Mixed ventilation design system combined cross passage with single shaft in extra-long highway tunnel
-
摘要: 为了降低公路隧道通风系统土建与运营费用, 解决互补式通风系统适用长度有限的问题, 将互补换气系统应用于分段式纵向通风方式中, 提出了换气横通道结合单风井的混合通风方式; 在隧道通风理论的基础上, 推导了适用于混合通风方式的计算公式; 结合隧道通风设计程序, 给出了从风井位置确定、设计风量计算、横通道位置确定、横通道换气比计算到污染物浓度校核的设计流程, 从隧道结构形式和左、右洞的需风量两方面, 分析了混合通风方式的适用条件; 结合工程案例, 分析了混合通风方式的实用性, 对比了常规分段式纵向通风方式和混合通风方式的土建规模和运营能耗。研究结果表明: 与常规分段式纵向通风方式相比, 在隧道结构方面, 混合通风方式增加2个换气横通道和1个排烟通道, 减少部分联络通道和1座通风井, 从而降低了土建总体规模, 减少了初期土建投资费用, 同时解决了互补通风方式在特长公路隧道应用中受火灾排烟长度限制的问题; 在运营能耗方面, 当车速为60 km·h-1时, 混合通风方式充分利用隧道内的交通风升压力, 减少了机械通风动力的需求, 虽然隧道内射流风机能耗功率有较大增加, 但轴流风机能耗功率降低了25.00%, 总功率减小了10.85%, 隧道运营通风能耗得到有效降低, 具有显著的经济效益。Abstract: In order to reduce the construction and operation costs of highway tunnel ventilation systems, and solve the problem of limited applicable length for the complementary ventilation system, a complementary ventilation system was applied to the sectional longitudinal ventilation mode. A mixed ventilation mode combined air-exchange cross passage with a single shaft was proposed. Based on tunnel ventilation theory, the calculation formulas for this mode were deduced. Combined with tunnel ventilation design procedures, a design process from selecting the air shaft position, calculating the designed air volume, selecting the cross passage position, calculating the air exchange ratio of cross passage to checking the pollutant concentration was developed. The applicability of the mixed ventilation mode was then analyzed according to tunnel structure form and wind demand of left-right line tunnels. An engineering case study was conducted on the practicability of the mixed ventilation mode. The mixed ventilation mode was compared with the conventional sectional longitudinal ventilation mode in terms of the construction scale and operation energy consumption. Analysis result shows that compared with conventional sectional longitudinal ventilation mode, the proposed mixed ventilation mode adds two air-exchange cross passages and a smoke exhaust passage in terms of tunnel structure and reduces part of connection access and a ventilation shaft. Therefore, the overall scale of the structure and the preliminary construction cost are reduced, and the problem of complementary ventilation mode limited by the length of fire smoke exhaust in extra-long highway tunnels is effectively solved at the same time. In terms of operation energy consumption, when vehicle speed in the tunnel is 60 km·h-1, the mixed ventilation mode is more efficient because of the utilization of the traffic wind pressure and the reduction of the need for mechanical ventilation power in the tunnel. Although the energy consumption of jet fans increases, the energy consumption of axial fans reduces by 25.00%, and the total power reduces by 10.85%. The operation energy consumption of tunnel is effectively reduced, which brings significant economic benefits.
-
表 1 双洞隧道的设计风速要求
Table 1. Design wind speed requirements of double-hole tunnel
通风方式 设计风速/(m·s-1) 全射流通风 不宜超过10 分段送排式纵向通风 不宜超过8 分段送排式纵向通风(推荐) 6~8(经济合理) 表 2 隧道通风设计参数
Table 2. Design parameters of tunnel ventilation
分线 长度/m 纵坡/% 断面积/m2 隧道最大允许风量/(m3·s-1) 左洞 7 100 -1.9 64.62 646.2 右洞 7 100 1.9 64.62 646.2 表 3 左、右线隧道需风量
Table 3. Air demands of left and right line tunnels
分线 控制工况 需风量/(m3·s-1) 左洞 换气 380 右洞 烟雾 930 表 4 混合通风方案的设计参数
Table 4. Design parameters of mixed ventilation scheme
QRBD/(m3·s-1) e1 e2 QE/(m3·s-1) QP/(m3·s-1) QRAD/(m3·s-1) QLD/(m3·s-1) 480 0.347 0.347 370 350 460 480 表 5 原方案与混合通风方案的风机功率
Table 5. Fan powers of original and mixed ventilation schemes
方案名称 左、右线 主洞及风井 风机类型 正常营运(Vt =60 km·h-1) 风机数量/台 风机功率/kW 总功率/kW 常规分段式纵向通风方案 左线 主洞 射流风机 0 0 2 970 右线 主洞 射流风机 0 0 1#斜井 轴流风机 2(排)/2(送) 577/994 2#斜井 轴流风机 2(排)/2(送) 580/819 横通道结合单斜井的混合型通风方案 左线 主洞 射流风机 9 270 2 648 右线 主洞 射流风机 5 150 1#斜井 轴流风机 2(排)/2(送) 784/1167 横通道 轴流风机 2 277 -
[1] CHUNG C Y, CHUNG P L. A numerical and experimental study of pollutant dispersion in a traffic tunnel[J]. Environmental Monitoring and Assessment, 2007, 130(1-3): 289-299. doi: 10.1007/s10661-006-9397-0 [2] BARI S, NASER J. Simulation of airflow and pollution levels caused by severe traffic jam in a road tunnel[J]. Tunnelling and Underground Space Technology, 2010, 25(1): 70-77. doi: 10.1016/j.tust.2009.09.004 [3] CHOW W K, CHAN M Y. Field measurement on transient carbon monoxide levels in vehicular tunnels[J]. Building and Environment, 2003, 38(2): 227-236. doi: 10.1016/S0360-1323(02)00120-8 [4] 方磊. 长大公路隧道通风物理模型试验研究[D]. 西安: 长安大学, 2005.FANG Lei. The physicial model experiment research of long highway tunnel ventilation[D]. Xi'an: Chang'an University, 2005. (in Chinese). [5] GUO Chun, WANG Ming-nian, YANG Lu, et al. A review of energy consumption and saving in extra-long tunnel operation ventilation in China[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1558-1569. doi: 10.1016/j.rser.2015.09.094 [6] 曾艳华, 关宝树. 公路隧道全射流纵向通风方式的适用长度[J]. 公路, 1998(1): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199801009.htmZENG Yan-hua, GUAN Bao-shu. The applicable length of full jet longitudinal ventilation in highway tunnel[J]. Highway, 1998(1): 37-41. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL199801009.htm [7] WU Y, BAKAR M Z A. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity[J]. Fire Safety Journal, 2000, 35(4): 363-390. doi: 10.1016/S0379-7112(00)00031-X [8] CHEN Fa-lin. Smoke propagation in road tunnels[J]. Applied Mechanics Reviews, 2000, 53(8): 207-218. doi: 10.1115/1.3097350 [9] CHOW W K, WONG K Y, CHUNG W Y. Longitudinal ventilation for smoke control in a tilted tunnel by scale modeling[J]. Tunnelling and Underground Space Technology, 2010, 25(2): 122-128. doi: 10.1016/j.tust.2009.10.001 [10] 韩直. 公路隧道通风设计的理念与方法[J]. 地下空间与工程学报, 2005, 1(3): 464-466. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200503032.htmHAN Zhi. Concept and method of ventilation design for highway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(3): 464-466. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200503032.htm [11] 夏永旭, 张进县, 王永东, 等. 雁门关公路隧道通风方案研究[J]. 长安大学学报(自然科学版), 2003, 23(4): 46-50. doi: 10.3321/j.issn:1671-8879.2003.04.012XIA Yong-xu, ZHANG Jin-xian, WANG Yong-dong, et al. Ventilation scheme of Yanmenguan Highway Tunnel[J]. Journal of Chang'an University(Natural Science Edition), 2003, 23(4): 46-50. (in Chinese). doi: 10.3321/j.issn:1671-8879.2003.04.012 [12] 曹振. 特长公路隧道分段纵向通风火灾排烟研究[D]. 西安: 长安大学, 2007.CAO Zhen. The research on the exhausting fume method under conflagration in the extraordinary long highway tunnel with segmenting lengthways[D]. Xi'an: Chang'an University, 2007. (in Chinese). [13] 苏立勇. 青岛胶州湾海底公路隧道通风方案设计[J]. 现代隧道技术, 2009, 46(2): 77-83. doi: 10.3969/j.issn.1009-6582.2009.02.012SU Li-yong. Ventilation design option for Qingdao Jiaozhou Bay subsea tunnel[J]. Modern Tunnelling Technology, 2009, 46(2): 77-83. (in Chinese). doi: 10.3969/j.issn.1009-6582.2009.02.012 [14] BERNER M A, DAY J R. A new concept for ventilation long twin-tube tunnels[C]//BHR Group. Proceedings of the 7th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Cranfield: BHR Group, 1991: 811-820. [15] 夏丰勇, 宋神友, 谢永利, 等. 双洞互补式通风在公路隧道中的应用[J]. 现代隧道技术, 2017, 54(4): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201704021.htmXIA Feng-yong, SONG Shen-you, XIE Yong-li, et al. Application of twin-tube complementary ventilation in highway tunnels[J]. Modern Tunnelling Technology, 2017, 54(4): 160-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201704021.htm [16] 夏丰勇, 谢永利, 王亚琼, 等. 特长公路隧道互补式通风模式[J]. 交通运输工程学报, 2014, 14(6): 27-34. doi: 10.3969/j.issn.1671-1637.2014.06.004XIA Feng-yong, XIE Yong-li, WANG Ya-qiong, et al. Complementary ventilation modes of extralong highway tunnel[J]. Journal of Traffic and Transportation Engineering, 2014, 14(6): 27-34. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.06.004 [17] 夏丰勇, 王亚琼, 谢永利. 公路隧道双洞互补式通风的设计方法与试验[J]. 公路交通科技, 2015, 32(3): 103-108. doi: 10.3969/j.issn.1002-0268.2015.03.017XIA Feng-yong, WANG Ya-qiong, XIE Yong-li. Design method and text of twin-tunnel complementary ventilation for highway tunnel[J]. Journal of Highway and Transportation Research and Development, 2015, 32(3): 103-108. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.03.017 [18] 夏丰勇. 特长公路隧道双洞互补式通风数值模拟研究[D]. 西安: 长安大学, 2012.XIA Feng-yong. Numerical simulation research on twin tubes complementary ventilation system of extra-long highway tunnel[D]. Xi'an: Chang'an University, 2012. (in Chinese). [19] 魏英杰. 两河口隧道互补式通风方案研究[D]. 成都: 西南交通大学, 2014.WEI Ying-jie. Study on the method of complementary ventilatian for Lianghekou Tunnel[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese). [20] 周家才, 熊雅, 王建宇, 等. 西秦岭隧道互补式通风数值仿真分析[J]. 筑路机械与施工机械化, 2017, 34(7): 59-63, 69. doi: 10.3969/j.issn.1000-033X.2017.07.009ZHOU Jia-cai, XIONG Ya, WANG Jian-yu, et al. Numerical simulation of complementary ventilation in West Qinling Tunnel[J]. Road Machinery and Construction Mechanization, 2017, 34(7): 59-63, 69. (in Chinese). doi: 10.3969/j.issn.1000-033X.2017.07.009 [21] 王亚琼, 夏丰勇, 谢永利, 等. 特长公路隧道双洞互补式通风物理模型试验[J]. 中国公路学报, 2014, 27(6): 84-90. doi: 10.3969/j.issn.1001-7372.2014.06.011WANG Ya-qiong, XIA Feng-yong, XIE Yong-li, et al. Physical model experiment on complementary ventilation of extra-long highway tunnel[J]. China Journal of Highway and Transport, 2014, 27(6): 84-90. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.06.011 [22] 王亚琼, 胡彦杰, 邓敏, 等. 大纵坡双洞隧道互补式通风运营测试[J]. 交通运输工程学报, 2014, 14(5): 29-35. doi: 10.3969/j.issn.1671-1637.2014.05.004WANG Ya-qiong, HU Yan-jie, DENG Min, et al. Complementary ventilation operation test in large longitudinal slope double-hole tunnel[J]. Journal of Traffic and Transportation Engineering, 2014, 14(5): 29-35. (in Chinese). doi: 10.3969/j.issn.1671-1637.2014.05.004 [23] 王亚琼, 蒋学猛, 武义凯, 等. 公路隧道双洞互补式通风适用性分析[J]. 现代隧道技术, 2015, 52(3): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503004.htmWANG Ya-qiong, JIANG Xue-meng, WU Yi-kai, et al. Applicability analysis of the complementary ventilation system in twin-tube highway tunnels[J]. Modern Tunnelling Technology, 2015, 52(3): 14-22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503004.htm [24] 蒋学猛. 公路隧道双洞互补式通风适用性及应用研究[D]. 西安: 长安大学, 2014.JIANG Xue-meng. Applicability research on the twin-tube complementary ventilation system of highway tunnel[D]. Xi'an: Chang'an University, 2014. (in Chinese). [25] 何许晓阳, 秦鸿. 双洞互补式通风系统在两河隧道中的应用研究[J]. 公路交通技术, 2014(5): 112-117. doi: 10.3969/j.issn.1009-6477.2014.05.027HE Xu-xiao-yang, QIN Hong. Research on application of double-hole complementary ventilation system in Lianghe Tunnel[J]. Technology of Highway and Transport, 2014(5): 112-117. (in Chinese). doi: 10.3969/j.issn.1009-6477.2014.05.027 [26] 胡彦杰, 邓敏, 杨涛. 双洞互补式通风在大别山隧道中的应用研究[J]. 交通科技, 2011(2): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201102017.htmHU Yan-jie, DENG Min, YANG Tao. Application research for the complementary ventilation of Dabie Mountains Tunnel[J]. Transportation Science and Technology, 2011(2): 56-60. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201102017.htm [27] 杨涛. 公路隧道火灾热释放率及通风方式研究[D]. 西安: 长安大学, 2009.YANG Tao. Study on the fire heat release rate and ventilation of highway tunnel[D]. Xi'an: Chang'an University, 2009. (in Chinese). [28] CHAI Lun-lei, WANG Xing, HAN Xing-bo, et al. Complementary ventilation design method for a highway twin-tunnel based on the compensation concept[J]. Mathematical Problems in Engineering, 2018, 2018: 2393272-1-13. [29] CHAI Lun-lei, WANG Xing, HAN Xing-bo, et al. Optimization method for twin-tunnel complementary ventilation design and its energy saving effect[J]. Mathematical Problems in Engineering, 2019, 2019: 6301041-1-19. [30] 夏永旭, 赵峰. 特长公路隧道纵向-半横向混合通风方式研究[J]. 中国公路学报, 2005, 18(3): 80-83. doi: 10.3321/j.issn:1001-7372.2005.03.016XIA Yong-xu, ZHAO Feng. Research on the combined longitudinal and semi transverse ventilation system in lengthy highway tunnels[J]. China Journal of Highway and Transport, 2005, 18(3): 80-83. (in Chinese). doi: 10.3321/j.issn:1001-7372.2005.03.016