-
摘要: 以现行《公路桥涵养护规范》(JTG H11—2004)为依据, 提出一种考虑桥梁实际技术状况等级的钢筋混凝土简支梁桥限载分析方法, 并推算了不同时期规范中桥梁在不同技术状况等级下的典型车辆限载建议值; 以结构可靠度理论和现行规范设计表达式为基础, 以设计活恒载比为基本参数建立了公路桥梁限载简化分析模型; 以现行桥梁设计规范抗力标准值为基准确定了不同技术状况等级桥梁对应的抗力修正系数; 应用公路桥梁限载分析程序分别计算了按《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ 023—85、JTG D62—2004和JTG 3362—2018)设计的桥梁在不同技术状况等级下的限载系数; 依据设计汽车荷载标准值效应限值与典型车辆荷载效应等效假定, 提出了钢筋混凝土简支梁桥的限载建议值。分析结果表明: 在相同的技术状况和安全等级下, JTJ 023—85规范中汽车-超20级和汽车-20级桥梁限载较JTG D62—2004规范中安全等级一级的公路-Ⅰ级和公路-Ⅱ级高, 最大差值分别为1.2和5.0 t; JTG 3362—2018规范中公路-Ⅰ级和公路-Ⅱ级的桥梁限载明显高于JTJ 023—85和JTG D62—2004规范, 最大差值分别为13.8和8.6 t, 且技术状况等级越高, 桥梁限载差值越大; 不同时期规范中桥梁初始设计抗力的差异导致其在相同技术状况等级下的典型车辆限载不同, 在按技术状况等级对在役桥梁制定限载措施时, 应考虑不同时期设计规范的影响。Abstract: In accordance with the current Code for Maintenance of Highway Bridges and Culverts(JTG H11—2004), a weight limit analysis method for reinforced concrete(RC) simply supported beam bridges was proposed by considering the actual technical condition ratings. Moreover, the typical vehicle weight limits for bridges under different technical condition ratings recommended in codes in different periods were determined. Based on the structural reliability theory and design expressions in the current code, a simplified analytical model of weight limits for highway bridges was established by taking the design live-to-dead load ratio as the fundamental parameter. The nominal resistances in the current bridge design code were used as the basis for determining the corresponding resistance correction factors for bridges under different technical condition ratings. A program for the weight limit analysis of highway bridges was used to calculate the weight limit factors of bridges under different technical condition ratings designed in accordance with the Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts(JTJ 023—85, JTG D62—2004, and JTG 3362—2018). The recommended weight limits of RC simply supported beam bridges were proposed under the assumption that the standard effect limit of design vehicle load was equivalent to the typical vehicle load effect. Analysis result shows that under the same technical condition rating and safety level, the bridge weight limits with ratings of truck-S20 and truck-20 in the JTJ 023—85 code are higher than those with safety levels of highway-Ⅰ and highway-Ⅱ in the JTG D62—2004 code, and the maximum differences are 1.2 and 5.0 t, respectively. The bridge weight limits with ratings of highway-Ⅰ and highway-Ⅱ in the JTG 3362—2018 code are significantly higher than those in the JTJ 023—85 and JTG D62—2004 codes, and the maximum differences are 13.8 and 8.6 t, respectively. Moreover, the higher the technical condition rating, the greater the difference between the bridge weight limits. The differences in the initial design resistance of bridges in codes in different periods lead to different typical vehicle weight limits under the same technical condition rating. When formulating the weight limit measures for existing bridges according to their technical condition ratings, the influences of design codes in different periods should be considered.
-
表 1 与JTJ 023—85规范中对应的桥梁抗力修正系数
Table 1. Resistance correction factors of bridges according to JTJ 023—85 code
ρ γR 1、2类桥梁 3类桥梁 4类桥梁 0.10 1.312 5 1.166 1.050 0.875 0.25 1.312 5 1.166 1.050 0.875 0.50 1.287 5 1.144 1.030 0.858 1.00 1.250 0 1.111 1.000 0.833 1.50 1.250 0 1.111 1.000 0.833 2.50 1.250 0 1.111 1.000 0.833 表 2 JTJ 023—85中不同技术状况等级桥梁对应的限载系数
Table 2. Weight limit factors corresponding to different technical condition ratings of bridges in JTJ 023—85 code
限载安全等级 ρ 1、2类桥梁 3类桥梁 4类桥梁 一级 0.10 0.599 0.232 0.25 0.944 0.426 0.50 0.997 0.680 0.217 1.00 1.007 0.802 0.492 1.50 1.039 0.866 0.605 2.50 1.064 0.916 0.694 二级 0.10 1.492 0.450 0.25 1.332 0.780 0.50 1.226 0.895 0.394 1.00 1.158 0.939 0.607 1.50 1.166 0.981 0.701 2.50 1.172 1.014 0.775 表 3 JTG D62—2004和JTG 3362—2018规范中不同技术状况等级桥梁对应的限载系数
Table 3. Weight limit factors corresponding to different technical condition ratings of bridges in JTG D62—2004 and JTG 3362—2018 codes
设计安全等级 限载安全等级 ρ 1、2类桥梁 3类桥梁 4类桥梁 一级 一级 0.10 0.25 0.650 0.50 0.877 0.578 1.00 0.987 0.784 0.478 1.50 1.022 0.851 0.593 2.50 1.049 0.903 0.684 二级 0.10 0.765 0.25 1.017 0.493 0.50 1.099 0.779 0.297 1.00 1.137 0.919 0.592 1.50 1.148 0.964 0.688 2.50 1.156 0.991 0.764 二级 一级 0.10 0.25 0.203 0.50 0.605 0.332 1.00 0.802 0.617 0.338 1.50 0.866 0.710 0.476 2.50 0.916 0.783 0.584 二级 0.10 0.25 0.541 0.50 0.808 0.517 1.00 0.939 0.741 0.442 1.50 0.981 0.814 0.562 2.50 1.014 0.871 0.657 表 4 车辆荷载换算系数
Table 4. Vehicle load conversion factors
跨径/m JTG D62—2004规范 JTG 3362—2018规范 mⅠ5 mⅡ3 mⅠ5 mⅡ3 6 1.004 0.878 1.414 1.236 8 1.013 0.886 1.377 1.205 10 1.049 0.867 1.381 1.141 12 1.096 0.876 1.403 1.122 14 1.149 0.898 1.435 1.122 16 1.139 0.928 1.390 1.133 18 1.115 0.962 1.333 1.150 20 1.093 0.998 1.283 1.172 22 1.088 1.037 1.255 1.196 24 1.088 1.077 1.236 1.224 26 1.093 1.118 1.224 1.252 28 1.104 1.160 1.220 1.282 30 1.119 1.203 1.221 1.313 32 1.138 1.246 1.227 1.344 34 1.158 1.289 1.236 1.376 36 1.181 1.333 1.248 1.409 38 1.205 1.377 1.262 1.442 40 1.231 1.422 1.277 1.475 表 5 JTJ 023—85规范中的桥梁限载建议值
Table 5. Recommended weight limits for bridges in JTJ 023—85 code
t 限载安全等级 设计荷载等级 1、2类 3类 4类 一级 汽车-超20级 55.4 44.1 27.1 汽车-20级 30.2 24.1 14.8 二级 汽车-超20级 63.7 51.6 33.4 汽车-20级 34.7 28.2 18.2 表 6 JTG D62—2004和JTG 3362—2018规范桥梁限载建议值
Table 6. Recommended weight limits for bridges in JTG D62—2004 and JTG 3362—2018 codes
t 设计规范 设计安全等级 限载安全等级 设计荷载等级 1、2类 3类 4类 JTG D62—2004 一级 一级 公路-Ⅰ级 54.3 43.1 26.3 公路-Ⅱ级 25.8 20.5 12.5 二级 公路-Ⅰ级 62.5 50.5 32.6 公路-Ⅱ级 29.7 24.0 15.5 二级 一级 公路-Ⅰ级 44.1 33.9 18.6 公路-Ⅱ级 20.9 16.1 8.8 二级 公路-Ⅰ级 51.6 40.8 24.3 公路-Ⅱ级 24.5 19.3 11.5 JTG 3362—2018 一级 一级 公路-Ⅰ级 66.2 52.6 32.1 公路-Ⅱ级 33.2 26.4 16.1 二级 公路-Ⅰ级 76.3 61.7 39.7 公路-Ⅱ级 38.3 30.9 19.9 二级 一级 公路-Ⅰ级 53.8 41.4 22.7 公路-Ⅱ级 27.0 20.8 11.4 二级 公路-Ⅰ级 63.0 49.7 29.7 公路-Ⅱ级 31.6 24.9 14.9 -
[1] JAMES R W, NOEL J S, FURR H L, et al. Proposed new truck weight limit formula[J]. Journal of Structural Engineering, 1986, 112(7): 1589-1604. doi: 10.1061/(ASCE)0733-9445(1986)112:7(1589) [2] JAMES R W, ZHANG He-ping. Evaluation of proposed bridge formula for continuous spans[J]. Journal of Structural Engineering, 1991, 117(4): 1144-1158. doi: 10.1061/(ASCE)0733-9445(1991)117:4(1144) [3] KURT C E. A proposed modification of the bridge gross weight formula[C]//Iowa State University. Proceedings of the Mid-Continent Transportation Symposium 2000. Ames: Iowa State University, 2000: 104-108. [4] CONTRACTOR Y J. Evaluation of a new bridge formula for regulation of truck weights[D]. College Station: Texas A & amp; amp; M University, 2005. [5] Transportation Research Board. Truck weight limits: issues and options[R]. Washington DC: Transportation Research Board, 1990. [6] MOSHIRI M, MONTUFAR J. Analysis of imposed bridge load stresses for development of a European bridge formula[J]. Transportation Research Record, 2014(2406): 3-11. [7] MOSHIRI M, MONTUFAR J. Existing bridge formulas for truck-weight regulation from international jurisdictions and resulting load stresses on single-span bridges[J]. Journal of Transportation Engineering, 2016, 142(1): 04015038-1-7. [8] GHOSN M. Development of truck weight regulations using bridge reliability method[J]. Journal of Bridge Engineering, 2000, 5(4): 293-303. doi: 10.1061/(ASCE)1084-0702(2000)5:4(293) [9] GHOSN M, MOSES F. Effect of changing truck weight regulations on U. S. bridge network[J]. Journal of Bridge Engineering, 2000, 5(4): 304-310. doi: 10.1061/(ASCE)1084-0702(2000)5:4(304) [10] FERREIRA L M, NOWAK A S, DEBS M K. Development of truck weight limits for concrete bridges using reliability theory[J]. IBRACON Structures and Materials Journal, 2008, 1(4): 421-435. [11] HAN Wan-shui, YUAN Yang-guang, XIE Qing, et al. Reliability-based truck weight regulation of small- to medium-span bridges[J]. Journal of Bridge Engineering, 2018, 23(1): 04017109-1-15. [12] 袁阳光, 黄平明, 韩万水, 等. 基于可靠度理论的中小跨径桥梁卡车载重限值研究[J]. 工程力学, 2017, 34(8): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201708018.htmYUAN Yang-guang, HUANG Ping-ming. HAN Wan-shui, et al. Reliability based research on truck-load limitation of medium-small-span bridges[J]. Engineering Mechanics, 2017, 34(8): 161-170. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201708018.htm [13] 祝志文, 黄炎, 向泽. 货运繁重公路的车辆荷载谱和疲劳车辆模型[J]. 交通运输工程学报, 2017, 17(3): 13-24. doi: 10.3969/j.issn.1671-1637.2017.03.002ZHU Zhi-wen, HUANG Yan, XIANG Ze. Vehicle loading spectrum and fatigue truck models of heavy cargo highway[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 13-24. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.002 [14] LOU Peng, NASSIF H, SU Dan, et al. Impact of overweight trucks on the service life of bridge girders[J]. Transportation Research Record, 2017(2642): 103-117. [15] HAN Wan-shui, YUAN Yang-guang, CHEN Xiao, et al. Safety assessment of continuous beam bridges under overloaded customized transport vehicle load[J]. Journal of Bridge Engineering, 2018, 23(6): 04018030-1-13. [16] 邓露, 毕涛, 何维, 等. 基于疲劳寿命的钢筋混凝土桥梁限载取值分析方法[J]. 中国公路学报, 2017, 30(4): 72-78. doi: 10.3969/j.issn.1001-7372.2017.04.009DENG Lu, BI Tao, HE Wei, et al. Vehicle weight limit analysis method for reinforced concrete bridges based on fatigue life[J]. China Journal of Highway and Transport, 2017, 30(4): 72-78. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.04.009 [17] DENG Lu, YAN Wang-chen. Vehicle weight limits and overload permit checking considering the cumulative fatigue damage of bridges[J]. Journal of Bridge Engineering, 2018, 23(7): 04018045-1-8. [18] WANG Wei, DENG Lu, HE Xu-hui, et al. Truck weight limit for simply supported steel girder bridges based on bridge fatigue reliability[J]. Journal of Aerospace Engineering, 2018, 31(6): 04018079-1-10. [19] 王松根, 李松辉. 公路桥梁限载标准的可靠性分析方法[J]. 工程力学, 2010, 27(10): 162-166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201010027.htmWANG Song-gen, LI Song-hui. Reliability-based analysis on the vehicular weight limit of highway bridges[J]. Engineering Mechanics, 2010, 27(10): 162-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201010027.htm [20] 李松辉. 基于车辆荷载效应截尾分布的桥梁限载分析方法[J]. 工程力学, 2014, 31(2): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201402017.htmLI Song-hui. Analytical approach for determining truck weight limits with truncated distributions of live load effects on highway bridges[J]. Engineering Mechanics, 2014, 31(2): 117-124. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201402017.htm [21] 李松辉, 蒋含莞. 不同限载等级对公路桥梁安全性的影响规律[J]. 中国公路学报, 2016, 29(3): 82-88. doi: 10.3969/j.issn.1001-7372.2016.03.011LI Song-hui, JIANG Han-wan. Influence law of different weight limit levels on highway bridge safety[J]. China Journal of Highway and Transport, 2016, 29(3): 82-88. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.03.011 [22] 李松辉. 公路桥梁限载取值的可靠性分析模型研究[J]. 土木工程学报, 2013, 46(9): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201309014.htmLI Song-hui. Reliability-based analytical model for determining the truck weight limits on highway bridges[J]. China Civil Engineering Journal, 2013, 46(9): 83-90. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201309014.htm [23] 李松辉, 蒋含莞. 不同抗力水平公路桥梁限载分析模型[J]. 土木工程学报, 2016, 49(6): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606009.htmLI Song-hui, JIANG Han-wan. Analytical model for determining weight limits of highway bridges with various resistance levels[J]. China Civil Engineering Journal, 2016, 49(6): 76-83. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201606009.htm [24] 李松辉, 聂瑞峰, 蒋瑞年. 考虑全梁承载能力因素的RC桥梁限载取值[J]. 土木工程学报, 2018, 51(2): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201802009.htmLI Song-hui, NIE Rui-feng, JIANG Rui-nian. Truck weight limits of RC beam bridges based on the flexural and shear capacities[J]. China Civil Engineering Journal, 2018, 51(2): 74-80. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201802009.htm [25] 李松辉, 李灿, 聂瑞锋, 等. 考虑抗力修正系数与静载试验效率的RC简支梁桥限载取值[J]. 土木工程学报, 2020, 53(10): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202010010.htmLI Song-hui, LI Can, NIE Rui-feng, et al. Truck weight limits for simply supported RC beam bridges considering correction factors of resistances and static load test levels[J]. China Civil Engineering Journal, 2020, 53(10): 99-105. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202010010.htm [26] LANTSOGHT E O L, VAN DE VEEN C, DE BOER A, et al. Required proof load magnitude for probabilistic field assessment of Viaduct De Beek[J]. Engineering Structures, 2017, 148: 767-779. doi: 10.1016/j.engstruct.2017.07.010 [27] LANTSOGHT E, KOEKKOEK R, VEERN C, et al. Pilot proof-load test on Viaduct De Beek: case study[J]. Journal of Bridge Engineering, 2017, 22(12): 05017014-1-15. [28] MOSES F. NCFRP report 454: calibration of load factors for LRFR bridge evaluation[R]. Washington DC: Transportation Research Board, 2001. [29] NOWAK A S, LATSKO O. Revised load and resistance factors for the AASHTO LRFD Bridge Design Specifications[J]. PCI Journal, 2017, 62(3): 46-58. [30] KULICKI J M, PRUCZ Z, CLANCY C M, et al. Updating the calibration report for AASHTO LRFD code[R]. Washington DC: Transportation Research Board, 2007. [31] 陈宝春, 余印根. 公路与城市桥梁技术状况评估方法对比分析[J]. 中国公路学报, 2013, 26(3): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201303012.htmCHEN Bao-chun, YU Yin-gen. Comparative analysis of technical condition rating of highway bridges and city bridges[J]. China Journal of Highway and Transport, 2013, 26(3): 94-100. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201303012.htm [32] 冯青松, 孙魁, 雷晓燕, 等. 简支梁桥上嵌入式轨道无缝线路可靠性分析[J]. 交通运输工程学报, 2020, 20(4): 70-79. doi: 10.19818/j.cnki.1671-1637.2020.04.005FENG Qing-song, SUN Kui, LEI Xiao-yan, et al. Reliability analysis of embedded track continuous welded rail on simply supported beam bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 70-79. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.04.005