留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震动入射角对空心薄壁高墩桥梁地震易损性的影响

单德山 韩璐璐 瞿发宪 董俊

单德山, 韩璐璐, 瞿发宪, 董俊. 地震动入射角对空心薄壁高墩桥梁地震易损性的影响[J]. 交通运输工程学报, 2020, 20(6): 90-103. doi: 10.19818/j.cnki.1671-1637.2020.06.008
引用本文: 单德山, 韩璐璐, 瞿发宪, 董俊. 地震动入射角对空心薄壁高墩桥梁地震易损性的影响[J]. 交通运输工程学报, 2020, 20(6): 90-103. doi: 10.19818/j.cnki.1671-1637.2020.06.008
DAN De-shan, HAN Lu-lu, JU Fa-xian, DONG Jun. Impact of ground motion incident angles on seismic vulnerability for bridge with thin-walled hollow tall pier[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 90-103. doi: 10.19818/j.cnki.1671-1637.2020.06.008
Citation: DAN De-shan, HAN Lu-lu, JU Fa-xian, DONG Jun. Impact of ground motion incident angles on seismic vulnerability for bridge with thin-walled hollow tall pier[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 90-103. doi: 10.19818/j.cnki.1671-1637.2020.06.008

地震动入射角对空心薄壁高墩桥梁地震易损性的影响

doi: 10.19818/j.cnki.1671-1637.2020.06.008
基金项目: 

国家重点研发计划项目 2016YFC0802202

国家自然科学基金项目 51678489

国家自然科学基金项目 51978577

云南省交通运输厅科技项目 2017(A)03

详细信息
    作者简介:

    单德山(1969-), 男, 四川大竹人, 西南交通大学教授, 工学博士, 从事桥梁结构健康监测与损伤识别研究

  • 中图分类号: U448

Impact of ground motion incident angles on seismic vulnerability for bridge with thin-walled hollow tall pier

Funds: 

National Key Research and Development Program of China 2016YFC0802202

National Natural Science Foundation of China 51678489

National Natural Science Foundation of China 51978577

Science and Technology Project of Department of Transport of Yunnan Province 2017(A)03

More Information
  • 摘要: 为了充分评估空心薄壁高墩大跨桥梁结构的抗震性能, 以中国西部某四跨高墩刚构-连续组合体系桥梁作为研究对象, 基于三维地震易损性分析方法, 计入竖向地震动的影响, 结合现行桥梁抗震设计规范, 采用增量动力分析方法讨论了水平地震动入射角对桥梁构件地震易损性的影响; 依据一阶可靠度理论分析了地震动入射角对桥梁结构系统易损性的影响规律。研究结果表明: 2#、3#刚构桥墩的弯曲和剪切易损性云图与1#、4#悬臂墩的弯曲和剪切易损性云图差异明显, 桥墩弯曲和剪切的地震易损性不仅与地震动入射角有关, 还与桥墩结构形式有关; 支座在轻微损伤、中度损伤、重度损伤及完全损伤状态下的损伤概率分布相似, 地面峰值加速度为0.4g时, 最大损伤概率的地震动入射角为0°和180°, 当地面峰值加速度大于0.6g时, 轻微损伤和中度损伤的最不利入射角为0~180°, 支座变形的最不利地震动输入方向主要为纵桥向和横桥向。由此可见, 各关键构件的不同损伤指标下的损伤概率随地震强度、方向变化的规律各不相同; 不同损伤指标下系统及各构件的最不利地震动入射角及其区间数量和范围也各不相同; 仅讨论纵桥向或横桥向构件地震易损性不能合理评估桥梁结构的实际抗震需求, 采用三维地震易损性分析方法能准确定位最不利地震动入射角, 实现高墩大跨桥梁结构抗震性能的准确评估。

     

  • 图  1  地震动入射角对地震易损性影响分析流程

    Figure  1.  Analysis process of impact of ground motion incident angle on seismic vulnerability

    图  2  某特大桥桥型布置(单位: cm)

    Figure  2.  Layout of a super large bridge (unit: cm)

    图  3  桥梁结构有限元模型

    Figure  3.  Bridge structural finite element model

    图  4  水平地震动入射角

    Figure  4.  Incident angles of horizontal ground motion

    图  5  桥墩轻微弯曲损伤状态的易损性

    Figure  5.  Vulnerability of pier under slight bending damage state

    图  6  桥墩关键截面弯曲损伤最不利入射角、损伤概率及变化范围

    Figure  6.  Most unfavorable incident angles, damage probabilities and variation ranges for critical pier sections under bending damage state

    图  7  桥墩轻微剪切损伤状态的易损性

    Figure  7.  Vulnerabilities of piers under slight shearing damage state

    图  8  桥墩关键截面剪切损伤最不利入射角、损伤概率及变化范围

    Figure  8.  Most unfavorable incident angles, damage probabilities and variation ranges for critical pier sections under shearing damage state

    图  9  0#台支座易损性

    Figure  9.  Vulnerability of bearing at 0# abutment

    图  10  支座损伤最不利入射角、损伤概率及变化范围

    Figure  10.  Most unfavorable incident angles, damage probabilities and vatiation ranges for bearing damage state

    图  11  墩柱弯曲和剪切损伤概率偏差(θ=60°)

    Figure  11.  Probability deviations of piers under bending and shearing damage (θ=60°)

    图  12  9度设防PGA为0.4g时桥梁系统损伤概率

    Figure  12.  Damage probabilities of bridge system with 9 fortification intensity when PGA is 0.4g

    图  13  9度设防PGA为0.64g时桥梁系统损伤概率

    Figure  13.  Damage probabilities of bridge system with 9 fortification intensity when PGA is 0.64g

    表  1  支座信息

    Table  1.   Information of bearings

    名称 类型 型号
    Ⅰ型支座 纵向活动的球形钢支座 TJGZ-LX-Q9000-ZX-c150-0.1g
    Ⅱ型支座 纵向活动的球形钢支座 TJGZ-LX-Q5500-ZX-c100-0.1g
    Ⅲ型支座 纵向活动的球形钢支座 TJGZ-LX-Q9000-ZX-c100-0.1g
    下载: 导出CSV

    表  2  桥墩主要损伤形式信息

    Table  2.   Information of pier major damage forms

    截面 θ/(°)
    1#墩底 0、60、90、120、180
    2#、3#墩底 0、60、90、120、180
    2#、3#墩顶 0、60
    90
    120、180
    4#墩底 0
    60、90、120 弯或剪 弯或剪
    180
    下载: 导出CSV

    表  3  各构件轻微损伤概率排序

    Table  3.   Probability order of components under slight damage state

    下载: 导出CSV
  • [1] BHATNAGAR U R, BANERJEE S. Fragility of skewed bridges under orthogonal seismic ground motions[J]. Structure and Infrastructure Engineering, 2015, 11(9): 1113-1130. doi: 10.1080/15732479.2014.936880
    [2] BILLAH A H M M, ALAM M S, BHUIYAN M A R. Seismic fragility assessment of highway bridges: a state-of-the-art review[J]. Structure and Infrastructure Engineering, 2015, 11(6): 804-832. doi: 10.1080/15732479.2014.912243
    [3] GIDARIS I, PADGETT J E, BARBOSA A R, et al. Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the united states: state-of-the-art review[J]. Journal of Structural Engineering, 2017, 143(3): 4016188-1-17.
    [4] SOLTANIEH S, MEMARPOUR M M, KILANEHEI F. Performance assessment of bridge-soil-foundation system with irregular configuration considering ground motion directionality effects[J]. Soil Dynamics and Earthquake Engineering, 2019, 118: 19-34. doi: 10.1016/j.soildyn.2018.11.006
    [5] OMRANIAN E, ABDELNABY A E, ABDOLLAHZADEH G. Seismic vulnerability assessment of RC skew bridges subjected to mainshock-aftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 186-197. doi: 10.1016/j.soildyn.2018.07.007
    [6] FENG Riu-wei, WANG Xiao-wei, YUAN Wan-chen, et al. Impact of seismic excitation direction on the fragility analysis of horizontally curved concrete bridges[J]. Bulletin of Earthquake Engineering, 2018, 16(10): 4705-4733. doi: 10.1007/s10518-018-0400-2
    [7] TASKARI O, SEXTOS A. Multi-angle, multi-damage fragility curves for seismic assessment of bridges[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(13): 2281-2301. doi: 10.1002/eqe.2584
    [8] TORBOL M, SHINOZUKA M. The directionality effect in the seismic risk assessment of highway networks[J]. Structure and Infrastructure Engineering, 2014, 10(2): 175-188. doi: 10.1080/15732479.2012.716069
    [9] TORBOL M, SHINOZUKA M. Effect of the angle of seismic incidence on the fragility curves of bridges[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2111-2124. doi: 10.1002/eqe.2197
    [10] NOORI H Z, AMIRIG G, NEKOOEI M, et al. Seismic fragility assessment of skewed MSSS-I girder concrete bridges with unequal height columns[J]. Journal of Earthquake and Tsunami, 2016, 10(1): 1550013-1-16.
    [11] JEON J, DESROCHES R, KIM T, et al. Geometric parameters affecting seismic fragilities of curved multi-frame concrete box-girder bridges with integral abutments[J]. Engineering Structures, 2016, 122: 121-143. doi: 10.1016/j.engstruct.2016.04.037
    [12] ABDEL-MOHTI A, PEKCAN G. Effect of skew angle on seismic vulnerability of RC box-girder highway bridges[J]. International Journal of Structural Stability and Dynamic, 2013, 13(6): 1350013-1-24. doi: 10.1142/S0219455413500132
    [13] YANG C S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83: 116-128. doi: 10.1016/j.engstruct.2014.10.025
    [14] PAHLAVAN H, ZAKERI B, AMIRI G G, et al. Probabilistic vulnerability assessment of horizontally curved multiframe RC box-girder highway bridges[J]. Journal of Performance of Constructed Facilities, 2016, 30(3): 4015038-1-12.
    [15] AMIRIHORMOZAKI E, PEKCAN G, ITANI A. Analytical fragility functions for horizontally curved steel I-girder highway bridges[J]. Earthquake Spectra, 2015, 31(4): 2235-2254. doi: 10.1193/022213EQS049M
    [16] SHIRAZI R S, PEKCAN G, ITANI A. Analytical fragility curves for a class of horizontally curved box-girder bridges[J]. Journal of Earthquake Engineering, 2018, 22(5): 881-901. doi: 10.1080/13632469.2016.1264325
    [17] ZAKERI B, PADGETT J E, AMIRI G G. Fragility assessment for seismically retrofitted skewed reinforced concrete box girder bridges[J]. Journal of Performance of Constructed Facilities, 2015, 29(2): 4014043-1-12.
    [18] ZAKERI B, PADGETT J E, AMIRI G G. Fragility analysis of skewed single-frame concrete box-girder bridges[J]. Journal of Performance of Constructed Facilities, 2014, 28(3): 571-582. doi: 10.1061/(ASCE)CF.1943-5509.0000435
    [19] MANGALATHU S, CHOI E, PARK H C, et al. Probabilistic seismic vulnerability assessment of tall horizontally curved concrete bridges in California[J]. Journal of Performance of Constructed Facilities, 2018, 32(6): 4018080-1-11.
    [20] SERDAR N, FOLIC R. Vulnerability and optimal probabilistic seismic demand model for curved and skewed RC bridges[J]. Engineering Structures, 2018, 176: 411-425. doi: 10.1016/j.engstruct.2018.09.020
    [21] WILSON T, CHEN S, MAHMOUD H. Analytical case study on the seismic performance of a curved and skewed reinforced concrete bridge under vertical ground motion[J]. Engineering Structures, 2015, 100: 128-136. doi: 10.1016/j.engstruct.2015.06.017
    [22] WEI Biao, ZUO Cheng-jun, HE Xu-hui, et al. Effects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 281-290. doi: 10.1016/j.soildyn.2018.08.022
    [23] JEON J, SHAFIEEZADEH A, LEE D H, et al. Damage assessment of older highway bridges subjected to three-dimensional ground motions: characterization of shear-axial force interaction on seismic fragilities[J]. Engineering Structures, 2015, 87: 47-57. doi: 10.1016/j.engstruct.2015.01.015
    [24] 单德山, 张二华, 董俊, 等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报, 2017, 50(4): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704013.htm

    SHAN De-shan, ZHANG Er-hua, DONG Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise peir[J]. China Civil Engineering Journal, 2017, 50(4): 107-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704013.htm
    [25] 刘健新, 张伟, 张茜. 洛河特大桥抗震性能计算[J]. 交通运输工程学报, 2006, 6(1): 57-62. doi: 10.3321/j.issn:1671-1637.2006.01.012

    LIU Jian-xin, ZHANG Wei, ZHANG Qian. Anti seismic performance calculation of Luohe Bridge[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 57-62. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.01.012
    [26] 单德山, 顾晓宇, 董俊, 等. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报, 2019, 54(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905001.htm

    SHAN De-shan, GU Xiao-yu, DONG Jun, et al. 3D seismic vulnerability analysis of bridge structural components based on reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905001.htm
    [27] BRESLER B. Design criteria for reinforced concrete columns under axial load and biaxial bending[J]. ACI Journal, 1960, 57(11): 481-490.
    [28] VECCHIO F J, COLLINS M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(1): 19-31.
    [29] JANGID R S. Seismic response of sliding structures to bidirectional earthquake excitation[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(11): 1301-1305. doi: 10.1002/(SICI)1096-9845(199611)25:11<1301::AID-EQE618>3.0.CO;2-3
    [30] 董俊, 单德山, 张二华, 等. 非规则连续刚构桥地震易损性分析[J]. 西南交通大学学报, 2015, 50(5): 845-851. doi: 10.3969/j.issn.0258-2724.2015.05.012

    DONG Jun, SHAN De-shan, ZHANG Er-hua, et al. Seismic fragility of irregular continuous rigid frame bridge[J]. Journal of Southwest Jiaotong Uninversity, 2015, 50(5): 845-851. (in Chinese). doi: 10.3969/j.issn.0258-2724.2015.05.012
    [31] BAKER J W. Quantitative classification of near-fault ground motion using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 99(5): 1486-1501.
    [32] BILLAH A H M M, ALAM M S, BHUIYUAN A R. Fragility analysis of retrofitted multi-column bridge bent subjected to near fault and far field ground moion[J]. Journal of Bridge Engineering, 2013, 18(10): 992-1004. doi: 10.1061/(ASCE)BE.1943-5592.0000452
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  538
  • HTML全文浏览量:  145
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回