Impact of ground motion incident angles on seismic vulnerability for bridge with thin-walled hollow tall pier
-
摘要: 为了充分评估空心薄壁高墩大跨桥梁结构的抗震性能, 以中国西部某四跨高墩刚构-连续组合体系桥梁作为研究对象, 基于三维地震易损性分析方法, 计入竖向地震动的影响, 结合现行桥梁抗震设计规范, 采用增量动力分析方法讨论了水平地震动入射角对桥梁构件地震易损性的影响; 依据一阶可靠度理论分析了地震动入射角对桥梁结构系统易损性的影响规律。研究结果表明: 2#、3#刚构桥墩的弯曲和剪切易损性云图与1#、4#悬臂墩的弯曲和剪切易损性云图差异明显, 桥墩弯曲和剪切的地震易损性不仅与地震动入射角有关, 还与桥墩结构形式有关; 支座在轻微损伤、中度损伤、重度损伤及完全损伤状态下的损伤概率分布相似, 地面峰值加速度为0.4g时, 最大损伤概率的地震动入射角为0°和180°, 当地面峰值加速度大于0.6g时, 轻微损伤和中度损伤的最不利入射角为0~180°, 支座变形的最不利地震动输入方向主要为纵桥向和横桥向。由此可见, 各关键构件的不同损伤指标下的损伤概率随地震强度、方向变化的规律各不相同; 不同损伤指标下系统及各构件的最不利地震动入射角及其区间数量和范围也各不相同; 仅讨论纵桥向或横桥向构件地震易损性不能合理评估桥梁结构的实际抗震需求, 采用三维地震易损性分析方法能准确定位最不利地震动入射角, 实现高墩大跨桥梁结构抗震性能的准确评估。Abstract: A certain 4-span rigid-frame-continuous composite bridge with tall piers in western China was considered as the research object to fully assess the seismic resistance performance of long-span bridge structures with thin-walled hollow tall piers. Combined with the current bridge seismic design code, the incremental dynamic analysis method was adopted to discuss the impact of horizontal ground motion incident angle on the seismic vulnerability of bridge components based on the three-dimensional seismic vulnerability analysis method, and the influence of vertical ground motion was considered. The impact law of ground motion incident angle on the seismic vulnerability of bridge structural system was analyzed in considering the first-order reliability theory. Analysis result indicates that the bending and shearing vulnerability nephograms of the 2# and 3# rigid-frame piers differ significantly from the corresponding nephograms of the 1# and 4# cantilever piers. The bending and shearing seismic vulnerabilities of pier are not only related to the ground motion incident angle but also to the pier structural type. The distributions for the damage probability of bearings with slight, moderate, severe, and complete damage states are similar. The ground motion incident angles for the maximum damage probability are 0 and 180° when the peak ground acceleration is 0.4g. The most unfavorable incident angles for the slight and moderate damage states are 0-180° as the peak ground acceleration increases over 0.6g. The most unfavorable ground motion incident directions for the bearing deformation are mainly the longitudinal and lateral directions of the bridge. It can be seen that the damage probabilities for various damage indices of the various key components differ along with the various intensities and directions for ground motions. The number and ranges for the most unfavorable ground motion incident angles and their relative intervals of the structural system and its components with various damage indices also differ. The seismic demand for the bridge structure can not be properly evaluated by only discussing the seismic vulnerability in the longitudinal and lateral directions of the bridge. The most unfavorable ground motion incident angle and even the seismic resistance performance of long-span bridges with tall piers can be located and evaluated accurately using the proposed three-dimensional seismic vulnerability analysis method.
-
表 1 支座信息
Table 1. Information of bearings
名称 类型 型号 Ⅰ型支座 纵向活动的球形钢支座 TJGZ-LX-Q9000-ZX-c150-0.1g Ⅱ型支座 纵向活动的球形钢支座 TJGZ-LX-Q5500-ZX-c100-0.1g Ⅲ型支座 纵向活动的球形钢支座 TJGZ-LX-Q9000-ZX-c100-0.1g 表 2 桥墩主要损伤形式信息
Table 2. Information of pier major damage forms
截面 θ/(°) 轻 中 重 全 1#墩底 0、60、90、120、180 剪 剪 弯 弯 2#、3#墩底 0、60、90、120、180 弯 弯 弯 弯 2#、3#墩顶 0、60 弯 弯 弯 弯 90 剪 剪 弯 弯 120、180 弯 弯 弯 弯 4#墩底 0 弯 弯 弯 弯 60、90、120 弯或剪 弯或剪 弯 弯 180 弯 弯 弯 弯 表 3 各构件轻微损伤概率排序
Table 3. Probability order of components under slight damage state
-
[1] BHATNAGAR U R, BANERJEE S. Fragility of skewed bridges under orthogonal seismic ground motions[J]. Structure and Infrastructure Engineering, 2015, 11(9): 1113-1130. doi: 10.1080/15732479.2014.936880 [2] BILLAH A H M M, ALAM M S, BHUIYAN M A R. Seismic fragility assessment of highway bridges: a state-of-the-art review[J]. Structure and Infrastructure Engineering, 2015, 11(6): 804-832. doi: 10.1080/15732479.2014.912243 [3] GIDARIS I, PADGETT J E, BARBOSA A R, et al. Multiple-hazard fragility and restoration models of highway bridges for regional risk and resilience assessment in the united states: state-of-the-art review[J]. Journal of Structural Engineering, 2017, 143(3): 4016188-1-17. [4] SOLTANIEH S, MEMARPOUR M M, KILANEHEI F. Performance assessment of bridge-soil-foundation system with irregular configuration considering ground motion directionality effects[J]. Soil Dynamics and Earthquake Engineering, 2019, 118: 19-34. doi: 10.1016/j.soildyn.2018.11.006 [5] OMRANIAN E, ABDELNABY A E, ABDOLLAHZADEH G. Seismic vulnerability assessment of RC skew bridges subjected to mainshock-aftershock sequences[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 186-197. doi: 10.1016/j.soildyn.2018.07.007 [6] FENG Riu-wei, WANG Xiao-wei, YUAN Wan-chen, et al. Impact of seismic excitation direction on the fragility analysis of horizontally curved concrete bridges[J]. Bulletin of Earthquake Engineering, 2018, 16(10): 4705-4733. doi: 10.1007/s10518-018-0400-2 [7] TASKARI O, SEXTOS A. Multi-angle, multi-damage fragility curves for seismic assessment of bridges[J]. Earthquake Engineering and Structural Dynamics, 2015, 44(13): 2281-2301. doi: 10.1002/eqe.2584 [8] TORBOL M, SHINOZUKA M. The directionality effect in the seismic risk assessment of highway networks[J]. Structure and Infrastructure Engineering, 2014, 10(2): 175-188. doi: 10.1080/15732479.2012.716069 [9] TORBOL M, SHINOZUKA M. Effect of the angle of seismic incidence on the fragility curves of bridges[J]. Earthquake Engineering and Structural Dynamics, 2012, 41(14): 2111-2124. doi: 10.1002/eqe.2197 [10] NOORI H Z, AMIRIG G, NEKOOEI M, et al. Seismic fragility assessment of skewed MSSS-I girder concrete bridges with unequal height columns[J]. Journal of Earthquake and Tsunami, 2016, 10(1): 1550013-1-16. [11] JEON J, DESROCHES R, KIM T, et al. Geometric parameters affecting seismic fragilities of curved multi-frame concrete box-girder bridges with integral abutments[J]. Engineering Structures, 2016, 122: 121-143. doi: 10.1016/j.engstruct.2016.04.037 [12] ABDEL-MOHTI A, PEKCAN G. Effect of skew angle on seismic vulnerability of RC box-girder highway bridges[J]. International Journal of Structural Stability and Dynamic, 2013, 13(6): 1350013-1-24. doi: 10.1142/S0219455413500132 [13] YANG C S W, WERNER S D, DESROCHES R. Seismic fragility analysis of skewed bridges in the central southeastern United States[J]. Engineering Structures, 2015, 83: 116-128. doi: 10.1016/j.engstruct.2014.10.025 [14] PAHLAVAN H, ZAKERI B, AMIRI G G, et al. Probabilistic vulnerability assessment of horizontally curved multiframe RC box-girder highway bridges[J]. Journal of Performance of Constructed Facilities, 2016, 30(3): 4015038-1-12. [15] AMIRIHORMOZAKI E, PEKCAN G, ITANI A. Analytical fragility functions for horizontally curved steel I-girder highway bridges[J]. Earthquake Spectra, 2015, 31(4): 2235-2254. doi: 10.1193/022213EQS049M [16] SHIRAZI R S, PEKCAN G, ITANI A. Analytical fragility curves for a class of horizontally curved box-girder bridges[J]. Journal of Earthquake Engineering, 2018, 22(5): 881-901. doi: 10.1080/13632469.2016.1264325 [17] ZAKERI B, PADGETT J E, AMIRI G G. Fragility assessment for seismically retrofitted skewed reinforced concrete box girder bridges[J]. Journal of Performance of Constructed Facilities, 2015, 29(2): 4014043-1-12. [18] ZAKERI B, PADGETT J E, AMIRI G G. Fragility analysis of skewed single-frame concrete box-girder bridges[J]. Journal of Performance of Constructed Facilities, 2014, 28(3): 571-582. doi: 10.1061/(ASCE)CF.1943-5509.0000435 [19] MANGALATHU S, CHOI E, PARK H C, et al. Probabilistic seismic vulnerability assessment of tall horizontally curved concrete bridges in California[J]. Journal of Performance of Constructed Facilities, 2018, 32(6): 4018080-1-11. [20] SERDAR N, FOLIC R. Vulnerability and optimal probabilistic seismic demand model for curved and skewed RC bridges[J]. Engineering Structures, 2018, 176: 411-425. doi: 10.1016/j.engstruct.2018.09.020 [21] WILSON T, CHEN S, MAHMOUD H. Analytical case study on the seismic performance of a curved and skewed reinforced concrete bridge under vertical ground motion[J]. Engineering Structures, 2015, 100: 128-136. doi: 10.1016/j.engstruct.2015.06.017 [22] WEI Biao, ZUO Cheng-jun, HE Xu-hui, et al. Effects of vertical ground motions on seismic vulnerabilities of a continuous track-bridge system of high-speed railway[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 281-290. doi: 10.1016/j.soildyn.2018.08.022 [23] JEON J, SHAFIEEZADEH A, LEE D H, et al. Damage assessment of older highway bridges subjected to three-dimensional ground motions: characterization of shear-axial force interaction on seismic fragilities[J]. Engineering Structures, 2015, 87: 47-57. doi: 10.1016/j.engstruct.2015.01.015 [24] 单德山, 张二华, 董俊, 等. 汶川地震动衰减特性及其大跨高墩连续刚构桥的地震响应规律[J]. 土木工程学报, 2017, 50(4): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704013.htmSHAN De-shan, ZHANG Er-hua, DONG Jun, et al. Ground motion attenuation characteristics of Wenchuan earthquake and seismic response law of long-span continuous rigid frame bridge with high-rise peir[J]. China Civil Engineering Journal, 2017, 50(4): 107-115. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704013.htm [25] 刘健新, 张伟, 张茜. 洛河特大桥抗震性能计算[J]. 交通运输工程学报, 2006, 6(1): 57-62. doi: 10.3321/j.issn:1671-1637.2006.01.012LIU Jian-xin, ZHANG Wei, ZHANG Qian. Anti seismic performance calculation of Luohe Bridge[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 57-62. (in Chinese). doi: 10.3321/j.issn:1671-1637.2006.01.012 [26] 单德山, 顾晓宇, 董俊, 等. 基于可靠度的桥梁构件三维地震易损性分析[J]. 西南交通大学学报, 2019, 54(5): 885-896. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905001.htmSHAN De-shan, GU Xiao-yu, DONG Jun, et al. 3D seismic vulnerability analysis of bridge structural components based on reliability[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 885-896. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201905001.htm [27] BRESLER B. Design criteria for reinforced concrete columns under axial load and biaxial bending[J]. ACI Journal, 1960, 57(11): 481-490. [28] VECCHIO F J, COLLINS M P. The modified compression-field theory for reinforced concrete elements subjected to shear[J]. ACI Journal, 1986, 83(1): 19-31. [29] JANGID R S. Seismic response of sliding structures to bidirectional earthquake excitation[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(11): 1301-1305. doi: 10.1002/(SICI)1096-9845(199611)25:11<1301::AID-EQE618>3.0.CO;2-3 [30] 董俊, 单德山, 张二华, 等. 非规则连续刚构桥地震易损性分析[J]. 西南交通大学学报, 2015, 50(5): 845-851. doi: 10.3969/j.issn.0258-2724.2015.05.012DONG Jun, SHAN De-shan, ZHANG Er-hua, et al. Seismic fragility of irregular continuous rigid frame bridge[J]. Journal of Southwest Jiaotong Uninversity, 2015, 50(5): 845-851. (in Chinese). doi: 10.3969/j.issn.0258-2724.2015.05.012 [31] BAKER J W. Quantitative classification of near-fault ground motion using wavelet analysis[J]. Bulletin of the Seismological Society of America, 2007, 99(5): 1486-1501. [32] BILLAH A H M M, ALAM M S, BHUIYUAN A R. Fragility analysis of retrofitted multi-column bridge bent subjected to near fault and far field ground moion[J]. Journal of Bridge Engineering, 2013, 18(10): 992-1004. doi: 10.1061/(ASCE)BE.1943-5592.0000452