Review on evaluation and optimization of light environment of extra-long urban underwater tunnel based on visual demands
-
摘要: 为提高城市水下特长隧道的行车安全和运输效率, 总结了城市水下特长隧道光环境典型问题与改善措施, 分别从舒适性、经济性、设置依据、安装形式等方面对洞口遮光设施、出入口加强照明、景观装饰、视线诱导系统4种隧道光环境改善措施进行了比较分析; 依据马斯洛需求层次理论对驾驶人视觉需求进行分层, 提出了包含事故分析、评价体系、优化思路、优化方法的城市水下特长隧道光环境评价体系与优化研究框架。分析结果表明: 城市水下特长隧道光环境主要有出入口的明暗适应、道路线形变化引起的视距不足、中部的视觉参照信息不足、隧道整体空间路权不清晰的问题; 设置视线诱导系统是一项低成本、有效的光环境优化方法, 能满足驾驶人在不同隧道路段上的视觉差异化需求; 驾驶人视觉需求由低到高可以分为功能性、安全性、舒适性、美观性, 并依次对应相应的基本型、安全型、舒适型、韵律型视觉参照系, 可构建以空间路权、人因与驾驶任务、差异化、韵律性为指标的评价体系来评价城市水下特长隧道光环境; 城市水下特长隧道光环境优化应将视线诱导和加强照明相结合, 主要通过视线诱导系统来重构视觉参照系, 隧道接近段、入口段、中间段普通区、出口段应以舒适型视觉参照系为优化目标, 中间段提醒区及唤醒区则应构建韵律型视觉参照系。Abstract: To improve the traffic safety and transportation efficiency of extra-long urban underwater tunnels, the typical problems and improvement measures of light environment in extra-long urban underwater tunnels were summarized. From the aspects of comfort, economy, setting basis, and installation form, four kinds of improvement measures of light environment of tunnels were compared and analyzed, including shading facilities at the entrance, enhanced lighting at the entrance and exit, landscape decoration, and visual induction system. Drivers' visual demands were stratified according to the theory of Maslow's hierarchy of needs. The research framework of the light environment evaluation system and optimization of extra-long urban underwater tunnels was proposed, including the accident analysis, evaluation system, optimization idea, and optimization method. Analysis result shows that the light environment of extra-long urban underwater tunnels mainly has the issues of light and dark adaptation at the entrance and exit, insufficient sight distance caused by changes in the road alignment, the lack of visual reference information in the middle, and the unclear right of way in the overall space of the tunnel. The setting of a visual induction system is a low-cost and effective method to optimize the light environment, which can meet the drivers' visual differentiation needs in different tunnel sections. Drivers' visual demands can be divided into function, safety, comfort, and esthetics from low to high corresponding to the fundamental, safe, comfortable, and rhythmic visual reference systems. The evaluation system can be constructed to evaluate the light environment of extra-long urban underwater tunnels with the indexes of space right of way, human factors, driving tasks, differentiation, and rhythmicity. The light environment optimization of extra-long urban underwater tunnels should combine visual induction with enhanced lighting, while the visual induction system is mainly used to reconstruct the visual reference system. A comfortable visual reference system should be considered as the optimization target in the access zone, threshold zone, interior zone(general area), and exit zone of the tunnel, while the rhythmic visual reference system should be built in the interior reminding and awakening areas.
-
表 1 国外典型水下特长隧道
Table 1. Typical extra-long underwater tunnels abroad
隧道名称 隧道交通类型 国家 通车时间 隧道长度/km 青函隧道 铁路 日本 1988 54.00 英法海峡海底隧道 铁路 英国、法国 1994 50.50 关门公路隧道 公路 日本 1958 3.46 来尔多隧道 公路 挪威 2000 24.50 表 2 中国典型城市水下特长隧道
Table 2. Typical extra-long underwater tunnels in China
隧道名称 城市 隧道长度/km 胶州湾海底隧道 青岛 7.80 翔安海底隧道 厦门 8.70 武汉东湖隧道 武汉 10.60 苏州独墅湖隧道 苏州 7.37 扬州瘦西湖隧道 扬州 4.40 武汉长江隧道 武汉 3.63 上海长江隧道 上海 8.96 南京长江隧道 南京 6.04 南京扬子江隧道 南京 7.37 杭州紫之隧道 杭州 14.40 武汉长江公铁隧道 武汉 4.65 表 3 三种类型隧道光环境对比
Table 3. Comparison of light environments in three types of tunnels
隧道类型 山区特长隧道 普通城市隧道 城市水下特长隧道 相同点 隧道出入口都存在黑洞/白洞效应; 隧道中部光环境单调, 路缘、路面、侧壁缺少区分度 不同点 出入口 设置加强照明, 但低照度运营, 并且开灯率低 设置加强照明与遮光设施, 下穿引道较短, 纵坡较浅, 光环境影响较小 设置加强照明与遮光设施, 出入口引道较长, 纵坡深, 连续下坡, 出口连续上坡, 视距受限严重 中部 开灯率低, 照度较低, 光环境昏暗单调, 参照物少 照度较高, 照度均匀性好, 线形与环境缺乏变化, 侧壁强光弱色现象显著, 存在光污染 里程长, 照度高, 光环境单调, 易疲劳; 坡道和弯道多, 变坡点处视距与视区受限 表 4 城市水下特长隧道光环境改善措施对比
Table 4. Comparison of light environment improvement methods of extra-long urban underwater tunnel
技术内容 洞口遮光设施 出入口加强照明 景观装饰 视线诱导系统 优点 缓和隧道内外照度和空间的剧烈变化, 节能 高亮度环境, 缓和隧道内外照度的剧烈变化, 舒适性高 舒适性高, 可适当缓解驾驶疲劳 发光柔和, 诱导性强, 减小分心及疏忽; 建安费及能耗低, 视线诱导系统全生命周期为10年 缺点 造价高, 设置不当时会造成频闪效应, 维护养护费用高 无效照明区域大, 建安费及能耗高, 灯具全生命周期为2~5年 吸睛效应显著, 易造成驾驶人分心; 造价高, 能耗高, 维护养护困难 缺乏理论依据 设置依据 通常作为景观设施, 无规范要求 照明: 基于停车视距内最小目标物(20 cm×20 cm×20 cm)视认, 最小亮度及亮度均匀性 通常作为景观设施, 无规范要求 交通事故形态(追尾、撞固定物)、事故原因(分心、超速及驾驶疲劳、车距过近) 具体技术 以钢结构为支架, 顶部铺装遮光板 隧道灯具照明为主, 强调背景亮度 灯光图案为主, 强调美观性 逆反射为主, 蓄能自发光、LED发光显示为辅, 强调轮廓光 安装形式 设置于隧道洞口, 长度及选型通常需考虑城市文化及美学设计 隧道洞顶高位安装、中等密度、长时设置 隧道中部局部设置, 多设置于隧道洞顶, 提高短时视觉刺激 路侧低位(侧壁、路缘)高密度设置, 提供道路局部、短时亮度 发展趋势 分析交通事故形态、成因、区域特性等事故统计资料, 在保证交通安全前提下, 考虑驾驶人在不同隧道路段上的视觉差异化需求 表 5 视觉参照系分类
Table 5. Classification of visual reference systems
视觉参照系种类 满足的视觉需求 功能 主要设施及特征 基本型 功能性 按照规范设置及满足空间路权的要求设置, 主要达到道路附属设施的基本功能, 满足道路基本功能需求 道路上的普通标志、标线、诱导标、轮廓标等 安全型 功能性、安全性 从人因和驾驶行为分析的角度出发, 主要达到满足安全视距、视区和车距保持、车速控制以及方向感知, 同时将视错觉控制在合理范畴 减速标线、警告标线、标志、道路边线、分界线、突起路标等 舒适型 功能性、安全性、舒适性 满足驾驶人的舒适性要求, 并有效降低驾驶疲劳感 景观图案、视觉环境体现一定差异性, 不枯燥 韵律型 功能性、安全性、舒适性、美观性 满足驾驶人的韵律感、美感需求 连续渐变、重复、起伏、交错的韵律特征图案 表 6 基于视觉需求的城市水下特长隧道光环境评价体系
Table 6. Light environment evaluation system of extra-long urban underwater tunnel based on visual demands
视觉参照系种类 评价指标 分类 评价标准 基本型 空间路权 横向路权 路侧/路中有足够的安全净区, 道路路权明确, 路面、路缘、侧壁有显著区分度 竖向路权 洞顶及侧壁轮廓清晰, 轮廓带、竖向条纹、轮廓标竖向诱导性好 纵向路权 前进方向的路权连续性、一致性、协调性好 安全型 驾驶人因 视距 前方的安全距离足够远, 可通过障碍物高度、尺寸、逆反射系数等简单判断 视区 前方的动态视野角度足够大, 注视点重心主要集中在路面, 但适当关注隧道轮廓(较高位置) 视错觉 对速度、车距、方向的感知偏差小 驾驶任务 车速控制 各路段之间的车速变动、大车小车速度差控制在一定范围 车距保持 各路段车头间距控制在一定范围 车道保持 各路段车辆轨迹横向偏移小 舒适型 差异化 行程差异性 隧道各路段诱导信息变动(色彩、形状、尺寸及频率)体现差异性 韵律型 韵律性 具有韵律感 重点路段诱导信息呈现连续重复、渐变、交错、起伏韵律的特点, 体现良好心理效应 表 7 城市水下特长隧道光环境优化思路
Table 7. Optimization ideas of light environment of extra-long urban underwater tunnel
视觉需求 问题来源 信息需求特性 改善对策 舒适性 隧道内信息缺少变化, 长时运行, 容易诱发疲劳 舒适型视觉信息能有效缓解疲劳 特长隧道不同区段采取差异化设置方案(如不同色彩、形状、尺寸的诱导信息) 美观性 特长隧道中部景观单调, 长时运行会使驾驶人产生压抑不适 韵律型视觉信息能提升美感 特长隧道中部设置韵律型信息(多色彩、多形状的诱导信息, 构建连续重复、渐变、起伏、交错韵律) 表 8 城市水下特长隧道光环境优化方法
Table 8. Optimization method of light environment of extra-long urban underwater tunnel
隧道区段 接近段 出入口段 过渡段 中间段 普通区 提醒区 唤醒区 主要驾驶任务 降低车速, 明确隧道轮廓与车道方向 选择车道, 控制车速, 初步完成明暗适应 完成明暗适应、稳定车速 正确控制车速、保持车道行驶、合适处变道 视觉需求 降低隧道入口亮度, 引道与内部侧壁衔接过渡 减缓黑/白洞效应, 缓解视错觉 减缓隧道内外视觉环境差异, 缓解视错觉 缓解视错觉, 规范变道行为 适当环境改变和刺激, 改善驾驶疲劳 美观性要求, 更强刺激改善驾驶疲劳 优化目标 舒适型视觉参照系 舒适型视觉参照系 舒适型视觉参照系 舒适型视觉参照系 韵律型视觉参照系 韵律型视觉参照系 对策 设置长度大于3 s行程的遮光设施, 引道照明及侧壁诱导方案 设置根据照度环境改变照明参数的加强照明, 并设置控速诱导设施 设置照明过渡, 并设置控速诱导设施 基本照明, 设置控速诱导信息(多频信息组合) 基本照明, 设置韵律信息(多色彩、多形状组合) 基本照明, 设置强刺激诱导信息(LED光环) 表 9 线形诱导与轮廓诱导分析
Table 9. Analysis of linear induction and contour induction
诱导类型 主要功能 典型设施 设置形式 典型路段 线形诱导 明确纵向、横向路权, 显示隧道线形, 优化视距、提高驾驶人感知能力 低位轮廓标、突起路标、路面标线、低位立面标记、低位/短线段线形诱导标 小尺度点状、短线段信息, 中、高频率设置 普通直线、弯道、坡道 轮廓诱导 明确竖向路权, 显示隧道轮廓, 警示驾驶人注意路侧环境 高位轮廓标、反光环、竖向条纹、LED环形灯带、高位立面标记、高位/长线段线形诱导标 大尺度长线段、环状信息, 低、中频率设置 出入口、急弯陡坡、交织区路段 表 10 典型视线诱导设施作用
Table 10. Functions of typical visual induction devices
视线诱导设施 设置形式及间距 主要作用 空间路权(横向、竖向、纵向) 驾驶人因(视距、视区、视错觉) 腰带线 连续短线段设置 线形诱导, 明确纵向路权 优化视区, 提升隧道整体方向感 低位黄黑立面标记、海草图案 短线段、高频设置(约10.0或12.5 m设置1处) 线形诱导为主(横向路权), 轮廓诱导为辅(竖向路权, 勾勒路缘障碍物外形) 提升路缘障碍物的可视性, 提升速度感 低位线形诱导标、鱼形图案 短线段、中频设置(约25 m设置1处) 线形诱导为主, 轮廓诱导为辅, 凸显隧道纵向线形和侧向轮廓 优化视区、提升方向感 低位轮廓标 点状、高频设置(10.0或12.5 m设置1处) 线形诱导为主, 也能体现隧道侧壁下缘轮廓 提升速度感 竖向条纹 长线段、中频设置(间距约50 m) 轮廓诱导为主, 明确隧道竖向路权 提升纵坡路段的距离感、方向感 环形LED灯带 低频设置(约3 km设置1处, 每处长度为150~200 m) 提高隧道轮廓辨识度, 可辅助驾驶人判断车距 优化视区, 刺激、唤醒驾驶人, 韵律性图案 中频设置(约1 km设置1处, 每处长度为150~200 m) 加强轮廓诱导 提升舒适感, 满足差异化需求 -
[1] 张顶立. 隧道及地下工程的基本问题及其研究进展[J]. 力学学报, 2017, 49(1): 10-28. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701002.htmZHANG Ding-li. Essential issues and their research progress in tunnel and underground engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 10-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701002.htm [2] 王少飞, 涂耘, 王小军. 水下公路(道路)隧道交通工程设施设计研究[J]. 隧道建设, 2015, 35(11): 1209-1213. doi: 10.3973/j.issn.1672-741X.2015.11.015WANG Shao-fei, TU Yun, WANG Xiao-jun. Research on design of traffic facilities of underwater road tunnels[J]. Tunnel Construction, 2015, 35(11): 1209-1213. (in Chinese). doi: 10.3973/j.issn.1672-741X.2015.11.015 [3] 王梦恕. 水下交通隧道发展现状与技术难题-兼论"台湾海峡海底铁路隧道建设方案"[J]. 岩石力学与工程学报, 2008, 27(11): 2161-2172. doi: 10.3321/j.issn:1000-6915.2008.11.001WANG Meng-shu. Current developments and technical issues of underwater traffic tunnel-discussion on construction scheme of Taiwan Strait undersea railway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2161-2172. (in Chinese). doi: 10.3321/j.issn:1000-6915.2008.11.001 [4] 孙钧. 论跨江越海建设隧道的技术优势与问题[J]. 隧道建设, 2013, 33(5): 337-342. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201305002.htmSUN Jun. Study on technological advantages and problems in construction of tunnels crossing rivers and seas[J]. Tunnel Construction, 2013, 33(5): 337-342. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201305002.htm [5] 肖明清. 我国水下盾构隧道代表性工程与发展趋势[J]. 隧道建设, 2018, 38(3): 360-367. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201803003.htmXIAO Ming-qing. Representative projects and development trend of underwater shield tunnels in China[J]. Tunnel Construction, 2018, 38(3): 360-367. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201803003.htm [6] 叶亮. 长江与国外典型河流过江(河)通道比较研究[J]. 公路, 2016, 61(5): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201605027.htmYE Liang. Comparison and study of corridors across the Yangtze River and those abroad[J]. Highway, 2016, 61(5): 120-125. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201605027.htm [7] 《中国公路学报》编辑部. 中国隧道工程学术研究综述·2015[J]. 中国公路学报, 2015, 28(5): 1-65. doi: 10.3969/j.issn.1001-7372.2015.05.001Editorial Department of China Journal of Highway and Transport. Review on China's tunnel engineering research: 2015[J]. China Journal of Highway and Transport, 2015, 28(5): 1-65. (in Chinese). doi: 10.3969/j.issn.1001-7372.2015.05.001 [8] 周晶晶, 王静, 陆林军. 城市越江隧道交通事故特征统计分析研究[J]. 交通与港航, 2019, 33(4): 75-79. doi: 10.3969/j.issn.1001-599X.2019.04.013ZHOU Jing-jing, WANG Jing, LU Lin-jun. Research on statistical analysis of traffic accident characteristics in the urban river-crossing tunnel[J]. Communication and Shipping, 2019, 33(4): 75-79. (in Chinese). doi: 10.3969/j.issn.1001-599X.2019.04.013 [9] 谢雅丽. 城市特长隧道交通事故分段消散控制方法研究[D]. 西安: 长安大学, 2018.XIE Ya-li. Research on traffic accident segmental dispersion control method in urban extra long tunnels[D]. Xi'an: Chang'an University, 2018. (in Chinese). [10] LU Lin-jun, LU Jian, XING Ying-ying, et al. Statistical analysis of traffic accidents in Shanghai river crossing tunnels and safety countermeasures[J]. Discrete Dynamics in Nature and Society, 2014, 2014: 824360-1-7. [11] 王雪松, 石琦, 高珍. 基于视频数据的城市隧道交通运行特征与安全研究[J]. 中国安全科学学报, 2011, 21(8): 129-137. doi: 10.3969/j.issn.1003-3033.2011.08.021WANG Xue-song, SHI Qi, GAO Zhen. Urban tunnel traffic operating characteristics and its safety study based on surveillance camera data[J]. China Safety Science Journal, 2011, 21(8): 129-137. (in Chinese). doi: 10.3969/j.issn.1003-3033.2011.08.021 [12] YEUNG J S, WONG Y D, XU H. Driver perspectives of open and tunnel expressways[J]. Journal of Environmental Psychology, 2013, 36(4): 248-256. [13] 张志刚, 胡金平, 刘洪洲, 等. 水下公路隧道最大纵坡取值研究[J]. 现代隧道技术, 2013, 50(4): 8-14. doi: 10.3969/j.issn.1009-6582.2013.04.002ZHANG Zhi-gang, HU Jin-ping, LIU Hong-zhou, et al. Study of the maximum longitudinal gradient of underwater highway tunnels[J]. Modern Tunnelling Technology, 2013, 50(4): 8-14. (in Chinese). doi: 10.3969/j.issn.1009-6582.2013.04.002 [14] FENG Zhong-xiang, YANG Miao-miao, ZHANG Wei-hua, et al. Effect of longitudinal slope of urban underpass tunnels on drivers' heart rate and speed: a study based on a real vehicle experiment[J]. Tunnelling and Underground Space Technology, 2018, 81: 525-533. doi: 10.1016/j.tust.2018.08.032 [15] 王健. V型海底隧道交通流运行特性及其模型研究[D]. 青岛: 青岛理工大学, 2018.WANG Jian. Study on traffic flow characteristics and its model of V-shaped subsea tunnel[D]. Qingdao: Qingdao University of Technology, 2018. (in Chinese). [16] WANG Si-qi, HUANG Xiao-ming. Analysis of methods on evaluating the "black hole effect" in tunnel entrance zones[C]//ASCE. Proceedings of the 15th COTA International Conference of Transportation Professionals. Reston: ASCE Press, 2015: 2864-2875. [17] CALIENDO C, DE GUGLIELMO M L, GUIDA M. A crash-prediction model for road tunnels[J]. Accident Analysis and Prevention, 2013, 55: 107-115. doi: 10.1016/j.aap.2013.02.024 [18] SHAO Fei, XU Qian, XU Xiao-ling, et al. Measuring safety for urban tunnel entrance and exit based on nanoscopic driving behaviors[C]//IEEE. 2016 Eighth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). New York: IEEE, 2016: 386-392. [19] 潘姝, 郭唐仪, 邵飞, 等. 城市隧道环境中驾驶人注视转移特性研究[J]. 中国安全科学学报, 2018, 28(8): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201808004.htmPAN Shu, GUO Tang-yi, SHAO Fei, et al. Research on fixation transfer characteristics of drivers driving through urban tunnel[J]. China Safety Science Journal, 2018, 28(8): 19-24. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201808004.htm [20] THIFFAULT P, BERGERON J. Monotony of road environment and driver fatigue: a simulator study[J]. Accident Analysis and Prevention, 2003, 35(3): 381-391. doi: 10.1016/S0001-4575(02)00014-3 [21] TING P H, HWANG J R, DONNG J L, et al. Driver fatigue and highway driving: a simulator study[J]. Physiology and Behavior, 2008, 94(3): 448-453. doi: 10.1016/j.physbeh.2008.02.015 [22] 倪娜, 杨少伟, 潘兵宏, 等. 终南山公路隧道交通事故特征及预防措施研究[J]. 现代隧道技术, 2018, 55(4): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201804004.htmNI Na, YANG Shao-wei, PAN Bing-hong, et al. Traffic accident characteristics and prevention measures for the Zhongnanshan Highway Tunnel[J]. Modern Tunnelling Technology, 2018, 55(4): 25-32. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201804004.htm [23] 焦方通, 杜志刚, 王首硕, 等. 城市水下特长隧道弯道驾驶人扫视行为研究[J]. 中国安全科学学报, 2019, 29(7): 104-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201907022.htmJIAO Fang-tong, DU Zhi-gang, WANG Shou-shuo, et al. Research on saccade behavior of drivers in extra-long urban underwater tunnel curves[J]. China Safety Science Journal, 2019, 29(7): 104-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201907022.htm [24] 杨苗苗. 基于驾驶人生理舒适性的城市下穿隧道行车安全参数优化方法[D]. 合肥: 合肥工业大学, 2019.YANG Miao-miao. Safety parameter optimization method for urban underpass tunnel based on drivers' physiological comfort[D]. Hefei: Hefei University of Technology, 2019. (in Chinese). [25] 冯忠祥, 杨苗苗, 马昌喜, 等. 城市下穿隧道纵坡坡度和速度对驾驶人心率增长率的影响[J]. 中国公路学报, 2018, 31(4): 66-77. doi: 10.3969/j.issn.1001-7372.2018.04.009FENG Zhong-xiang, YANG Miao-miao, MA Chang-xi, et al. Effect of slope and velocity on drivers' heart rate growth in urban underpass tunnel longitudinal section[J]. China Journal of Highway and Transport, 2018, 31(4): 66-77. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.04.009 [26] FENG De-shan, CHEN Feng, PAN Xiao-dong. Research on driver physiological load at the lowest point of city river-crossing tunnels[J]. Transportation Research Procedia, 2017, 25: 1494-1502. doi: 10.1016/j.trpro.2017.05.178 [27] JIAO Fang-tong, DU Zhi-gang, WANG Shou-shuo, et al. Research on drivers' visual characteristics in different curvatures and turning conditions of the extra-long urban underwater tunnels[J]. Tunnelling and Underground Space Technology, 2020(99): 1-9. [28] 李满航, 马坚生. 珠江沉管隧道照明设计研究[J]. 现代隧道技术, 1996, 33(6): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD199606008.htmLI Man-hang, MA Jian-sheng. Study on lighting design of Zhujiang Immersed Tunnel[J]. Modern Tunnelling Technology, 1996, 33(6): 46-53. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD199606008.htm [29] ZHANG J L, SHI P X, HUANG J, et al. Green tunnel construction technology and application[J]. IOP Conference Series: Earth and Environmental Science, 2018, 153(5): 1-7. [30] GIL-MARTIN L M, GOMEZ-GUZMAN A, PENA-GARCIA A. Use of diffusers materials to improve the homogeneity of sunlight under pergolas installed in road tunnels portals for energy savings[J]. Tunnelling and Underground Space Technology, 2015, 48: 123-128. doi: 10.1016/j.tust.2015.03.001 [31] LIANG Shu-ying, YANG Chun-yu. Study of the lighting of entrance/exit segments of urban tunnels and outside-tunnel roads based on visual efficiency theory[J]. Applied Mechanics and Materials, 2013, 470: 871-875. doi: 10.4028/www.scientific.net/AMM.470.871 [32] YE Fei, HE Chuan, WANG Shi-min, et al. Landscape design of mountain highway tunnel portals in China[J]. Tunnelling and Underground Space Technology, 2012, 29: 52-68. doi: 10.1016/j.tust.2012.01.001 [33] PATTEN C, MARDH S. Interior tunnel design and traffic safety aspects[C]∥VTI. 16th Road Safety on Four Continents Conference. Stockholm: Swedish National Road and Transport Research Institute, 2013: 1-13. [34] QIN Xiao-chun, ZHANG Nan, ZHANG Wei-han, et al. How does tunnel interior color environment influence driving behavior?Quantitative analysis and assessment experiment[J]. Tunnelling and Underground Space Technology, 2020, 98: 1-10. [35] CHEN Pei-yan, CHEN Feng, ZHANG Lin, et al. Examining the influence of decorated sidewall in road tunnels using fMRI technology[J]. Tunnelling and Underground Space Technology, 2020, 99: 1-6. [36] CARMODY J. Design issues related to road tunnels[R]. Washington DC: University of Minnesota, 1997. [37] KIRCHER K, AHLSTEOM C. The impact of tunnel design and lighting on the performance of attentive and visually distracted drivers[J]. Accident Analysis and Prevention, 2012, 47: 153-161. doi: 10.1016/j.aap.2012.01.019 [38] 杜志刚, 倪玉丹, 杨理波, 等. 高速公路隧道曲线路段视线诱导设施有效性试验[J]. 交通运输工程学报, 2020, 20(1): 215-225. doi: 10.19818/j.cnki.1671-1637.2020.01.018DU Zhi-gang, NI Yu-dan, YANG Li-bo, et al. Effectiveness experiment of sight induction facilities of curve sections in highway tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 215-225. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.01.018 [39] 孙建明, 张婧, 杜志刚, 等. 城市水下特长隧道中部光环境优化设计方法[J]. 中国安全科学学报, 2019, 29(2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201902020.htmSUN Jian-ming, ZHANG Jing, DU Zhi-gang, et al. Light environment optimization design for middle of super-long urban underwater tunnel[J]. China Safety Science Journal, 2019, 29(2): 106-111. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201902020.htm [40] 宋子璇, 潘晓东, 李少帅, 等. 基于侧墙效应的隧道行车安全评价基础研究[J]. 公路工程, 2010, 35(3): 10-13, 18. doi: 10.3969/j.issn.1674-0610.2010.03.003SONG Zi-xuan, PAN Xiao-dong, LI Shao-shuai, et al. Study on driving safety evaluation based on tunnel sidewall effect[J]. Highway Engineering, 2010, 35(3): 10-13, 18. (in Chinese). doi: 10.3969/j.issn.1674-0610.2010.03.003 [41] 杜志刚, 倪玉丹. 城市水下隧道入口引道诱导设计[J]. 现代隧道技术, 2019, 56(增2): 463-470. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2019S2067.htmDU Zhi-gang, NI Yu-dan. Guide-based design of the entrance approach of urban underwater tunnel[J]. Modern Tunnelling Technology, 2019, 56(S2): 463-470. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2019S2067.htm [42] 倪玉丹, 杜志刚, 杨理波, 等. 基于多频信息的城市水下特长隧道中部光环境优化设计[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(2): 321-325. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202002023.htmNI Yu-dan, DU Zhi-gang, YANG Li-bo, et al. Optimal design of light environment in the middle of extra-long urban subaqueous tunnel based on multi-frequency information[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2020, 44(2): 321-325. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202002023.htm [43] 郑展骥, 杜志刚, 李平凡. 长隧道韵律型视觉环境设计研究[J]. 安全与环境学报, 2017, 17(5): 1800-1805. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705035.htmZHENG Zhan-ji, DU Zhi-gang, LI Ping-fan. On the visual environment rhythm design for the vehicle drivers to travel through the long highway tunnels[J]. Journal of Safety and Environment, 2017, 17(5): 1800-1805. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705035.htm