留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HB-FRP加固混凝土梁研究综述

张峰 高小华 高磊 吴宇飞 朱世超

张峰, 高小华, 高磊, 吴宇飞, 朱世超. HB-FRP加固混凝土梁研究综述[J]. 交通运输工程学报, 2020, 20(6): 35-47. doi: 10.19818/j.cnki.1671-1637.2020.06.003
引用本文: 张峰, 高小华, 高磊, 吴宇飞, 朱世超. HB-FRP加固混凝土梁研究综述[J]. 交通运输工程学报, 2020, 20(6): 35-47. doi: 10.19818/j.cnki.1671-1637.2020.06.003
ZHANG Feng, GAO Xiao-hua, GAO Lei, WU Yu-fei, ZHU Shi-chao. Review on research on concrete beam reinforced with HB-FRP[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 35-47. doi: 10.19818/j.cnki.1671-1637.2020.06.003
Citation: ZHANG Feng, GAO Xiao-hua, GAO Lei, WU Yu-fei, ZHU Shi-chao. Review on research on concrete beam reinforced with HB-FRP[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 35-47. doi: 10.19818/j.cnki.1671-1637.2020.06.003

HB-FRP加固混凝土梁研究综述

doi: 10.19818/j.cnki.1671-1637.2020.06.003
基金项目: 

国家自然科学基金项目 51108249

山东省自然科学基金项目 ZR2016EEM21

江苏省国际科技合作项目 BZ2018003

山东省交通运输厅科技计划项目 2018B61

详细信息
    作者简介:

    张峰(1978-), 男, 江苏泰兴人, 山东大学教授, 工学博士, 从事桥梁加固研究

  • 中图分类号: U448.213

Review on research on concrete beam reinforced with HB-FRP

Funds: 

National Natural Science Foundation of China 51108249

Natural Science Foundation of Shandong Province ZR2016EEM21

International Scientific and Technological Cooperation Projects of Jiangs Province BZ2018003

Science and Technology Program Projects of Transportation Department of Shandong Province 2018B61

More Information
  • 摘要: 为总结混合粘贴纤维复合材料(HB-FRP)加固方法的研究成果, 推动其在混凝土梁维修加固领域的更广泛应用, 调研了HB-FRP加固法的研究现状, 揭示了外贴HB-FRP在外荷载和环境侵蚀下容易发生剥离的问题; 阐述了HB-FRP抑制FRP加固后剥离的工作机理, 分析了HB-FRP加固体系的构造特征及其对界面黏结力的影响; 总结了已有黏结-滑移模型和剥离荷载模型, 研究了加固梁的抗弯和抗剪性能; 分析了当前工作的不足, 并展望了下一步的研究方向和思路。分析结果表明: 外荷载和环境侵蚀均可能引起FRP剥离, HB-FRP加固同时发挥了化学黏结、摩擦和销栓作用, 有效地抑制了FRP剥离; 目前几种HB-FRP黏结-滑移关系的主要区别为达到界面黏结强度时FRP是否会发生稳定的滑移; 黏结界面极限剥离荷载取决于其黏结-滑移关系; HB-FRP加固可用于正截面抗弯和斜截面抗剪, 加固梁承载力和加固效率可得到大幅提高; 增加FRP配置率和钢扣件数量能有效提高加固梁的抗弯能力, 钢扣件间距对加固梁承载力的影响和加固设计准则还不明确, 裂缝和外荷载对加固梁的剥离荷载、材料利用率和破坏模式影响显著; 加固梁抗剪强度的增加主要来自FRP和混凝土提供的剪力, 而箍筋的影响较弱; 增加FRP加固量和减小条带间距能显著提高加固梁的抗剪承载力; 后续应继续研究HB-FRP加固设计理论, 提出考虑材料与构造特征的黏结特性计算模型和基于界面剪力的HB-FRP钢扣件间距设计方法, 进而建立HB-FRP加固混凝土梁的优化抗弯、抗剪设计方法和设计公式。

     

  • 图  1  钢扣件抑制FRP剥离的工作机理

    Figure  1.  Working mechanism of steel fasteners in inhibiting FRP debonding

    图  2  螺栓锚固力

    Figure  2.  Anchor forces of bolts

    图  3  混凝土剥离面摩擦试验

    Figure  3.  Friction test on concrete debonding surface

    图  4  销栓力-钢压板滑移曲线

    Figure  4.  Dowel force-steel plate slip curve

    图  5  销栓作用测试装置

    Figure  5.  Test device of dowel effect

    图  6  钢扣件类型

    Figure  6.  Types of steel fasteners

    图  7  35 m T梁抗弯性能试验[44]

    Figure  7.  Flexure resistance performance test of 35 m span T-beam

    图  8  钢扣件交叉分布

    Figure  8.  Cross-distribution of steel fasteners

    图  9  加固梁抗剪试验

    Figure  9.  Shear resistance test on reinforced beam

    表  1  FRP和混凝土界面黏结测试结果

    Table  1.   Interfacial bonding test results between FRP and concrete

    试验模式 试件编号 钢扣件数量 扭矩/(N·m) 钢压板宽度/mm 钢扣件间距/mm 螺栓直径/mm FRP宽度/mm FRP厚度/mm 剥离强度/kN 破坏模式
    单剪 BIa 50 1.169 38.70 a
    单剪 BIb 6 30 100 6.35 50 1.169 58.60 a
    单剪 BIIa 50 1.169 42.50 a
    单剪 BIIb 6 30 100 6.35 50 1.169 110.90 a
    单剪 BIIIa 50 1.169 47.20 b
    单剪 BIIIb 6 30 100 6.35 50 1.169 119.30 b
    单剪 BIIIc1 12 30 100 6.35 50 1.169 114.00 c
    单剪 BIIIc2 12 30 100 6.35 50 1.169 154.60 b
    单剪 BIIId1 12 30 100 6.35 50 1.169 176.70 c
    单剪 BIIId2 12 30 100 6.35 45 1.503 > 230.00
    双剪 M-EB 50 0.330 48.70 b
    双剪 M-HB-A 1 30 4.10 50 0.330 68.90 b
    双剪 M-HB-B 1 30 4.10 50 0.330 78.10 b
    单剪 C30-0-1 36 0.167 7.90 b
    单剪 C30-0-2 36 0.167 9.01 b
    单剪 C30-0-3 36 0.167 7.63 b
    单剪 C30-4-1 1 4 17 6.00 36 0.167 14.30 b
    单剪 C30-4-2 1 4 17 6.00 36 0.167 13.30 b
    单剪 C30-4-3 1 4 17 6.00 36 0.167 12.00 b
    单剪 C30-5-1 1 5 17 6.00 36 0.167 15.70 b
    单剪 C30-5-2 1 5 17 6.00 36 0.167 15.90 b
    单剪 C30-5-3 1 5 17 6.00 36 0.167 14.60 b
    单剪 C30-7-1 1 7 17 6.00 36 0.167 17.80 b
    单剪 C30-7-2 1 7 17 6.00 36 0.167 18.30 b
    单剪 C30-7-3 1 7 17 6.00 36 0.167 16.70 b
    单剪 C30-9-1 1 9 17 6.00 36 0.167 21.90 b
    单剪 C30-9-2 1 9 17 6.00 36 0.167 20.00 b
    单剪 C30-9-3 1 9 17 6.00 36 0.167 19.20 b
    单剪 C30-11-1 1 11 17 6.00 36 0.167 20.70 c
    单剪 C30-11-2 1 11 17 6.00 36 0.167 20.40 c
    单剪 C30-11-3 1 11 17 6.00 36 0.167 21.30 c
    BM1 60 0.334 9.60 b
    BM2 1 60 150 12.00 60 0.334 16.39 b
    BM3 1 60 150 12.00 60 0.334 22.82 d
    BM4 60 0.334 24.27 b
    BM5 2 60 150 12.00 60 0.334 41.67 b
    BM6 60 0.334 17.71 b
    BM7 3 60 150 12.00 60 0.334 68.39 c
    BM8 60 0.334 25.71 b
    BM9 4 60 150 12.00 60 0.334 75.62 c
    BM9 4 60 150 12.00 60 0.334 75.62 c
    BM10 2 60 225 12.00 60 0.334 71.76 b
    BM11 1 60 450 12.00 60 0.334 68.69 b
    双剪 SL1 50 0.167 12.75 b
    双剪 SL2 1 30 8.00 50 0.167 13.50 c
    双剪 SL3 1 30 8.00 50 0.167 13.75 c
    双剪 SL4 1 30 8.00 50 0.167 13.75 c
    单剪 BFI-1 1 15 60 8.00 50 1.400 83.00 b
    单剪 BFI-2 1 15 60 8.00 50 1.400 71.00 b
    单剪 E0a 50 0.668 21.00 b
    单剪 H2a 2 15 60 500 8.00 50 0.668 61.00 b
    单剪 H2b 2 15 60 500 8.00 50 0.668 61.00 b
    单剪 H2c 2 15 60 500 8.00 50 0.668 62.00 b
    单剪 H3a 3 15 60 500 8.00 50 0.668 70.00 b
    单剪 H3b 3 15 60 500 8.00 50 0.668 72.00 b
    单剪 H3ha 3 15 60 500 8.00 50 0.668 82.00 b
    下载: 导出CSV

    表  2  抗弯加固模型试验结果

    Table  2.   Model test results of flexural resistance reinforcement

    试件编号 加固方式 混凝土强度/MPa 钢扣件数量 扭矩/(N·m) 钢扣件间距/mm FRP宽/mm FRP厚度/mm 荷载/kN 破坏模式
    s1 EB 80.00 0 100 50 0.334 19.08 b
    s2 HB 81.20 19 100 50 0.334 34.22 c
    s3 HB 82.00 19 100 50 0.668 54.35 c
    s4 HB 82.00 19 100 50 1.002 70.26 b
    EB1-a-T EB 47.80 0 50 1.002 103.50 b
    HB2-200a-T HB 44.60 12 100、200 50 1.002 111.50 a
    HB3-150a-T HB 45.40 16 75、150 50 1.002 150.10 d
    HB4-125a-T HB 45.40 18 62.5、125 50 1.002 145.40 d
    HB5-100a-T HB 56.10 22 50、100 50 1.002 158.20 d
    HB6-200b-F HB 57.10 12 75、200、200 50 1.002 96.00 e
    HB7-100b-F HB 57.10 18 75、200、100 50 1.002 114.4 e
    EB8-b-F EB 57.10 0 50 1.002 69.90 b
    HB9-100b-T HB 56.80 22 75、100 50 1.002 98.20 e
    A1 EB 66.00 0.334 19.14 b
    A2 HB 66.00 15 100 50 0.334 26.60 c
    A3 HB 66.00 15 150 50 0.334 29.80 c
    A4 HB 66.00 15 100 50 0.501 32.80 c
    A5 HB- 66.00 15 150 50 0.501 30.10 c
    A6 HB 66.00 15 200 50 0.501 34.60 c
    A7 HB 66.00 15 100 50 0.668 39.30 c
    A8 HB 66.00 15 150 50 0.668 41.10 c
    A9 HB 66.00 15 200 50 0.668 42.80 c
    B1 EB 66.00 50 0.334 23.10 b
    B2 HB 66.00 15 100 50 0.334 30.46 c
    B3 HB 66.00 15 150 50 0.334 33.39 c
    B4 HB 66.00 15 100 50 0.501 37.38 c
    B5 HB 66.00 15 150 50 0.501 38.93 c
    B6 HB 66.00 15 200 50 0.501 40.64 c
    B7 HB 66.00 15 100 50 0.668 46.02 c
    B8 HB 66.00 15 150 50 0.668 52.53 c
    B9 HB 66.00 15 200 50 0.668 48.71 c
    C1 HB 66.00 15 100 50 1.002 53.27 c
    C2 HB 66.00 15 100 50 1.169 64.02 c
    NS-NP 未加固 22.98 78.53
    S-OP EB 22.98 200 0.444 117.67 b
    S-FP1 HB 22.98 27 150、300 200 0.444 136.37 b+e
    S-FP2 HB 22.98 27 > 40 150、300 200 0.444 137.04 c
    S-FP3 HB 22.98 27 > 40 150、300 200 0.555 161.85 c
    S-FP4 HB 22.98 19 > 40 300 200 0.555 142.16 c
    CB1 未加固 20.00 57.66 f
    EB-1-0 EB 20.00 36 0.334 62.10 b
    HB-1-3 HB 20.00 12 3 150 36 0.334 64.88 c
    HB-1-6 HB 20.00 12 6 150 36 0.334 70.16 c
    HB-1-12 HB 20.00 12 12 150 36 0.334 72.35 c
    CB2 未加固 31.70 62.45 f
    EB-4-0 EB 31.70 36 1.336 72.47 b
    HB-4-10 HB 31.70 12 10 150 36 1.336 80.38 c+d
    HB-4-15 HB 31.70 12 15 150 36 1.336 100.23 c+d
    HB-4-20 HB 31.70 12 20 150 36 1.336 109.62 c
    下载: 导出CSV
  • [1] AMRAN Y M, ALYOUSEF R, RASHID R S M, et al. Properties and applications of FRP in strengthening RC structures: a review[J]. Structures, 2018, 16: 208-238. doi: 10.1016/j.istruc.2018.09.008
    [2] KIM Y J. State of the practice of FRP composites in highway bridges[J]. Engineering Structures, 2019, 179: 1-8. doi: 10.1016/j.engstruct.2018.10.067
    [3] SIWOWSKI T, KULPA M, RAJCHEL M, et al. Design, manufacturing and structural testing of all-composite FRP bridge girder[J]. Composite Structures, 2018, 206: 814-827. doi: 10.1016/j.compstruct.2018.08.048
    [4] ROUDSARI S, HAMOUSH S, SOLEIMANI S, et al. Analytical study of reinforced concrete beams strengthened by FRP bars subjected to impact loading conditions[J]. American Journal of Engineering and Applied Sciences, 2018, DOI: 10.3844/ofsp.11916.
    [5] SHA Xin, DAVIDSON J S. Analysis of transfer length for prestressed FRP tendons in pretensioned concrete using composite beam theory[J]. Composite Structures, 2019, 208: 665-677. doi: 10.1016/j.compstruct.2018.10.012
    [6] ZHAO Liang-ying. Characterizations of RC beams strengthened with carbon fiber sheets[D]. Huntsville: University of Alabama, 2005.
    [7] BAKIS C E, BANK L C, BROWN V, et al. Fiber-reinforced polymer composites for construction state of the art review[J]. Journal of Composites for Construction, 2002, 6(2): 73-87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73)
    [8] BISCAIA H C, SILVA M A G, CHASTRE C. Factors influencing the performance of externally bonded reinforcement systems of GFRP-to-concrete interfaces[J]. Materials and Structures, 2015, 48(9): 2961-2981. doi: 10.1617/s11527-014-0370-z
    [9] BARBIERI G, BIOLZI L, BOCCIARELLI M, et al. Size and shape effect in the pull-out of FRP reinforcement from concrete[J]. Composite Structures, 2016, 143: 395-417. doi: 10.1016/j.compstruct.2016.01.097
    [10] CHEN Jian-fei, TENG Jin-guang. Anchorage strength models for FRP and steel plates bonded to concrete[J]. Journal of Structural Engineering, 2001, 127(7): 784-791. doi: 10.1061/(ASCE)0733-9445(2001)127:7(784)
    [11] LU Xin-zheng, TENG Jin-guang, YE Lie-ping, et al. Bond-slip models for FRP sheets/plates bonded to concrete[J]. Engineering Structures, 2005, 27(6): 920-937. doi: 10.1016/j.engstruct.2005.01.014
    [12] PAN Jin-long, LEUNG C K Y. Effect of concrete composition on FRP/concrete bond capacity[J]. Journal of Composites for Construction, 2007, 11(6): 611-618. doi: 10.1061/(ASCE)1090-0268(2007)11:6(611)
    [13] TENG Jin-guang, YUAN Hong, CHEN Jian-fei. FRP-to-concrete interfaces between two adjacent cracks: theoretical model for debonding failure[J]. International Journal of Solids and Structures, 2006, 43(18/19): 5750-5778.
    [14] TENG Jin-guang, SMITH S T, YAO Jian, et al. Intermediate crack-induced debonding in RC beams and slabs[J]. Construction and Building Materials, 2003, 17(6): 447-462.
    [15] MOHAMMADI T, WAN Bao-lin, HARRIES K A, et al. Bond behavior of FRP-concrete in presence of intermediate crack debonding failure[J]. Journal of Composites for Construction, 2017, 21(5): 04017018. doi: 10.1061/(ASCE)CC.1943-5614.0000797
    [16] ROSENBOOM O, RIZKALLA S H. Experimental study of intermediate crack debonding in fiber-reinforced polymer strengthened beams[J]. ACI Structural Journal, 2008, 105(1): 41-50.
    [17] TURCO A, BOCCIARELLI M, NANNI A, et al. Influence of width and thickness of composite laminates on the flexural behavior of reinforced concrete beams and slabs[J]. Composite Structures, 2017, 178: 186-194. doi: 10.1016/j.compstruct.2017.06.024
    [18] WU Yu-fei, HUANG Yue. Hybrid bonding of FRP to reinforced concrete structures[J]. Journal of Composites for Construction, 2008, 12(3): 266-273. doi: 10.1061/(ASCE)1090-0268(2008)12:3(266)
    [19] TOUTANJI H, HAN Meng, GHORBEL E. Interfacial bond strength characteristics of FRP and RC substrate[J]. Journal of Composites for Construction, 2011, 16(1): 35-46.
    [20] OEHLERS D J, VISINTIN P, LUCAS W. Fundamental mechanics governing FRP-retrofitted RC beams with anchored and prestressed FRP plates[J]. Journal of Composites for Construction, 2016, 20(6): 04016047. doi: 10.1061/(ASCE)CC.1943-5614.0000710
    [21] OEHLERS D J, MOHAMED ALI M, HASKETT M, et al. FRP-reinforced concrete beams: unified approach based on IC theory[J]. Journal of Composites for Construction, 2010, 15(3): 293-303.
    [22] OEHLERS D J, VISINTIN P, LUCAS W. Flexural strength and ductility of FRP-plated RC beams: fundamental mechanics incorporating local and global IC debonding[J]. Journal of Composites for Construction, 2015, 20(2): 04015046.
    [23] HUANG Xiao-xu, SUI Li-li, XING Feng, et al. Reliability assessment for flexural FRP-strengthened reinforced concrete beams based on importance sampling[J]. Composites Part B: Engineering, 2019, 156: 378-398. doi: 10.1016/j.compositesb.2018.09.002
    [24] HUANG Yue. Experimental and finite element study of hybrid bonding of FRP to RC structures[D]. Hong Kong: City University of Hong Kong, 2007.
    [25] KALFAT R, AL-MAHAIDI R, SMITH S T. Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: state-of-the-art review[J]. Journal of Composites for Construction, 2011, 17(1): 14-33.
    [26] BÖER P, HOLLIDAY L, KANG T H K. Independent environmental effects on durability of fiber-reinforced polymer wraps in civil applications: a review[J]. Construction and Building Materials, 2013, 48: 360-370. doi: 10.1016/j.conbuildmat.2013.06.077
    [27] WU Yu-fei, LU Jian. Preventing debonding at the steel to concrete interface through strain localization[J]. Composites Part B: Engineering, 2013, 45(1): 1061-1070. doi: 10.1016/j.compositesb.2012.08.020
    [28] WU Yu-fei, LIU Kang. Characterization of mechanically enhanced FRP bonding system[J]. Journal of Composites for Construction, 2013, 17(1): 34-49. doi: 10.1061/(ASCE)CC.1943-5614.0000302
    [29] BISCAIA H C, CHASTRE C, SILVA M A G. Bond-slip model for FRP-to-concrete bonded joints under external compression[J]. Composites Part B: Engineering, 2015, 80: 246-259. doi: 10.1016/j.compositesb.2015.06.004
    [30] GAO Lei, ZHANG Feng, LIU Jia-qi, et al. Whole-process bond characteristics of FRP-to-concrete joint under pressure[J]. KSCE Journal of Civil Engineering, 2018, 22(12): 5114-5122. doi: 10.1007/s12205-018-0177-5
    [31] LEE J H, LOPEZ M M, BAKIS C E. Slip effects in reinforced concrete beams with mechanically fastened FRP strip[J]. Cement and Concrete Composites, 2009, 31(7): 496-504. doi: 10.1016/j.cemconcomp.2009.04.008
    [32] NAPOLI A, BANK L C, BROWN V L, et al. Analysis and design of RC structures strengthened with mechanically fastened FRP laminates: a review[J]. Composites Part B: Engineering, 2013, 55: 386-399. doi: 10.1016/j.compositesb.2013.06.038
    [33] ALKHALIL J, EL-MAADDAWY T. Finite element modelling and testing of two-span concrete slab strips strengthened by externally-bonded composites and mechanical anchors[J]. Engineering Structures, 2017, 147: 45-61. doi: 10.1016/j.engstruct.2017.05.040
    [34] SUN Wei, LIU Hai-feng, WANG Ya-jun, et al. Impacts of configurations on the strength of FRP anchors[J]. Composite Structures, 2018, 194: 126-135. doi: 10.1016/j.compstruct.2018.04.020
    [35] TENG Jin-guang, CHEN Jian-fei, SMITH S T, et al. Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review[J]. Proceedings of the Institution of Civil Engineers—Structures and Buildings, 2003, 156(1): 51-62. doi: 10.1680/stbu.2003.156.1.51
    [36] SMITH S T, HU Sheng-hua, KIM S J, et al. FRP-strengthened RC slabs anchored with FRP anchors[J]. Engineering Structures, 2011, 33(4): 1075-1087. doi: 10.1016/j.engstruct.2010.11.018
    [37] ZHANG Hua-wei, SMITH S T. FRP-to-concrete joint assemblages anchored with multiple FRP anchors[J]. Composite Structures, 2012, 94(2): 403-414. doi: 10.1016/j.compstruct.2011.07.025
    [38] 胡程鹤. 改进的复合粘结FRP技术的试验研究[D]. 大连: 大连理工大学, 2011.

    HU Cheng-he. Experimental study on improved hybrid bonded FRP technique[D]. Dalian: Dalian University of Technology, 2011. (in Chinese).
    [39] 颜俊辉. FRP混合粘贴技术加固混凝土梁的试验研究[D]. 长沙: 湖南大学, 2009.

    YAN Jun-hui. Experimental investigation on hybrid bonded FRP for strengthening reinforced concrete beams[D]. Changsha: Hunan University, 2009. (in Chinese).
    [40] 范志恒. FRP-混凝土界面性能调控系统研究[D]. 深圳: 深圳大学, 2016.

    FAN Zhi-heng. Research on control system of FRP-concrete interface performance[D]. Shenzhen: Shenzhen University, 2016. (in Chinese).
    [41] 高磊. 混合粘贴FRP加固混凝土梁的界面粘结特性和抗弯性能[D]. 济南: 山东大学, 2020.

    GAO Lei. Interfacial bonding characteristics and flexural performance of hybrid-bonded FRP strengthened RC beams[D]. Jinan: Shandong University, 2020. (in Chinese).
    [42] 管延华, 苗海涛, 宋修广. FRP-螺栓联合加固技术锚固参数的研究[J]. 山东大学学报(工学版), 2010, 40(3): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201003025.htm

    GUAN Yan-hua, MIAO Hai-tao, SONG Xiu-guang. Study of the anchoring parameter for the hybrid bonding of FRP[J]. Journal of Shandong University (Engineering Science), 2010, 40(3): 128-132. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201003025.htm
    [43] WU Yu-fei, HE Ling, BANK L C. Bond-test protocol for plate-to-concrete interface involving all mechanisms[J]. Journal of Composites for Construction, 2015, 20(1): 04015022.
    [44] 张峰, 吴宇飞, 高华睿, 等. 组合粘贴纤维增强复材抗弯加固35 m T梁破坏性试验研究[J]. 工业建筑, 2019, 49(9): 152-155, 129. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201909028.htm

    ZHANF Feng, WU Yu-fei, GAO Hua-rui, et al. Experimental study on destructive behavior of 35-meters T-beam strengthened by HB-FRP[J]. Industrial Construction, 2019, 49(9): 152-155, 129. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201909028.htm
    [45] YUN Yan-chun, WU Yu-fei, TANG W C. Performance of FRP bonding systems under fatigue loading[J]. Engineering Structures, 2008, 30(11): 3129-3140. doi: 10.1016/j.engstruct.2008.04.026
    [46] ZHOU Ying-wu, WANG Xiao-wei, SUI Li-li, et al. Effect of mechanical fastening pressure on the bond behaviors of hybrid-bonded FRP to concrete interface[J]. Composite Structures, 2018, 204: 731-744. doi: 10.1016/j.compstruct.2018.08.008
    [47] GUAN Yan-hua, JIANG Bin-song, SONG Xiu-guang. Experimental study and numerical simulation on bonding behavior of the new HB-FRP strengthening technology[J]. Journal of Performance of Constructed Facilities, 2011, 26(2): 220-227.
    [48] 付一小, 叶见曙, 马莹. CFRP布混合粘贴形式界面剪切性能试验[J]. 哈尔滨工业大学学报, 2017, 49(9): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201709015.htm

    FU Yi-xiao, YE Jian-shu, MA Ying. Test on the interfacial shear performance of hybrid bonding CFRP[J]. Journal of Harbin Institute of Technology, 2017, 49(9): 97-102. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201709015.htm
    [49] 付一小, 叶见曙, 熊文, 等. CFRP布混合粘贴加固RC梁斜截面抗剪性能研究[J]. 公路交通科技, 2018, 35(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201801009.htm

    FU Yi-xiao, YE Jian-shu, XIONG Wen, et al. Study on shear performance of RC beam oblique section strengthened with hybrid bonding CFRP sheets[J]. Journal of Highway and Transportation Research and Development, 2018, 35(1): 64-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201801009.htm
    [50] GAO Lei, ZHANG Feng, LIU Jia-qi, et al. Experimental and numerical study on the interfacial bonding characteristics of FRP-to-concrete joints with mechanical fastening[J]. Construction and Building Materials, 2019, 199: 456-470. doi: 10.1016/j.conbuildmat.2018.12.033
    [51] 高磊, 张峰. HB-FRP加固混凝土结构组合界面黏结特性[J]. 建筑材料学报, 2018, 21(6): 969-976. doi: 10.3969/j.issn.1007-9629.2018.06.018

    GAO Lei, ZHANG Feng. Composite interfacial bonding characteristics of HB-FRP to concrete structures[J]. Journal of Building Materials, 2018, 21(6): 969-976. (in Chinese). doi: 10.3969/j.issn.1007-9629.2018.06.018
    [52] LIU Kang. Computational modeling, experimental and theoretical study on bond behaviors of hybrid-bonded FRP strengthened concrete structures[D]. Hong Kong: City University of Hong Kong, 2011.
    [53] CHEN Cheng, SUI Li-li, XING Feng, et al. Predicting bond behavior of HB FRP strengthened concrete structures subjected to different confining effects[J]. Composite Structures, 2018, 187: 212-225. doi: 10.1016/j.compstruct.2017.12.036
    [54] 张峰, 徐向锋, 李术才. HB-FRP加固混凝土结构的粘结滑移统一模型[J]. 应用数学和力学, 2015, 36(12): 1294-1305. doi: 10.3879/j.issn.1000-0887.2015.12.008

    ZHANG Feng, XU Xiang-feng, LI Shu-cai. A unified bond-slip model for HB-FRP strengthened concrete structures[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1294-1305. (in Chinese). doi: 10.3879/j.issn.1000-0887.2015.12.008
    [55] 张峰, 牛平霞, 李树忱, 等. FRP-螺栓联合加固RC梁粘结性能试验研究[J]. 土木建筑与环境工程, 2010, 32(6): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201006003.htm

    ZHANG Feng, NIU Ping-xia, LI Shu-chen, et al. Experimental analysis on bonding behavior of hybrid-bonding of FRP[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(6): 7-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201006003.htm
    [56] WU Yu-fei, YAN Jun-hui, ZHOU Ying-wu, et al. Ultimate strength of reinforced concrete beams retrofitted with hybrid bonded fiber-reinforced polymer[J]. ACI Structural Journal, 2010, 107(4): 451-460.
    [57] 宿莹, 吴智敏, 胡程鹤, 等. CFRP布加固钢筋混凝土梁的新型复合粘结技术[J]. 建筑科学与工程学报, 2009, 26(4): 66-72. doi: 10.3321/j.issn:1673-2049.2009.04.012

    SU Ying, WU Zhi-min, HU Cheng-he, et al. New hybrid bonding technique of reinforced concrete beams strengthened with CFRP sheet[J]. Journal of Architecture and Civil Engineering, 2009, 26(4): 66-72. (in Chinese). doi: 10.3321/j.issn:1673-2049.2009.04.012
    [58] 胡程鹤, 吴智敏, 宿莹, 等. FRP复合锚固技术试验研究[J]. 防灾减灾工程学报, 2010, 30(3): 309-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201003015.htm

    HU Cheng-he, WU Zhi-min, SU Ying, et al. Experimental study of hybrid FRP anchorage technique[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(3): 209-314. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201003015.htm
    [59] WU Zhi-min, HU Cheng-he, WU Yu-fei, et al. Application of improved hybrid bonded FRP technique to FRP debonding prevention[J]. Construction and Building Materials, 2011, 25(6): 2898-2905. doi: 10.1016/j.conbuildmat.2010.12.033
    [60] 张峰, 徐向锋, 李术才. HB-FRP加固RC梁的精细有限元分析[J]. 哈尔滨工业大学学报, 2015, 47(8): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201508026.htm

    ZHANG Feng, XU Xiang-feng, LI Shu-cai. Meso-scale finite element analysis of HB-FRP strengthened reinforced concrete beams[J]. Journal of Harbin Institute of Technology, 2015, 47(8): 125-128. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201508026.htm
    [61] ZHOU Yin-zhi, GOU Ming-kang, ZHANG Feng-yu, et al. Reinforced concrete beams strengthened with carbon fiber reinforced polymer by friction hybrid bond technique: experimental investigation[J]. Materials and Design, 2013, 50: 130-139. doi: 10.1016/j.matdes.2013.02.089
    [62] CHEN Cheng, WANG Xiao-wei, SUI Li-li, et al. Influence of FRP thickness and confining effect on flexural performance of HB-strengthened RC beams[J]. Composites Part B: Engineering, 2019, 161: 55-67. doi: 10.1016/j.compositesb.2018.10.059
    [63] 管延华, 朱登元, 庄培芝, 等. EB-FRP及HB-FRP加固预裂RC梁对比试验研究[J]. 土木建筑与环境工程, 2013, 35(4): 27-31, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201304006.htm

    GUAN Yan-hua, ZHU Deng-yuan, ZHUANG Pei-zhi, et al. Experimental analysis of pre-cracked RC beams strengthened with EB-FRP and HB-FRP[J]. Journal of Civil, Architectural and Environmental Engineering, 2013, 35(4): 27-31, 46. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201304006.htm
    [64] TENG Jin-guang, YUAN Hong, CHEN Jian-fei. FRP-to-concrete interfaces between two adjacent cracks: theoretical model for debonding failure[J]. International Journal of Solids and Structures, 2006, 43(18/19): 5750-5778.
    [65] CHEN Jian-fei, YUAN Hong, TENG Jin-guang. Debonding failure along a softening FRP-to-concrete interface between two adjacent cracks in concrete members[J]. Engineering Structures, 2007, 29(2): 259-270. doi: 10.1016/j.engstruct.2006.04.017
    [66] ZHOU Ying-wu, GUO Meng-huan, SUI Li-li, et al. Shear strength components of adjustable hybrid bonded CFRP shear-strengthened RC beams[J]. Composites Part B: Engineering, 2019, 163: 36-51. doi: 10.1016/j.compositesb.2018.11.020
    [67] 管延华, 蒋斌松, 宋修广, 等. FRP-螺栓联合加固RC梁受剪承载能力试验研究[J]. 山东大学学报(工学版), 2010, 40(2): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201002016.htm

    GUAN Yan-hua, JIANG Bin-song, SONG Xiu-guang, et al. Experimental study on RC beams strengthened in shear with hybrid bonding of FRP[J]. Journal of Shandong University (Engineering Science), 2010, 40(2): 82-87. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201002016.htm
    [68] 李树忱, 牛平霞, 李术才. 新型复合粘结技术加固RC梁的抗剪试验研究[J]. 公路交通科技, 2011, 28(5): 73-79. doi: 10.3969/j.issn.1002-0268.2011.05.014

    LI Shu-chen, NIU Ping-xia, LI Shu-cai. Experimental study on shear resistance of RC beams strengthened by new hybrid bonding technique[J]. Journal of Highway and Transportation Research and Development, 2011, 28(5): 73-79. (in Chinese). doi: 10.3969/j.issn.1002-0268.2011.05.014
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  201
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回