留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度图像的机场道面裂缝自动检测算法

李海丰 吴治龙 聂晶晶 彭博 桂仲成

李海丰, 吴治龙, 聂晶晶, 彭博, 桂仲成. 基于深度图像的机场道面裂缝自动检测算法[J]. 交通运输工程学报, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022
引用本文: 李海丰, 吴治龙, 聂晶晶, 彭博, 桂仲成. 基于深度图像的机场道面裂缝自动检测算法[J]. 交通运输工程学报, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022
LI Hai-feng, WU Zhi-long, NIE Jing-jing, PENG Bo, GUI Zhong-cheng. Automatic crack detection algorithm for airport pavement based on depth image[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022
Citation: LI Hai-feng, WU Zhi-long, NIE Jing-jing, PENG Bo, GUI Zhong-cheng. Automatic crack detection algorithm for airport pavement based on depth image[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022

基于深度图像的机场道面裂缝自动检测算法

doi: 10.19818/j.cnki.1671-1637.2020.06.022
基金项目: 

国家重点研发计划项目 2019YFB1310601

详细信息
    作者简介:

    李海丰(1984-), 男, 内蒙古通辽人, 中国民航大学副教授, 工学博士, 从事计算机视觉、机器人定位与导航研究

  • 中图分类号: U416.2

Automatic crack detection algorithm for airport pavement based on depth image

Funds: 

National Key Research and Development Program of China 2019YFB1310601

More Information
  • 摘要: 为了实现强噪声、弱光照、低对比度条件下的机场道面细小裂缝检测, 设计了基于深度图像的机场道面裂缝检测算法; 将采集到的深度图像划分成多个网格, 并对每个网格进行扩充, 获得了局部道面区域; 针对每个网格区域, 基于随机抽样一致算法进行局部三次曲面构建和优化估计; 在此基础上, 在全局尺度下融合全部网格区域的曲面模型, 生成整个图像采集区域道面的全局曲面模型; 利用全局曲面模型与原始深度图像之间的差值图像, 采用自适应阈值方法分割出候选裂缝像素, 并利用裂缝的像素总数、长度以及长宽比等多种形态学约束筛选候选裂缝像素, 去除错误的候选裂缝像素, 从而获得了最终的裂缝检测结果; 在机场道面深度图像数据集上进行了试验, 以人工标注结果作为真实值, 以准确率、召回率以及F值作为量化评估指标, 将提出的算法分别与4种有代表性的传统算法进行了对比。试验结果表明: 传统算法能够取得的最高准确率、召回率以及F值分别为77.05%、41.02%和50.02%, 提出的算法在准确率、召回率和F值3个指标上均有明显优势, 其均值分别为91.20%、97.99%和94.12%;提出的算法能够在分辨率为1 984像素×2 000像素的深度图像上检测出最小宽度为3 mm、最小长度为10 cm的裂缝, 实现了在复杂机场道面场景中识别细小裂缝的目标。

     

  • 图  1  机场道面深度图像二维和三维视图

    Figure  1.  Depth images of airport pavement in 2D and 3D views

    图  2  道面横截面深度数据和拟合结果

    Figure  2.  Depth data and fitting results of pavement cross section

    图  3  提出的算法流程

    Figure  3.  Flow of proposed algorithm

    图  4  全局道面曲面模型示例

    Figure  4.  Illustration of global pavement curved surface model

    图  5  差值图像示例

    Figure  5.  Example of difference image

    图  6  候选裂缝骨架与某处裂缝宽度

    Figure  6.  Skeleton of candidate crack and a crack width

    图  7  不同k时算法的平均准确率、召回率和F

    Figure  7.  Average accuracies, recall rates and F values of algorithm with different k

    图  8  不同k时算法的平均准确率、召回率、F

    Figure  8.  Average accuracies, recall rates and F values of algorithm with different k

    图  9  准确率、召回率、F值累计频率分布(机场道面)

    Figure  9.  Cumulative frequency distributions of accuracy, recall rate and F value (airport pavement)

    图  10  提出的算法在公路数据集上的检测结果

    Figure  10.  Detection result of proposed algorithm on road pavement dataset

    图  11  道面裂缝识别结果

    Figure  11.  Recognition results of pavement cracks

    表  1  机场道面数据集检测结果

    Table  1.   Detection result of airport pavement dataset  %

    方法 准确率 召回率 F
    CrackIT 11.63 8.74 6.24
    平面拟合算法 6.25 70.60 9.93
    Canny 59.70 2.40 4.50
    Crack Forest 77.05 41.02 50.02
    本文算法 91.20 97.99 94.12
    下载: 导出CSV

    表  2  公路路面数据集检测结果

    Table  2.   Detection result of road pavement dataset  %

    方法 准确率 召回率 F
    CrackIT 2.44 6.45 3.40
    平面拟合算法 1.21 90.22 2.38
    Canny 91.50 6.22 11.57
    CrackForest 81.75 43.97 54.95
    本文算法 83.26 97.91 89.76
    下载: 导出CSV
  • [1] SONG Hong-xun, WANG Wei-xing, WANG Feng-ping, et al. Pavement crack detection by ridge detection on fractional calculus and dual-thresholds[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015, 10(4): 19-30. doi: 10.14257/ijmue.2015.10.4.03
    [2] 张德津, 李清泉, 陈颖, 等. 基于空间聚集特征的沥青路面裂缝检测方法[J]. 自动化学报, 2016, 42(3): 443-454. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603010.htm

    ZHANG De-jin, LI Qing-quan, CHEN Ying, et al. Asphalt pavement crack detection based on spatial clustering featurel[J]. Acta Automatica Sinica, 2016, 42(3): 443-454. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603010.htm
    [3] OLIVEIRA H, CORREIA P L. Crack IT—an image processing toolbox for crack detection and characterization[C]∥DETLEV M. 2014 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2014: 798-802.
    [4] AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on 2D pavement images: an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. doi: 10.1109/TITS.2015.2477675
    [5] SHI Yong, CUI Li-meng, QI Zhi-quan, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. doi: 10.1109/TITS.2016.2552248
    [6] 李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(9): 1727-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm

    LI Liang-fu, MA Wei-fei, LI Li, et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm
    [7] 孙朝云, 马志丹, 李伟, 等. 基于深度卷积神经网络融合模型的路面裂缝识别方法[J]. 长安大学学报(自然科学版), 2020, 40(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004002.htm

    SUN Zhao-yun, MA Zhi-dan, LI Wei, et al. Pavement crack identification method based on deep convolutional neural network fusion mode[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(4): 1-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004002.htm
    [8] KATAKAM N. Pavement crack detection system through localized thresholding[D]. Toledo: The University of Toledo, 2009.
    [9] 徐威, 唐振民, 吕建勇. 基于图像显著性的路面裂缝检测[J]. 中国图象图形学报, 2018, 18(1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201301010.htm

    XU Wei, TANG Zhen-min, LYU Jian-yong. Pavement crack detection based on image saliency[J]. Journal of Image and Graphics, 2018, 18(1): 69-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201301010.htm
    [10] 瞿中, 鞠芳蓉, 陈思琪. 结构森林边缘检测与渗流模型相结合的混凝土表面裂缝检测[J]. 计算机科学, 2018, 45(11): 295-298, 311. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201811048.htm

    QU Zhong, JU Fang-rong, CHEN Si-qi. Concrete surface cracks detection combining structured forest edge detection and percolation model[J]. Computer Science, 2018, 45(11): 295-298, 311. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201811048.htm
    [11] 柴雪松, 朱兴永, 李健超, 等. 基于深度卷积神经网络的隧道衬砌裂缝识别算法[J]. 铁道建筑, 2018, 58(6): 60-65. doi: 10.3969/j.issn.1003-1995.2018.06.16

    CHAI Xue-song, ZHU Xing-yong, LI Jian-chao, et al. Tunnel lining crack identification algorithm based on deep convolutional neural network[J]. Railway Engineering, 2018, 58(6): 60-65. (in Chinese). doi: 10.3969/j.issn.1003-1995.2018.06.16
    [12] PRASANNA P, DANA K J, GUCUNSKI N, et al. Automated crack detection on concrete bridges[J]. IEEE Transactions on Automation Science and Engineering, 2014, 13(99): 1-9.
    [13] 曹锦纲, 杨国田, 杨锡运. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202008014.htm

    CAO Jin-gang, YANG Guo-tian, YANG Xi-yun. Pavement crack detection with deep learning based on attention mechanism[J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32(8): 1324-1333. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202008014.htm
    [14] RODRÍGUEZ-MARTÍN M, LAGÜELA S, GONZÁLEZ-AGUILERA D, et al. Thermographic test for the geometric characterization of cracks in welding using IR image rectification[J]. Automation in Construction, 2016, 61: 58-65. doi: 10.1016/j.autcon.2015.10.012
    [15] XU Chang-hang, XIE Jing, CHEN Guo-ming, et al. An infrared thermal image processing framework based on superpixel algorithm to detect cracks on metal surface[J]. Infrared Physics and Technology, 2014, 67: 266-272. doi: 10.1016/j.infrared.2014.08.002
    [16] PARK H, CHOI M, PARK J, et al. A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography[J]. Infrared Physics and Technology, 2014, 62: 124-131. doi: 10.1016/j.infrared.2013.10.006
    [17] DHITAL D, LEE J R. A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation[J]. Experimental Mechanics, 2012, 52: 1111-1122. doi: 10.1007/s11340-011-9567-z
    [18] ILIOPOULOS S, AGGELIS D G, PYL L, et al. Detection and evaluation of cracks in the concrete buffer of the Belgian nuclear waste container using combined NDT techniques[J]. Construction and Building Materials, 2015, 78: 369-378. doi: 10.1016/j.conbuildmat.2014.12.036
    [19] HUANG Yu-chun, TSAI Y. Crack fundamental element (CFE) for multi-scale crack classification[C]//SCARPAS A. 7th RILEM International Conference on Cracking in Pavements. Berlin: Springer, 2012: 419-428.
    [20] PENG Bo, WANG K C P, CHEN Cheng. Automatic crack detection by multi-seeding fusion on 1 mm resolution 3D pavement images[C]∥AMIY V. T & amp; amp; DI Congress 2014. Reston: ASCE, 2014: 543-552.
    [21] 李伟, 呼延菊, 沙爱民, 等. 基于3D数据和双尺度聚类算法的路面裂缝检测[J]. 华南理工大学学报(自然科学版), 2015, 43(8): 99-105. doi: 10.3969/j.issn.1000-565X.2015.08.015

    LI Wei, HU Yan-ju, SHA Ai-min, et al. Two-scale clustering algorithm road pavement crack detection technology based on 3D data[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(8): 99-105. (in Chinese). doi: 10.3969/j.issn.1000-565X.2015.08.015
    [22] CAO Ting, WANG Wei-xing, TIGHE S, et al. Crack image detection based on fractional differential and fractal dimension[J]. IET Computer Vision, 2019, 13(1): 79-85. doi: 10.1049/iet-cvi.2018.5337
    [23] 宋葵阳, 徐贵力, 李开宇, 等. 基于结构光的路面裂缝检测方法研究[J]. 机械制造与自动化, 2016(6): 223-228. doi: 10.3969/j.issn.1671-5276.2016.06.060

    SONG Kui-yang, XU Gui-li, LI Kai-yu, et al. Research on method of pavement crack detection based on structured light[J]. Machine Building and Automation, 2016(6): 223-228. (in Chinese). doi: 10.3969/j.issn.1671-5276.2016.06.060
    [24] MOHAMMAD R J, FARROKH J, SAMI F M, et al. Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor[J]. Journal of Computing in Civil Engineering, 2013, 27: 743-754. doi: 10.1061/(ASCE)CP.1943-5487.0000245
    [25] OUYANG W, XU B. Pavement cracking measurements using 3D laser-scan images[J]. Measurement Science and Technology, 2013, 24(10): 105204-1-9.
    [26] 蒋彬, 金湘亮. 改进的TOF相机谐波和强度误差校正算法设计[J]. 光学学报, 2020, 40(1): 0111024-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202001025.htm

    JIANG Bin, JIN Xiang-liang. Improved correction algorithm for harmonic- and intensity- related errors in time-of-flight cameras[J]. Acta Optica Sinica, 2020, 40(1): 0111024-1-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202001025.htm
    [27] 李占利, 周康, 牟琦, 等. TOF相机实时高精度深度误差补偿方法[J]. 红外与激光工程, 2019, 48(12): 1213004-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201912035.htm

    LI Zhan-li, ZHOU Kang, MU Qi, et al. TOF camera real-time high precision depth error compensation method[J]. Infrared and Laser Engineering, 2019, 48(12): 1213004-1-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201912035.htm
    [28] 杜瑞建, 葛宝臻, 陈雷. 多视高分辨率纹理图像与双目三维点云的映射方法[J]. 中国光学, 2020, 13(5): 1055-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202005017.htm

    DU Rui-jian, GE Bao-zhen, CHEN Lei. Texture mapping of multi-view high-resolution images and binocular 3D point clouds[J]. Chinese Optics, 2020, 13(5): 1055-1064. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202005017.htm
    [29] 丁莹, 范静涛, 宋天喻. 双目立体视觉检测系统正向最优化设计方法研究[J]. 仪器仪表学报, 2016, 37(3): 650-657. doi: 10.3969/j.issn.0254-3087.2016.03.023

    DING Ying, FAN Jing-tao, SONG Tian-yu. Optimal forward design method for the binocular stereo vision inspection system[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 650-657. (in Chinese). doi: 10.3969/j.issn.0254-3087.2016.03.023
    [30] 徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190. doi: 10.3969/j.issn.1671-1637.2019.01.017

    XU Zhi-gang, CHE Yan-li, LI Jin-long, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 172-190. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.017
    [31] 刘飞, 何春桥, 申爱民, 等. 结构光饱和区域分区投射优化补偿方法[J]. 光学学报, 2018, 38(6): 0612001-1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806023.htm

    LIU Fei, HE Chun-qiao, SHEN Ai-min, et al. Optimized compensation method of divisional projection for saturated region of structured light[J]. Acta Optica Sinica, 2018, 38(6): 0612001-1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806023.htm
    [32] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  309
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回