留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶航速优化综述

袁裕鹏 王康豫 尹奇志 严新平

袁裕鹏, 王康豫, 尹奇志, 严新平. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002
引用本文: 袁裕鹏, 王康豫, 尹奇志, 严新平. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002
YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, YAN Xin-ping. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002
Citation: YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, YAN Xin-ping. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002

船舶航速优化综述

doi: 10.19818/j.cnki.1671-1637.2020.06.002
基金项目: 

国家自然科学基金项目 51809202

详细信息
    作者简介:

    袁裕鹏(1980-), 男, 湖北武汉人, 武汉理工大学副教授, 工学博士, 从事船舶新能源与能效控制研究

    通讯作者:

    严新平(1959-), 男, 江西莲花人, 武汉理工大学教授, 工学博士, 中国工程院院士

  • 中图分类号: U675

Review on ship speed optimization

Funds: 

National Natural Science Foundation of China 51809202

More Information
    Author Bio:

    YUAN Yu-peng (1980-), male, associate professor, PhD, ypyuan@whut.edu.cn

    YAN Xin-ping (1959-), male, professor, PhD, academician of Chinese academy of engineering, xpyan@whut.edu.cn

  • 摘要: 从航速优化模型、油耗预测模型、航速优化模型求解方法与船舶能效管理系统方面, 分析了国内外航速优化研究现状, 探讨了航速优化存在的问题, 并针对这些问题提出了建议。研究结果表明: 在航运市场持续萎靡的情况下, 经济航行将被更广泛应用, 针对航速优化的研究仍然具有重要的意义; 在航速优化模型方面, 目前多集中在以碳排放政策、不确定因素的影响、排放控制区政策、船队调度等为单一优化目标建立航速优化模型, 优化目标主要为成本最小化和利润最大化, 未来应将航速与航线、纵倾、船队部署联合优化, 考虑多种不确定因素、多种优化目标建立航速优化模型; 在油耗预测模型方面, 预测模型主要分为白盒模型、黑盒模型和灰盒模型, 白盒模型具有更好的可解释性, 黑盒模型的预测性能更好, 灰盒模型弥补了白盒模型和黑盒模型的缺点, 将成为未来的研究重点, 未来应基于精确的船舶数据和先进的人工智能算法进行数据学习, 提升油耗预测模型预测准确性; 在优化算法方面, 由于航速优化模型的复杂性, 大多采用启发式算法进行优化求解, 这种算法可以减少优化求解时间和提高求解质量, 未来需要探索更加精确高效的求解算法; 在优化策略方面, 采用大数据分析可以识别天气对航行的影响, 动态优化策略可以补偿环境因素引起的扰动, 能够进一步提升船舶能效水平; 在船舶能效管理系统方面, 船舶能效管理系统主要包括航行数据采集、数据传输、数据储存、数据分析与智能决策等功能, 由于其成本高昂, 目前尚未在船舶上大规模运用。

     

  • 图  1  2009~2019年全球航运贸易量

    Figure  1.  Global maritime trade volume from 2009 to 2019

    图  2  船舶能效的优化方法

    Figure  2.  Optimization methods of ship energy efficiency

    图  3  托运人模糊满意度

    Figure  3.  Shipper fuzzy satisfaction degree

    图  4  全球ECA分布

    Figure  4.  Global ECA distribution

    图  5  ECA折射说明

    Figure  5.  Illustration of ECA refraction

    图  6  船-机-桨相互作用[37]

    Figure  6.  Hull-engine-propeller interaction

    图  7  回归模型性能比较

    Figure  7.  Performance comparison of regression models

    图  8  初始航线分段

    Figure  8.  Initial route segmentation

    图  9  动态优化策略

    Figure  9.  Dynamic optimization strategy

    图  10  航速优化过程

    Figure  10.  Speed optimization process

    图  11  船舶能效管理系统结构

    Figure  11.  Structure of ship energy efficiency management system

    表  1  航速优化模型分类

    Table  1.   Classification of speed optimization models

    文献 优化准则 船队规模 船舶类型 能否调整船队规模 油耗函数 是否考虑不同航段最佳航速 航路选择 是否考虑港口 是否考虑ECA 是否考虑不确定因素 是否考虑排放
    [8] 年度利润 单船 集装箱船 三次函数 固定航线
    [9] 航次利润 7艘单船 集装箱、油轮、散装船 三次函数 固定航线
    [10] 年度成本 单船 集装箱船 三次函数 灵活航线
    [11] 航次成本、排放、时间 船队 集装箱船 三次函数 灵活航线
    [12] 航次成本、托运人满意度 单船 不定期货船 未指定 固定航线
    [13] 航次利润 单船 未指定 三次函数 固定航线
    [14] 航线利润 船队 集装箱船 三次函数 固定航线
    [15] 周营运成本 船队 集装箱船 三次函数 固定航线
    [16] 单位集装箱运输成本 9艘单船 集装箱 三次函数 固定航线
    [18] 航次总油耗 单船 集装箱 三次函数 固定航线
    [19] 航次总油耗或碳排放 单船 集装箱船 三次函数 固定航向
    [20] 航次成本 2艘单船 集装箱船 三次函数 固定航线
    [21] 航线成本 船队 集装箱船 幂函数 固定航线
    [22] EEOI 单船 冰区船舶 三次函数 固定航线
    [23] 航次燃油成本 单船 未指定 线性插值函数 灵活航线
    [24] 每日利润 单船 未指定 三次函数 灵活航线
    [25] 航次燃油费用、SO2排放 单船 集装箱船 线性插值函数 灵活航线
    [26] 年度成本 船队 集装箱船 三次函数 灵活航线
    [27] 年度成本 船队 集装箱船 三次函数 固定航线
    [28] 年度成本 船队 集装箱船 三次函数 固定航线
    [29] 周营运成本 船队 集装箱船 幂函数 灵活航线
    [30] 年度燃油消耗、碳排放 船队 散货船 未指定 固定航线
    [31] 航线油耗 船队 散货船 未指定 固定航线
    下载: 导出CSV

    表  2  油耗预测模型优缺点比较

    Table  2.   Advantages and disadvantages comparison of fuel consumption prediction models

    模型类别 模型可解释性 预测准确性 对历史数据的需求 外推能力 对专业知识的需求
    白盒模型 较好 一般 不需要 较好 需要
    黑盒模型 较好 大量 不需要
    灰盒模型 较好 较好 少量 较好 需要
    下载: 导出CSV

    表  3  油耗预测模型分类

    Table  3.   Classification of fuel consumption prediction models

    文献 船舶类型 预测模型类别 理论方法 预测模型输入 预测模型输出 数据采集方法
    [36] 内河船舶 白盒模型 Holtrop-Mennnen方法 主机转速、风速、浪高、流速 对地航速和单位时间油耗量 数据采集系统
    [37] 内河游船 白盒模型 Holtrop-Mennnen方法 对水航速、流速 对地航速和单位时间油耗量 数据采集系统
    [40] 油轮 白盒模型 Kwon方法 航速、风浪方向、风浪等级、洋流速度、洋流方向 每小时油耗量 航行日志
    [41] 油轮 白盒模型 Holtrop-Mennnen方法和改进Kwon方法 对水航速、风浪方向、风浪等级 单位时间油耗量 航行日志
    [42] 集装箱船 白盒模型 Kwon方法和Aertssen方法 航速、船长、风浪方向和等级 每小时油耗量
    [43] 内河船舶 黑盒模型 BPNN 主机转速、风速、风向、水深、流速 对地航速和单位时间油耗量 数据采集系统
    [44] 散货船 黑盒模型 ANN和遗传算法 发动机转速、风速、风向、浪高、流速 对地航速和单位时间油耗量 数据采集系统
    [45] 冰区船舶 黑盒模型 BPNN 冰浓度、航速 EEOI 数据采集系统
    [46] 内河船舶 黑盒模型和白盒模型 BPNN和Holtrop-Mennnen方法 主机转速、风速、风向、水深、流速 对地航速和单位时间油耗量 数据采集系统
    [47] 集装箱船 黑盒模型 LASSO 船体数据、天气数据、海况数据等 每日油耗量 航运公司航行数据平台
    [48] 散货船 多种黑盒模型 线形回归、决策树回归、随机森林回归、额外树回归、SVR、K最近邻、ANN和集成方法 航速、发动机转速、流速、风速、风向、海况、吃水等 每日油耗量 数据采集系统和航行日志
    [49] 内河旅游船 黑盒模型 随机森林算法 航速、风速、风向、流速、水深 每公里油耗量 数据采集系统
    [50] 特大型油轮 黑盒模型 ANN和多元回归 船舶对地航速、水深、风速、涌浪和波浪等级、海流大小等参数 每海里油耗量 船舶自动连续检测系统、自动识别系统和天气预报
    [51] 集装箱船 黑盒模型 ASAE 船体数据、天气数据、主机数据等 船舶航速 数据采集系统
    [52] 化学品船 白盒模型、黑盒模型和2种灰盒模型 Harvald方法、正则化最小二乘法、LASSO回归、随机森林回归 船体数据、主机数据、天气数据等 轴功率、轴扭矩和主机油耗 数据采集系统
    [53] 集装箱船 灰盒模型 Kwon方法和最小二乘法 航速、排水量、波高、风浪方向、风浪等级 每日油耗量 航行日志
    [54] 油轮 灰盒模型 Kwon方法和遗传算法 航速、排水量、风浪方向、风浪等级 每日油耗量 航行日志
    下载: 导出CSV

    表  4  航速优化模型求解方法分类

    Table  4.   Classification of speed optimization model solution methods

    文献 优化准则 优化对象 船舶类型 船队规模 优化算法
    [12] 航次成本、托运人满意度 不同航段船舶航速 不定期货船 单船 粒子群算法
    [56] 航次油耗量 不同航段的船舶航速 未指定 单船 最短路径算法
    [57] 航线利润 船舶货物分配、船舶航线、船舶航速 不定期船 船队 多起点局部搜索算法、递归平滑算法
    [58] 航次燃油成本、排放 不同航段的船舶航速 货船 单船 高效的SOP算法
    [59] 航线利润 船舶航线、不同航段的船舶航速 不定期油轮 船队 一种启发式的分支定价算法
    [60] 计划期限内的船队利润 船队部署、船舶航速 滚装船 船队 滚动式启发算法
    [61] 航次油耗、安全性 发动机转速 散货船 单船 粒子群算法
    [62] 航次燃油成本 船舶航线、不同航段的船舶航速 班轮 单船 禁忌搜索算法
    [63] 航线成本 船舶航线、不同航段的船舶航速 未指定 单船 Dijkstra算法、CPLEX求解器
    [65] 航次油耗量 不同时间步长下的船舶航速 旅游船 单船 动态优化优化算法设计的DOSEE控制器
    [66] 给定时间段内的油耗量 不同航段的船舶纵倾、船舶航速 未指定 单船 基于动态规划的两步全局优化算法
    [67] 航线燃油消耗 不同航段的船舶航速 长江旅游船、货船和集装箱船 单船 大数据分析、K-means聚类算法、粒子群算法
    [68] 航线燃油消耗、服务水平 不同航段的船舶航速 班轮 单船 大数据分析、粒子群算法
    下载: 导出CSV
  • [1] UNCTAD. Review of maritime transport 2020[R]. New York: UNCTAD, 2020.
    [2] SHARMINA M, MCGLADE C, GILBERT P, et al. Global energy scenarios and their implications for future shipped trade[J]. Marine Policy, 2017, 84(1): 12-21.
    [3] IMO. Fourth IMO GHG study 2020-final report note by the secretariat[R]. London: IMO, 2020.
    [4] IMO. Understanding CO2 emissions and challenges in assessing the operational efficiency for ships[R]. London: IMO, 2018.
    [5] GOLIAS M M, SAHARIDIS G K, BOILE M, et al. The berth allocation problem: optimizing vessel arrival time[J]. Maritime Economics and Logistics, 2009, 11(4): 358-377. doi: 10.1057/mel.2009.12
    [6] FABER J, NELISSEN D, HON G, et al. Regulated slow steaming in maritime transport: an assessment of options[R]. Delft: CE Delft, 2012.
    [7] CHANG C C, CHANG C H. Energy conservation for international dry bulk carriers via vessel speed reduction[J]. Energy Policy, 2013, 59: 710-715. doi: 10.1016/j.enpol.2013.04.025
    [8] CORBETT J J, WANG Hai-feng, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D: Transport and Environment, 2009, 14(8): 593-598. doi: 10.1016/j.trd.2009.08.005
    [9] CHANG C C, WANG C M. Evaluating the effects of speed reduce for shipping costs and CO2 emission[J]. Transportation Research Part D: Transport and Environment, 2014, 31: 110-115. doi: 10.1016/j.trd.2014.05.020
    [10] PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C: Emerging Technologies. 2014, 44: 52-69.
    [11] WEN M, PACINO D, KONTOVAS C A, et al. A multiple ship routing and speed optimization problem under time, cost and environmental objectives[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 303-321. doi: 10.1016/j.trd.2017.03.009
    [12] YU Bin, PENG Zi-xuan, TIAN Zhi-hui. et al. Sailing speed optimization for tramp ships with fuzzy time window[J]. Flexble Services and Manufacturing Journal, 2019, 31(2): 308-330. doi: 10.1007/s10696-017-9296-4
    [13] WANG Chuan-xu, XU Chang-yan. Sailing speed optimization in voyage chartering ship considering different carbon emissions taxation[J]. Computers and Industrial Engineering, 2015, 89(SI): 108-115.
    [14] LAN Xian-gang, ZUO Xiao-de, TANG Xia. The impact of different carbon emission policies on liner shipping[J]. Journal of Marine Sciences, 2020, 2020: 8956045-1-12.
    [15] XING Yu-wei, YANG Hua-long, MA Xue-fei, et al. Optimization of ship speed and fleet deployment under carbon emissions policies for container shipping[J]. Transport, 2019, 34(2): 260-274.
    [16] DING Wen-yi, WANG Yu-bing, DAI Lei, et al. Does a carbon tax affect the feasibility of arctic shipping?[J]. Transportation Research Part D: Transport and Environment. 2020, 80: 102257-1-15.
    [17] KOSMAS V, ACCIARO M. Bunker levy schemes for green house gas (GHG) emission reduction in international shipping[J]. Transportation Research Part D: Transport and Environment, 2017, 57: 195-206. doi: 10.1016/j.trd.2017.09.010
    [18] QI Xiang-tong, SONG Dong-Ping. Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(4): 863-880. doi: 10.1016/j.tre.2012.02.001
    [19] AYDIN N, LEE H, MANSOURIB S A. Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports[J]. European Journal of Operational Research, 2017, 259(1): 143-154. doi: 10.1016/j.ejor.2016.10.002
    [20] SHENG Xiao-ming, CHEW E P, LEE L H. (s, S) policy model for liner shipping refueling and sailing speed optimization problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2015, 76: 76-92. doi: 10.1016/j.tre.2014.12.001
    [21] WANG Ya-dong, MENG Qiang, KUANG Hai-bo. Jointly optimizing ship sailing speed and bunker purchase in liner shipping with distribution-free stochastic bunker prices[J]. Transportation Research Part C: Emerging Technologies, 2018, 89: 35-52. doi: 10.1016/j.trc.2018.01.020
    [22] HOU Yuan-hang, KANG Kai, LIANG Xiao. Vessel speed optimization for minimum EEOI in ice zone considering uncertainty[J]. Ocean Engineering, 2019, 188: 106240-1-9.
    [23] FAGERHOLT K, GAUSEL N T, RAKKE J G, et al. Maritime routing and speed optimization with emission control areas[J]. Transportation Research Part C: Emerging Technologies, 2015, 52: 57-73. doi: 10.1016/j.trc.2014.12.010
    [24] FAGERHOLT K, PSARAFTIS H N. On two speed optimization problems for ships that sail in and out of emission control areas[J]. Transportation Research Part D: Transport and Environment, 2015, 39: 56-64. doi: 10.1016/j.trd.2015.06.005
    [25] ZHEN Lu, HU Zhuang, YAN Ran, et al. Route and speed optimization for liner ships under emission control policies[J]. Transportation Research Part C: Emerging Technologies, 2020, 110: 330-345. doi: 10.1016/j.trc.2019.11.004
    [26] SHENG Dian, MENG Qiang, LI Zhi-Chun. Optimal vessel speed and fleet size for industrial shipping services under the emission control area regulation[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 37-53. doi: 10.1016/j.trc.2019.05.038
    [27] PSARAFTIS H N, KONTOVAS C A. Balancing the economic and environmental performance of maritime transportation[J]. Transportation Research Part D: Transport and Environment, 2010, 15(8): 458-462. doi: 10.1016/j.trd.2010.05.001
    [28] RONEN D. The effect of oil price on containership speed and fleet size[J]. Journal of the Operational Research Society, 2011, 62(1): 211-216. doi: 10.1057/jors.2009.169
    [29] WANG S, MENG Q. Sailing speed optimization for container ships in a liner shipping network[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(3): 701-714. doi: 10.1016/j.tre.2011.12.003
    [30] CEPEDA M A F, ASSIS L F, MARUJO L G, et al. Effects of slow steaming strategies on a ship fleet[J]. Marine Systems and Ocean Technology, 2017, 12(3): 178-186. doi: 10.1007/s40868-017-0033-3
    [31] WANG Kai, LI Jia-yuan, YAN Xin-ping, et al. A novel bi-level distributed dynamic optimization method of ship fleets energy consumption[J]. Ocean Engineering, 2020, 197: 106802-1-13.
    [32] 刘志全. 航速损失最小的船舶减摇控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.

    LIU Zhi-quan. Study on the roll stabilization control method with speed loss minimization[D]. Harbin: Harbin Engineering University, 2015. (in Chinese).
    [33] 金鸿章, 刘志全, 姜述强. 船舶横摇运动姿态与波浪增阻的关系研究[J]. 应用科学学报, 2013, 31(3): 309-314. doi: 10.3969/j.issn.0255-8297.2013.03.014

    JIN Hong-zhang, LIU Zhi-quan, JIANG Shu-qiang. Relationship between ship roll attitude and added resistance[J]. Journal of Applied Science-Electronics Information Engineering, 2013, 31(3): 309-314. (in Chinese). doi: 10.3969/j.issn.0255-8297.2013.03.014
    [34] CHEN C, SHIOTANI S, SASA K. Numerical ship navigation based on weather and ocean simulation[J]. Ocean Engineering, 2013, 69: 44-53. doi: 10.1016/j.oceaneng.2013.05.019
    [35] SUN Xing, YAN Xin-ping, WU Bing, et at. Analysis of the operational energy efficiency for inland river ships[J]. Transportation Research Part D: Transport and Environment, 2013, 22: 34-39. doi: 10.1016/j.trd.2013.03.002
    [36] 孙星, 严新平, 尹奇志, 等. 考虑通航环境要素的内河船舶主机营运能效模型[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(2): 264-267. doi: 10.3963/j.issn.2095-3844.2015.02.008

    SUN Xing, YAN Xin-ping, YIN Qi-zhi, et al. Modeling of main engine operational energy efficiency for an inland waterway ship with the consideration of navigation environment[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2015, 39(2): 264-267. (in Chinese). doi: 10.3963/j.issn.2095-3844.2015.02.008
    [37] 范爱龙, 严新平, 尹奇志, 等. 船舶主机能效模型[J]. 交通运输工程学报, 2015, 15(4): 69-76. doi: 10.19818/j.cnki.1671-1637.2015.04.009

    FAN Ai-long, YAN Xin-ping, YIN Qi-zhi, et al. Energy efficiency model of marine main engine[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 69-76. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2015.04.009
    [38] HOLTROP J, MENMEN G G J. An approximate power prediction method[J]. International Shipbuilding Progress, 1982, 29(7): 166-170.
    [39] KWON Y. Speed loss due to added resistance in wind and waves[J]. Naval Architect, 2008(3): 14-16.
    [40] YANG Li-qian, CHEN Gang, ZHAO Jin-lou, et al. Ship speed optimization considering ocean currents to enhance environmental sustainability in maritime shipping[J]. Sustainability, 2020, 12(9): 3649-1-24.
    [41] LU Rui-hua, TURAN O, BOULOUGOURIS E, et al. A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping[J]. Ocean Engineering, 2015, 110(SI): 18-28.
    [42] LI Xiao-he, SUN Bao-zhi, GUO Chun-yu, et al. Speed optimization of a container ship on a given route considering voluntary speed loss and emissions[J]. Applied Ocean Research, 2020, 94: 101995-1-10.
    [43] YAN Xin-ping, SUN Xing, YIN Qi-zhi. Multiparameter sensitivity analysis of operational energy efficiency for inland river ships based on backpropagation neural network method[J]. Marine Technology Society Journal, 2015, 49(1): 148-153. doi: 10.4031/MTSJ.49.1.5
    [44] SUN Chao, WANG Hai-yan, LIU Chao, et al. Dynamic prediction and optimization of energy efficiency operational index (EEOI) for an operating ship in varying environments[J]. Journal of Marine Science and Engineering, 2019, 7(11): 402-1-15.
    [45] ZHANG Chi, ZHANG Di, ZHANG Ming-yang, et al. Data-driven ship energy efficiency analysis and optimization model for route planning in ice-covered Arctic waters[J]. Ocean Engineering, 2019, 186: 106071-1-12.
    [46] 孙星. 考虑通航环境要素的内河船舶营运能效研究[D]. 武汉: 武汉理工大学, 2015.

    SUN Xing. Research on operational energy efficiency for inland river ships with involvement of navigation environment[D]. Wuhan: Wuhan University of Technology, 2015. (in Chinese).
    [47] WANG Sheng-zheng, JI Bao-xian, ZHAO Jian-sen, et al. Predicting ship fuel consumption based on LASSO regression[J]. Transportation Research Part D: Transport and Environment, 2018, 65: 817-824. doi: 10.1016/j.trd.2017.09.014
    [48] GKEREKOS C, LAZAKIS I, THEOTOKATOS G. Machine learning models for predicting ship main engine fuel oil consumption: a comparative study[J]. Ocean Engineering, 2019, 188: 106288-1-14.
    [49] 牟小辉, 袁裕鹏, 严新平, 等. 基于随机森林算法的内河船舶油耗预测模型[J]. 交通信息与安全, 2017, 35(4): 100-105. doi: 10.3963/j.issn.1674-4861.2017.04.013

    MOU Xiao-hui, YUAN Yu-peng, YAN Xin-ping, et al. A prediction model of fuel consumption for inland ships based on random forest algorithm[J]. Journal of Transport Information and Safety, 2017, 35(4): 100-105. (in Chinese). doi: 10.3963/j.issn.1674-4861.2017.04.013
    [50] FARAG Y B A, ÖLÇER A I. The development of a ship performance model in varying operating conditions based on ANN and regression techniques[J]. Ocean Engineering, 2020, 198: 106972-1-12.
    [51] 王胜正, 申心泉, 赵建森, 等. 基于ASAE深度学习预测海洋气象对船舶航速的影响[J]. 交通运输工程学报, 2018, 18(2): 139-147. doi: 10.3969/j.issn.1671-1637.2018.02.015

    WANG Sheng-zheng, SHEN Xin-quan, ZHAO Jian-sen, et al. Prediction of marine meteorological effect on ship speed based on ASAE deep learning[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 139-147. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.02.015
    [52] CORADDU A, ONETO L, BALDI F, et al. Vessels fuel consumption forecast and trim optimisation: a data analytics perspective[J]. Ocean Engineering, 2017, 130: 351-370. doi: 10.1016/j.oceaneng.2016.11.058
    [53] MENG Qiang, DU Yu-quan, WANG Ya-dong. Shipping log data based container ship fuel efficiency modeling[J]. Transportation Research Part B: Methodological, 2016, 83: 207-229. doi: 10.1016/j.trb.2015.11.007
    [54] YANG Li-qiang, CHEN Gang, RYTTER N G M, et al. A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping[J]. Annals of Operations Research, 2019, DOI:https:∥doi.org/ 10.1007/s10479-019-03183-5.
    [55] 姚雪蕾, 袁成清, 赵相宽, 等. 基于CFD的粗糙度及污损附着对船舶阻力的影响[J]. 表面技术, 2017, 46(6): 27-34. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201706005.htm

    YAO Xue-lei, YUAN Cheng-qing, ZHAO Xiang-kuan, et al. Effect of surface roughness and fouling on ship resistance based on cfd analysis[J]. Surface Technology, 2017, 46(6): 27-34. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201706005.htm
    [56] FAGERHOLT K, LAPORTE G, NORSTAD I. Reducing fuel emissions by optimizing speed on shipping routes[J]. Journal of the Operational Research Society, 2010, 61(3): 523-529. doi: 10.1057/jors.2009.77
    [57] NORSTAD I, FAGERHOLTA K, LAPORTE G. Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 853-865. doi: 10.1016/j.trc.2010.05.001
    [58] HE Qie, ZHANG Xiao-chen, NIP K. Speed optimization over a path with heterogeneous arc costs[J]. Transportation Research Part B: Methodological, 2017, 104: 198-214. doi: 10.1016/j.trb.2017.07.004
    [59] WEN M, ROPKE S, PETERSEN H L, et al. Full-shipload tramp ship routing and scheduling with variable speeds[J]. Computers and Operations Research, 2016, 70: 1-8. doi: 10.1016/j.cor.2015.10.002
    [60] ANDERSSON H, FAGERHOLT K, HOBBESLAND K. Integrated maritime fleet deployment and speed optimization: Case study from RoRo shipping[J]. Computers and Operations Research, 2015, 55: 233-240. doi: 10.1016/j.cor.2014.03.017
    [61] WANG Kai, YAN Xin-ping, YUAN Yu-peng, et al. Optimizing ship energy efficiency: application of particle swarm optimization algorithm[J]. Journal of Engineering for the Maritime Environment, 2018, 232(4): 379-391.
    [62] ZHEN Lu, LI Miao, HU Zhuang, et al. The effects of emission control area regulations on cruise shipping[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 47-63. doi: 10.1016/j.trd.2018.02.005
    [63] MA Dong-fang, MA Wei-hao, JIN Sheng, et al. Method for simultaneously optimizing ship route and speed with emission control areas[J]. Ocean Engineering, 2020, 202: 107170-1-10.
    [64] WANG Kai, YAN Xin-ping, YUAN Yu-peng, et al. Real-time optimization of ship energy efficiency based on the prediction technology of working condition[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 81-93. doi: 10.1016/j.trd.2016.03.014
    [65] WANG Kai, YAN Xin-ping, YUAN Yu-peng, et al. Dynamic optimization of ship energy efficiency considering time-varying environmental factors[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 685-698. doi: 10.1016/j.trd.2018.04.005
    [66] DU Yu-quan, MENG Qiang, WANG Shuai-an, et al. Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data[J]. Transportation Research Part B: Methodological, 2019, 122: 88-114. doi: 10.1016/j.trb.2019.02.004
    [67] YAN Xin-ping, WANG Kai, YUAN Yu-peng, et al. Energy-efficient shipping: an application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors[J]. Ocean Engineering, 2018, 169: 457-468. doi: 10.1016/j.oceaneng.2018.08.050
    [68] LEE H, AYDIN N, CHOI Y, et al. A decision support system for vessel speed decision in maritime logistics using weather archive big data[J]. Computers and Operations Research, 2018, 98: 330-342. doi: 10.1016/j.cor.2017.06.005
    [69] European Commission. Regulation (EU) 2015/757 of the European parliament and of the council on the monitoring, reporting and verification of carbon dioxide emissions from maritime transport, and amending directive 2009/16/EC[R]. Brussels: European Commission, 2015.
    [70] IMO. Report of the marine environment protection committee on its 70th session[R]. London: IMO, 2016.
    [71] ACOMI N, ACOMI O C, STANCA C. The use of ECDIS equipment to achieve an optimum value for energy efficiency operation index[C]//IOP. 3rd International Conference on Modern Technologies in Industrial Engineering. Bristol: IOP, 2015: 12071-1-7.
    [72] 马东芝, 严新平, 赵江滨, 等. 船舶能效信息采集与远程传输系统设计[J]. 交通信息与安全, 2014, 32(4): 92-96. doi: 10.3963/j.issn.1674-4861.2014.04.017

    MA Dong-zhi, YAN Xin-ping, ZHAO Jiang-bin, et al. Remote acquisition and transmission system of vessel energy efficiency information[J]. Journal of Transport Information and Safety, 2014, 32(4): 92-96. (in Chinese). doi: 10.3963/j.issn.1674-4861.2014.04.017
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2820
  • HTML全文浏览量:  741
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回