for rubber isolators using viscoelastic fractional derivative model[J]. Engineering Mechanics, 2008, 25(1): 161-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200801028.htm
    [13] LUO Ren, SHI Huai-long, GUO Jin-ying, et al. A nonlinear rubber spring model for the dynamics simulation of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(9): 1367-1384. doi: 10.1080/00423114.2019.1624788
    [14] 刘诗慧, 石怀龙, 王玮, 等. 基于物理参数的转向架定位橡胶节点动力学建模[J]. 交通运输工程学报, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009

    LIU Shi-hui, SHI Huai-long, WANG Wei, et al. Dynamics modelling of positioning rubber joint of a bogie based on physical parameters[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 91-100. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2019.06.009
    [15] LUO Ren, TENG Wan-xiu, WU Xing-wen, et al. Dynamics simulation of a high-speed railway car operating in low-temperature environments with stochastic parameters[J]. Vehicle System Dynamics, 2020, 58(12): 1914-1934. doi: 10.1080/00423114.2019.1662922
    [16] 罗仁, 李然, 胡俊波, 等. 考虑随机参数的高速列车动力学分析[J]. 机械工程学报, 2015, 51(24): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201524012.htm

    LUO Ren, LI Ran, HU Jun-bo, et al. Dynamic analysis of high-speed train with stochastic parameters[J]. Journal of Mechanical Engineering, 2015, 51(24): 90-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201524012.htm
    [17] LUO Ren, SHI Huai-long, TENG Wan-xiu, et al. Prediction of wheel profile wear and vehicle dynamics evolution considering stochastic parameters for high-speed train[J]. Wear, 2017(392/393): 126-138.
    [18] POLACH O. On non-linear methods of bogie stability assessment using computer simulations[J]. Journal of Rail and Rapid Transit, 2006, 220(1): 13-27. doi: 10.1243/095440905X33251
    [19] 孙建锋, 池茂儒, 吴兴文, 等. 基于能量法的轮对蛇行运动稳定性[J]. 交通运输工程学报, 2018, 18(2): 82-89. doi: 10.3969/j.issn.1671-1637.2018.02.009

    SUN Jian-feng, CHI Mao-ru, WU Xing-wen, et al. Hunting motion stability of wheelset based on energy method[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 82-89. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.02.009
    [20] HUANG Cai-hong, ZENG Jing, LIANG Shu-lin. Influence of system parameters on the stability limit of the undisturbed motion of a motor bogie[J]. Journal of Rail and Rapid Transit, 2014, 228(5): 522-534. doi: 10.1177/0954409713488099
    [21] 王晓鹏, 张开林, 张雨, 等. 不同悬挂方式驱动系统的垂向耦合系统动力学模型[J]. 机车电传动, 2016(1): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201601015.htm

    WANG Xiao-peng, ZHANG Kai-lin, ZHANG Yu, et al. Vertical coupling dynamic model for driving system with different suspension[J]. Electric Drive for Locomotives, 2016(1): 58-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201601015.htm
    [22] 冯相杰, 陈康. 牵引电机悬挂方式对机车横向稳定性的影响研究[J]. 铁道机车车辆, 2018, 38(1): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201801018.htm

    FENG Xiang-jie, CHEN Kang. Effect research on suspension mode of traction motor to lateral stability of locomotive[J]. Railway Locomotive and Car, 2018, 38(1): 62-65. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201801018.htm
    [23] YAO Yuan, ZHANG Xiao-xiao, LIU Xu. The active control of the lateral movement of a motor suspended under a high-speed locomotive[J]. Journal of Rail and Rapid Transit, 2016, 230(6): 1509-1520. doi: 10.1177/0954409715605138
    [24] YAO Yuan, LI Guang, SARDAHI Y, et al. Stability enhancement of a high-speed train bogie using active mass inertial actuators[J]. Vehicle System Dynamics, 2019, 57(3): 389-407. doi: 10.1080/00423114.2018.1469776
    [25] YAO Yuan, WU Guo-song, SARDAHI Y, et al. Hunting stability analysis of high-speed train bogie under the frame lateral vibration active control[J]. Vehicle System Dynamics, 2018, 56(2): 297-318.
    [26] ALFI S, MAZZOLA L, BRUNI S. Effect of motor connection on the critical speed of high-speed railway vehicles[J]. Vehicle System Dynamics, 2008, 46: 201-214.
    [27] 徐坤, 曾京, 黄彩虹, 等. 牵引电机架悬参数对动车转向架稳定性的影响[J]. 铁道学报, 2019, 41(8): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201908004.htm

    XU Kun, ZENG Jing, HUANG Cai-hong, et al. Influence of suspension parameters of traction motor on stability of high speed train bogie[J]. Journal of the China Railway Society, 2019, 41(8): 32-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201908004.htm
    [28] 罗湘萍, 詹庆涛, 吴凯桦. 动车组转向架簧间大质量部件(牵引电机)振动解耦技术方案[J]. 城市轨道交通研究, 2016, 19(3): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201603008.htm

    LUO Xiang-ping, ZHAN Qing-tao, WU Kai-hua. Vibration decoupling technology of the massive components (traction motor) between springs in EMU bogie[J]. Urban Mass Transit, 2016, 19(3): 28-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201603008.htm
    [29] 徐坤, 曾京, 黄彩虹, 等. 高速动车电机架悬参数对转向架动力学性能影响研究[J]. 振动与冲击, 2018, 37(20): 95-100, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820015.htm

    XU Kun, ZENG Jing, HUANG Cai-hong, et al. The influence of motor elastic bogie-suspended parameters of high-speed vehicles on the dynamic performance of bogies[J]. Journal of Vibration and Shock, 2018, 37(20): 95-100, 108. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820015.htm
  • 加载中
图(10)
计量
  • 文章访问数:  662
  • HTML全文浏览量:  234
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回