留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人员密集型地铁车站安全风险评价方法

汪益敏 罗跃 于恒 陈嘉诚 黄鑫

汪益敏, 罗跃, 于恒, 陈嘉诚, 黄鑫. 人员密集型地铁车站安全风险评价方法[J]. 交通运输工程学报, 2020, 20(5): 198-207. doi: 10.19818/j.cnki.1671-1637.2020.05.016
引用本文: 汪益敏, 罗跃, 于恒, 陈嘉诚, 黄鑫. 人员密集型地铁车站安全风险评价方法[J]. 交通运输工程学报, 2020, 20(5): 198-207. doi: 10.19818/j.cnki.1671-1637.2020.05.016
WANG Yi-min, LUO Yue, YU Heng, CHEN Jia-cheng, HUANG Xin. Evaluation method of security risk on crowded metro station[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 198-207. doi: 10.19818/j.cnki.1671-1637.2020.05.016
Citation: WANG Yi-min, LUO Yue, YU Heng, CHEN Jia-cheng, HUANG Xin. Evaluation method of security risk on crowded metro station[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 198-207. doi: 10.19818/j.cnki.1671-1637.2020.05.016

人员密集型地铁车站安全风险评价方法

doi: 10.19818/j.cnki.1671-1637.2020.05.016
基金项目: 

国家重点研发计划项目 2016YFC0802500

详细信息
    作者简介:

    汪益敏(1966-), 女, 湖南浏阳人, 华南理工大学教授, 工学博士, 从事交通运输工程安全评价与防护技术研究

  • 中图分类号: U491.17

Evaluation method of security risk on crowded metro station

Funds: 

National Key Research and Development Program of China 2016YFC0802500

More Information
  • 摘要: 为准确评价人员密集型地铁车站的安全状况, 通过文献检索、案例收集与问卷调查等方式, 在考虑主、客观危险源的基础上对人员密集型地铁车站进行了安全风险因素识别研究, 建立了四级共包含55个指标的安全评价指标体系, 风险类型包括火灾、踩踏、恐怖袭击、水灾、地震等, 明确了各级指标权重的计算方法、指标分值的获取方法及其安全等级类型和分值范围; 基于可拓理论, 建立了四级风险指标的安全分值计算方法和人员密集型地铁车站的安全风险等级判定准则与评价方法, 通过MATLAB对安全评价方法进行编程, 并对广州地铁3号线体育西路车站的安全状态进行了快速评价。计算结果表明: 体育西路车站安全一级指标与各安全等级的关联度矩阵为(-0.057 6, -0.462 4, -0.588 2, -0.628 1)T, 二级指标中踩踏事故与各安全等级的关联度矩阵为(-0.354 8, -0.741 5, -0.724 5, -0.690 4, -0.186 5)T, 根据最大关联度原则, 体育西路车站总体处于安全状态, 但在拥挤与踩踏、人员疏散环境以及管理对策等方面存在安全隐患, 而车站良好的运营安全风险管控措施降低了不安全因素的影响。可见, 采用评价方法有利于准确了解地铁车站的安全状况, 及时发现安全隐患, 制定应对措施, 保障地铁车站安全运营。

     

  • 图  1  不同城市地铁客运量

    Figure  1.  Metro passenger volumes in different cities

    图  2  风险事件统计结果

    Figure  2.  Statistical result of risk incidents

    图  3  风险事件易发性统计结果

    Figure  3.  Likelihood statistical results of risk incidents

    图  4  火灾安全性指标体系

    Figure  4.  Indicator system of fire security

    图  5  踩踏事件安全性指标体系

    Figure  5.  Indicator system of stampede incident security

    图  6  暴力与恐怖袭击事件安全性指标体系

    Figure  6.  Indicator system of violence and terrorist attack incident security

    图  7  辅助设备安全指标体系

    Figure  7.  Indicator system of auxiliary equipment security

    图  8  地震与水灾安全性指标体系

    Figure  8.  Indicator system of earthquake and flood security

    图  9  地铁车站安全评价程序界面

    Figure  9.  Interface of security evaluation program of metro station

    图  10  火灾安全性四级指标安全等级

    Figure  10.  Security grades of 4-level fire security indicators

    图  11  踩踏事件安全性四级指标安全等级

    Figure  11.  Security grades of 4-level stampede incident security indicators

    图  12  暴力与恐怖袭击事件安全性四级指标安全等级

    Figure  12.  Security grades of 4-level violence and terrorist attack incident security indicators

    图  13  辅助设备安全性四级指标安全等级

    Figure  13.  Security grades of 4-level auxiliary equipment security indicators

    图  14  地震与水灾安全性四级指标安全等级

    Figure  14.  Security grades of 4-level earthquake and flood security indicators

    图  15  三级指标安全性等级

    Figure  15.  Security grades of 3-level security indicators

    表  1  踩踏事件安全性四级指标安全等级与对应的分值范围

    Table  1.   Security grades and corresponding score ranges of 4-level indicators for stampede incident

    指标名称 安全等级与分值范围 分值范围
    安全 较安全 一般 较危险 危险
    出口畅通率/% (95, 100] (90, 95] (85, 90] (80, 85] [0, 80] [0, 100]
    疏散指示标志合格率/% (96, 100] (94, 96] (92, 94] (90, 92] [0, 90] [0, 100]
    疏散广播故障率/% [0, 2) [2, 5) [5, 8) [8, 10) [10, 100] [0, 100]
    车站繁忙程度/万人次 [0, 10) [10, 20) [20, 30) [30, 40) [40, 100] [0, 100]
    站台拥挤程度/(人·m-2) [0, 0.5) [0.5, 0.7) [0.7, 0.8) [0.8, 1.0) [1.0, 10.0] [0, 10.0]
    站厅拥挤程度/(人·m-2) [0, 0.6) [0.6, 0.8) [0.8, 0.9) [0.9, 1.1) [1.1, 10.0] [0, 10.0]
    商业区人行通道拥挤程度/(人·m-2) [0, 0.4) [0.4, 0.6) [0.6, 0.7) [0.7, 0.9) [0.9, 10.0] [0, 10.0]
    踩踏事故疏散预案 (9, 10] (7, 9] (6, 7] (5, 6] [0, 5] [0, 10]
    疏散演习间隔/年 [0, 0.5) [0.5, 1.0) [1.0, 1.5) [1.5, 2.0) [2.0, 10.0] [0, 10.0]
    工作人员踩踏事故应对能力 (9, 10] (8, 9] (7, 8] (6, 7] [0, 6] [0, 10]
    下载: 导出CSV

    表  2  踩踏事件安全性四级指标分值获取方法

    Table  2.   Score acquisition methods of 4-level indicators for stampede incident security

    指标 分值获取方法
    出口畅通率 调研统计地铁车站中保持通畅(无杂物堆积、通道畅通)的出口占全部出口的比例
    疏散指示标志合格率 随机抽查地铁车站中能正常工作的疏散指示标志所占比例
    疏散广播故障率 通过发放调查表, 统计在有纪录的时间内, 广播不能正常工作的时间
    车站繁忙程度 根据收集到的客流资料, 统计车站年日均客流量
    站台拥挤程度 现场调研计算高峰时期站台统计区域客流密度
    站厅拥挤程度 现场调研计算高峰时期站厅统计区域客流密度
    商业区人行通道拥挤程度 现场调研计算高峰时期商业区人行通道统计区域客流密度
    踩踏事故疏散预案 根据收集到的车站踩踏事故疏散预案, 对预案完善程度进行分析、打分, 0分表示未针对踩踏事故制定任何预案, 10分表示制定了完善的各类大客流预案及踩踏事故应对措施
    疏散演习 通过发放调查表, 统计车站开展疏散演习的频率
    工作人员踩踏事故应对能力 通过收集到的演习记录及车站人员管理、考核文件, 对工作人员在面对大客流或突发事件时能正确采取措施的能力进行评价、打分, 0分代表工作人员未受过任何训练, 10分代表工作人员多次参与人员疏散模拟、有较强的临危处理能力
    下载: 导出CSV

    表  3  二级指标判断矩阵

    Table  3.   Judgment matrix for 2-level indicators

    人员密集型地铁车站安全 火灾 拥挤与踩踏 暴力与恐怖袭击 辅助设备 地震与水灾
    火灾 1 3 1 5 4
    拥挤与踩踏 1/3 1 1/3 4 3
    暴力与恐怖袭击 1 3 1 5 4
    辅助设备 1/5 1/4 1/5 1 1/2
    地震与水灾 1/4 1/3 1/4 2 1
    下载: 导出CSV

    表  4  指标B1节域、经典域与待评价物元

    Table  4.   Matter elements of joint domain, classical domain and evaluation for indicator B1

    指标 节域物元 经典域物元 待评价物元
    Rp R1 R2 R3 R4 R5 Rd
    B11/% [0, 100] (95, 100] (90, 95] (85, 90] (80, 85] [0, 80] v1
    B12/% [0, 100] (96, 100] (94, 96] (92, 94] (90, 92] [0, 90] v2
    B13/% [0, 100] [0, 2) [2, 5) [5, 8) [8, 10) [10, 100] v3
    B14 [0, 100] [0, 10) [10, 20) [20, 30) [30, 40) [40, 100] v4
    下载: 导出CSV

    表  5  安全等级计算结果

    Table  5.   Calculation result of security grades

    一、二级指标名称 安全等级 安全等级
    安全 较安全 一般 较危险 危险
    火灾安全性 0.142 1 -0.535 4 -0.708 7 -0.804 7 -0.844 2 安全
    踩踏事件安全性 -0.354 8 -0.741 5 -0.724 5 -0.690 4 -0.186 5 危险
    暴力与恐怖袭击事件安全性 -0.096 4 -0.306 5 -0.383 3 -0.371 6 -0.357 3 安全
    辅助设备安全性 -0.069 3 -0.512 5 -0.763 0 -0.879 0 -0.918 3 安全
    自然灾害安全性 -0.141 6 -0.224 9 -0.560 4 -0.679 2 -0.754 3 安全
    人员密集型地铁车站安全性 -0.057 6 -0.462 4 -0.588 2 -0.628 1 -0.562 6 安全
    下载: 导出CSV
  • [1] 中国城市轨道交通协会. 城市轨道交通2019年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2020. China Association of Metros. Statistical and analytical report of urban rail transit in 2019[R]. Beijing: China Association of Metros, 2020. (in Chinese).
    [2] SHI Cong-ling, ZHONG Mao-hua, NONG Xing-zhong, et al. Modeling and safety strategy of passenger evacuation in a metro station in China[J]. Safety Science, 2012, 50(5): 1319-1332. doi: 10.1016/j.ssci.2010.07.017
    [3] HE Lin, LIANG Qiang-sheng, FANG Si-yuan. Challenges and innovative solutions in urban rail transit network operations and management: China's Guangzhou metro experience[J]. Urban Rail Transit, 2016, 2(1): 33-45. doi: 10.1007/s40864-016-0036-y
    [4] LEI Wen-jun, LI An-gui, GAO Ran, et al. Simulation of pedestrian crowds' evacuation in a huge transit terminal subway station[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(22): 5355-5365. doi: 10.1016/j.physa.2012.06.033
    [5] MOOFIE K. The king's cross fire: damage assessment and overview of the technical investigation[J]. Fire Safety Journal, 1992, 18(1): 13-33. doi: 10.1016/0379-7112(92)90045-E
    [6] LI Yue, WU Yu-zhe. Research on the impact of crisis events on urban development—a case study of Kunming railway station terrorist attack[C]//Springer. Proceedings of the 20th international symposium on advancement of construction management and real estate. Berlin: Springer, 2017: 139-144.
    [7] XIE Ke-fan, MEI Yan-lan, GUI Ping, et al. Early-warning analysis of crowd stampede in metro station commercial area based on internet of things[J]. Multimedia Tools and Applications, 2019, 78(21): 30141-30157. doi: 10.1007/s11042-018-6982-5
    [8] GONZVA M, BARROCA B, GAUTIER P E, et al. Modeling disruptions causing domino effects in urban guided transport systems faced by flood hazards[J]. Natural Hazards, 2017, 86(1): 183-201. doi: 10.1007/s11069-016-2680-7
    [9] HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293. doi: 10.1016/S0886-7798(01)00051-7
    [10] ALKHADIM M, GIDADO K, NOEL P. Risk management: the effect of FIST on perceived safety in crowded large space buildings[J]. Safety Science, 2018, 108: 29-38. doi: 10.1016/j.ssci.2018.04.021
    [11] LI Wen-hang, GONG Jian-hua, YU Ping, et al. Simulation and analysis of congestion risk during escalator transfers using a modified social force model[J]. Physica A: Statistical Mechanics and its Applications, 2015, 420: 28-40. doi: 10.1016/j.physa.2014.10.044
    [12] LI Wen-hang, GONG Jian-hua, YU Ping, et al. Simulation and analysis of individual trampling risk during escalator transfers[J]. Physica A: Statistical Mechanics and its Applications, 2014, 408: 119-133. doi: 10.1016/j.physa.2014.03.071
    [13] LI Wen-hang, GONG Jian-hua, YU Ping, et al. Modeling, simulation and analysis of group trampling risks during escalator transfers[J]. Physica A: Statistical Mechanics and its Applications, 2016, 444: 970-984. doi: 10.1016/j.physa.2015.10.091
    [14] 寇丽平. 人员密集场所风险评估理论与标准化方法研究[D]. 北京: 中国地质大学, 2008.

    KOU Li-ping. Study on risk assessment theory and standardization method of assembly occupancies[D]. Beijing: China University of Geosciences, 2008. (in Chinese).
    [15] 王亚飞, 朱伟, 马英楠. 人员密集场所风险定量分级模型研究[J]. 中国安全生产科学术, 2019, 15(S1): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK2019S1014.htm

    WANG Ya-fei, ZHU Wei, MA Ying-nan. Study on the quantitative risk ranking model of crowded places[J]. Journal of Safety Science and Technology, 2019, 15(S1): 68-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK2019S1014.htm
    [16] CHENG Ze-yang, LU Jian, ZHAO Yi. Pedestrian evacuation risk assessment of subway station under large-scale sport activity[J]. International Journal of Environmental Research and Public Health, 2020, 17(11): 1-15.
    [17] WANG Qi-quan. Subway crowded and stampede neural networks safety assessment basing on SHEL model[C]//Springer. Man-Machine-Environment System Engineering. Berlin: Springer, 2016: 455-468.
    [18] 陆莹, 李启明, 高原. 基于案例推理的地铁运营安全事故案例库构建[J]. 东南大学学报(自然科学版), 2015, 45(5): 990-995. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505030.htm

    LU Ying, LI Qi-ming, GAO Yuan. Construction of accident case database for subway operation based on case-based reasoning[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(5): 990-995. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201505030.htm
    [19] 任刚, 陈佳洁, 高瑾瑶, 等. 基于改进可拓物元法的地铁车站运营安全评价方法[J]. 城市轨道交通研究, 2020, 23(3): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202003034.htm

    REN Gang, CHEN Jia-jie, GAO Jin-yao, et al. Safety assessment of metro station operation based on improved extension and matter element method[J]. Urban Mass Transit, 2020, 23(3): 136-139. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202003034.htm
    [20] 代齐齐. 基于可拓学理论的地铁运营安全评价研究[D]. 成都: 西南交通大学, 2013.

    DAI Qi-qi. Study on safety evaluation of subway operation based on extenics theory[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese).
    [21] 赖克光. 地铁消防安全评估模型及应用研究[D]. 广州: 华南理工大学, 2013.

    LAI Ke-guang. Research on the evaluation model and application of subway fire safety[D]. Guangzhou: South China University of Technology, 2013. (in Chinese).
    [22] 欧雯. 恐怖袭击下城市轨道交通网络抗毁性分析[D]. 成都: 西南交通大学, 2014.

    OU Wen. Analysis of the urban rail transit network survivability under the terrorist attacks[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese).
    [23] 黄超, 殷建国, 张军, 等. 层次分析法计算风险评估指标权重[J]. 中国公共安全(学术版), 2018, 51(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GGAQ201802006.htm

    HUANG Chao, YIN Jian-guo, ZHANG Jun, et al. Calculation of risk assessment index weight by analytic hierarchy process[J]. China Public Security (Academy Edition), 2018, 51(2): 19-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GGAQ201802006.htm
    [24] 郭湛, 商小雷, 李海. 基于AHP的轨道交通安全评价体系模型[J]. 中国铁道科学, 2011, 32(3): 123-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201103024.htm

    GUO Zhan, SHANG Xiao-lei, LI Hai. AHP-based safety assessment model for rail transit system[J]. China Railway Science, 2011, 32(3): 123-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201103024.htm
    [25] 骆正清, 杨善林. 层次分析法中几种标度的比较[J]. 系统工程理论与实践, 2004(9): 51-60. doi: 10.3321/j.issn:1000-6788.2004.09.009

    LUO Zheng-qing, YANG Shan-lin. Comparative study on several scales in AHP[J]. Systems Engineering—Theory and Practice, 2004(9): 51-60. (in Chinese). doi: 10.3321/j.issn:1000-6788.2004.09.009
    [26] YU Heng, WANG Yi-min, QIU Pei-yun, et al. Analysis of natural and man-made accidents happened in subway stations and trains: based on statistics of accident cases[J]. MATEC Web of Conferences, 2019, 272: 1-10. doi: 10.1051/matecconf/201927200001
    [27] SAATY T L. How to make a decision: the analytic hierarchy process[J]. European Journal of Operational Research, 1990, 48(1): 9-26.
    [28] 于恒, 汪益敏, 仇培云. 基于可拓理论的地铁车站多风险因素安全评价体系[J]. 交通工程, 2019, 19(2): 72-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201902013.htm

    YU Heng, WANG Yi-min, QIU Pei-yun. Multi-risk factor safety evaluation system for metro stations based on extension theory[J]. Journal of Transportation Engineering, 2019, 19(2): 72-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLJA201902013.htm
    [29] 蔡文, 杨春燕. 可拓学的基础理论与方法体系[J]. 科学通报, 2013, 58(13): 1190-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313005.htm

    CAI Wen, YANG Chun-yan. Basic theory and methodology on extenics[J]. Chinese Science Bulletin, 2013, 58(13): 1190-1199. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201313005.htm
    [30] 杨春燕, 张拥军, 蔡文. 可拓集合及其应用研究[J]. 数学的实践与认识, 2002, 32(2): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200202023.htm

    YANG Chun-yan, ZHANG Yong-jun, CAI Wen. Study on extension set and its applications[J]. Mathematics in Practice and Theory, 2002, 32(2): 301-308. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS200202023.htm
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  344
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-03
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回