留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内外高速列车动力学评价标准综述

石怀龙 罗仁 曾京

石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58. doi: 10.19818/j.cnki.1671-1637.2021.01.002
引用本文: 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58. doi: 10.19818/j.cnki.1671-1637.2021.01.002
SHI Huai-long, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58. doi: 10.19818/j.cnki.1671-1637.2021.01.002
Citation: SHI Huai-long, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 36-58. doi: 10.19818/j.cnki.1671-1637.2021.01.002

国内外高速列车动力学评价标准综述

doi: 10.19818/j.cnki.1671-1637.2021.01.002
基金项目: 

国家自然科学基金项目 51805451

国家自然科学基金项目 U2034210

四川省科技计划项目 2020YJ0074

牵引动力国家重点实验室自主课题 2021TPL_T05

牵引动力国家重点实验室自主课题 2019TPL_T15

详细信息
    作者简介:

    石怀龙(1986-),男,吉林四平人,西南交通大学助理研究员,工学博士,从事铁道车辆动力学研究

    通讯作者:

    曾京(1963-),男,湖南涟源人,西南交通大学教授,工学博士

  • 中图分类号: U270.3

Review on domestic and foreign dynamics evaluation criteria of high-speed train

Funds: 

National Natural Science Foundation of China 51805451

National Natural Science Foundation of China U2034210

Sichuan Science and Technology Plan Project 2020YJ0074

Independent Subject of State Key Laboratory of Traction Power 2021TPL_T05

Independent Subject of State Key Laboratory of Traction Power 2019TPL_T15

More Information
  • 摘要: 针对高速列车的动力学性能评价标准中所涉及的评价内容、评价方法、评价指标及限值展开综述,围绕蛇行运动稳定性、脱轨安全性和运行平稳性展开标准分析和对比,包括ISO系列、UIC系列、EN系列、TSI系列、FRA系列、APTA系列和中国国标等法律规范、行业标准、技术规范等,指出不足或改进建议; 对具有代表性的动力学标准进行详细对比,包括新旧版本国标《机车车辆动力学性能评定及试验鉴定规范》(GB/T 5599)、国际铁路联盟Testing and Approval of Railway Vehicles from the Point of View of Their Dynamic Behaviour—Safety—Track Fatigue—Running Behaviour (UIC 518)、俄罗斯Railway Multiple Units—Durability and Dynamics Requirements (GOST/R 55495)等; 对北美FRA和APTA系列标准规定的理想轨道激励下动态响应、准静态性能评价方法等进行应用示范。研究结果表明:蛇行运动稳定性均通过构架横向加速度、构架力或轮轨力进行评判,而数值仿真、台架和线路试验需选择对应适用的方法; 结合现阶段中国高速列车的长期服役动力学性能,若列车以400 km·h-1及以上速度运行时,建议加速度滤波带宽仍采用0.5~10.0 Hz,幅值限值建议7 Hz以内为8 m·s-2,而7~9 Hz放宽至10 m·s-2,并持续10次、2 s或100 m; 针对爬轨脱轨安全性评估,现有标准均基于轮轨力和车轮抬升量进行动态和静态评判,但在指标限值、持续作用时间或运行距离上存在差异,建议采用车轮脱轨系数和轮重减载率的联合评判方法; 新版GB/T 5599删除了倾覆系数和轮轨横向力指标,放宽了轮重减载率限值,轮轴横向力限值维持不变; GOST/R 55495评价方法不区分车辆类型,采用构架力而非轮轨力对运行安全性进行评价,横垂向平稳性指标计算时采用相同的频域加权,且低频段加权带宽及幅值显著比GB/T 5599大,不对平稳性指标进行分级评价; 复兴号CR400BF动车组的运行安全性指标和平稳性指标同时满足GB/T 5599和GOST/R 55495标准要求; 采用北美标准对某160 km·h-1客车进行理想轨道激励下动态响应分析,8类不平顺激扰中的重复高低和单次高低不平顺工况较为恶劣,6个评价指标中的轮重减载率和车体垂向加速度容易超限。

     

  • 图  1  时域仿真计算蛇行临界速度

    Figure  1.  Calculation of hunting critical speed through time-domain simulation

    图  2  升速法、降速法和恒速法计算蛇行临界速度

    Figure  2.  Calculation of hunting critical speed through increasing speed, decreasing speed and constant speed methods

    图  3  构架端部横向加速度

    Figure  3.  Lateral accelerations of frame end

    图  4  轮轴横向力滑移均方根

    Figure  4.  RMSs of wheelset lateral force

    图  5  轮对横向位移

    Figure  5.  Wheelset lateral displacements

    图  6  一位和二位轮对的相位差

    Figure  6.  Phase differences between first and second wheelsets

    图  7  构架端部多个测点的加速度

    Figure  7.  Accelerations on various measuring points on frame end

    图  8  构架端部测点偏移引起的加速度误差

    Figure  8.  Acceleration errors caused by offset of measuring points on frame end

    图  9  脱轨过程中的轮轨力分解

    Figure  9.  Wheel/rail force decomposition during derailment

    图  10  Nadal和Weinstock脱轨系数限值对比

    Figure  10.  Comparison of limits of derailment coefficient between Nadal and Weinstock

    图  11  JNR考虑持续时间的脱轨系数限值

    Figure  11.  Limits of derailment coefficient of JNR concerning duration time

    图  12  车轮抬升量定义和爬轨过程

    Figure  12.  Definition of wheel rise and climbing process

    图  13  爬轨脱轨限值曲线

    Figure  13.  Limit curves of rail climbing derailment

    图  14  脱轨安全域评判示例

    Figure  14.  Evaluation examples for derailment safety region

    图  15  平稳性指标、舒适度指标的测点位置

    Figure  15.  Measured positions of Sperling index and comfort index

    图  16  GB/T 5599和Sperling频率加权函数

    Figure  16.  Frequency weighting functions of GB/T 5599 and Sperling

    图  17  GOST/R 55495车轮脱轨模型

    Figure  17.  Wheel derailment model in GOST/R 55495

    图  18  GB/T 5599和GOST/R 55495的安全性指标对比

    Figure  18.  Comparison of safety indexes between GB/T 5599 and GOST/R 55495

    图  19  GB/T 5599和GOST/R 55495频率加权系数对比

    Figure  19.  Comparison of frequency weighting coefficients between GB/T 5599 and GOST/R 55495

    图  20  GB/T 5599和GOST/R 55495平稳性指标对比

    Figure  20.  Comparison of Sperling indexes between GB/T 5599 and GOST/R 55495

    图  21  MCAT特征谱分析的轨道激扰设置

    Figure  21.  Track excitations setting in MCAT characteristic spectrum analysis

    图  22  轮重减载率

    Figure  22.  Wheel unloading coefficients

    表  1  标准中的蛇行运动稳定评价方法

    Table  1.   Hunting stability evaluation methods in criteria

    标准 物理量 数据处理 限值
    GB/T 5599 构架端部加速度峰值 带通滤波0.5~10.0 Hz 连续6次超过8 m·s-2
    UIC 518、EN 14363 构架端部加速度均方根 带通滤波f0±2 Hz; 100 m滑移窗口; 滑移步长10 m (12-Mb/5)/2
    轮轴力/构架力均方根 低通滤波20 Hz; 2 m滑动平均 (10+P0/3)/2
    49CFR 213 构架端部加速度均方根 低通滤波10 Hz; 去趋势项; 滑移窗口2 s 持续2 s超过0.3g
    UIC 515-1 构架端部加速度峰值 低通滤波10 Hz[5] 连续6次超过8~10 m·s-2
    UIC 515-1 构架端部加速度峰值 带通滤波4~10 Hz[7] 连续6次超过8 m·s-2
    TSI RST HS 232 构架端部加速度峰值 带通滤波3~9 Hz 连续10次超过8 m·s-2
    下载: 导出CSV

    表  2  爬轨脱轨安全性评价标准和方法

    Table  2.   Criteria and methods for safety evaluation of rail climbing derailment

    评价指标 数据处理方法 脱轨系数限值
    Nadal车轮脱轨系数[9] 瞬时峰值 ≤0.8
    Weinstock车轮脱轨系数[13] 持续时间50 ms以上 1.1~1.5
    JNR车轮脱轨系数[26] ≤0.8
    AAR车轮脱轨系数[47] ≤1.0
    UIC 518车轮脱轨系数 20 Hz低通滤波,2 m滑动平均,间隔0.5 m,置信度99.85% ≤0.8
    GB/T 5599—2019车轮脱轨系数和轮重减载率 2 m滑动平均,置信度99.85% ≤0.8
    GB/T 5599—85车轮脱轨系数和轮重减载率 持续时间50 ms以上 ≤1.0
    GOST/R 55495车轮脱轨系数 一系悬挂的横向力、垂向力 ≥1.4
    FRA车轮脱轨系数[27] 摩擦因数取定值0.5,轮缘角70°[51]; 25 Hz低通滤波; 走行距离5 ft(约1.5 m) 由Nadal公式确定
    FRA轮轴脱轨系数[27] 轮轴横向力与轴重比值,限值与轴重P0相关; 25 Hz低通滤波; 分析窗口5 ft(约1.5 m) 0.4+5/P0
    FRA转向架脱轨系数[27] 转向架单侧轮轨横向力之和与轮轨垂向力之和的比值; 25 Hz低通滤波; 分析窗口5 ft(约1.5 m) 0.6
    GB/T 5599—2019轮重减载率 40 Hz低通滤波; 假定轮轴力为0或很小; 0.65或0.80
    轮对横移量[19, 49-50] 接触点在踏面上的横坐标,-54~-39 mm或57~60 mm
    车轮抬升量[19, 49-50] 低于轮缘高度 25 mm
    脱轨系数和轮重减载率[20, 21, 52-53] 联合安全域,并考虑轮轨冲角的影响
    下载: 导出CSV

    表  3  跳轨脱轨安全性评价标准和方法

    Table  3.   Criteria and methods for safety evaluation of rail jumping derailment

    来源 数据处理及限值
    JNR日本国铁[25, 55] 脱轨系数及作用时间,见式(5)
    文献[19]、[50] 车轮抬升量不能超出轮缘高度,如锥型踏面25 mm
    文献[46] 轮对横移速度,见式(12)
    文献[46] 跳轨系数,见式(13)
    下载: 导出CSV

    表  4  运行平稳性评价标准和方法

    Table  4.   Criteria and methods for ride quality evaluation

    标准 指标 数据处理 限值
    GB/T 5599 加速度幅值 带通滤波0.4~40 Hz 横垂分别评价; 统计评定值(均值加2.2倍标准差),限值均为2.5 m·s-2
    平稳性指标 频域加权 横垂分别评价,优级为2.5
    舒适度指标 频域加权 舒适为2.5
    UIC 518EN 14363 加速度幅值 带通滤波0.4~10 Hz,99.85%置信度 幅值为2.5 m·s-2
    加速度均方根值 横向0.50 m·s-2,垂向0.75 m·s-2
    加速度准静态值 低通滤波20 Hz,50%置信度 横向1.5 m·s-2,垂向2.0 m·s-2
    GOST/R 55495 平稳性指标 频域加权 横垂分别评价,限值3.25,不分级评价
    FRA[27] 加速度峰峰值 低通滤波10 Hz; 分析窗口1 s,但去除50 ms窗口内最大值 横向0.65g; 垂向1.00g
    UIC 513[59] 舒适度指标 频域加权 舒适为2.0
    EN 12299[60] 平均舒适度指标 频域加权 舒适为2.5
    连续舒适度指标 频域加权 舒适为0.3 m·s-2,横垂分别评价
    ISO 2631-1 加速度幅值 频域加权 舒适为0.315 m·s-2,稍微不舒适为0.315~0.630 m·s-2
    注:①货车为0.4~15Hz; ②仅适用于客车,其他车辆类型参考标准。
    下载: 导出CSV

    表  5  UIC 518及新旧GB/T 5599标准对比

    Table  5.   Comparison of criteria among UIC 518 and new and old versions GB/T 5599

    安全性指标 UIC 518:2009 GB/T 5599—85 GB/T 5599—2019
    轮轨横向力 1.9+0.3P0/2
    轮轴横向力 10+P0/3 0.85(1.5+P0/2) 15+P0/3
    轮轨垂向力 ≤160 km·h-1时为200;>300 km·h-1时为160
    脱轨系数 0.8 第1限度为1.2第2限度为1.0 R>400 m时为0.8; R≤400 m时为1.0
    轮重减载率 第1限度为0.65第2限度为0.60 ≤160 km·h-1时为0.65;>160 km·h-1时为0.80
    倾覆系数 1(1.5 Hz低通) 0.8(2 Hz低通)
    横向稳定性 轮轴力均方根(10+P0/3)/2加速度均方根(12-Mb/5)/2 峰值8 m·s-2(0.5~10 Hz)
    注:①道钉弹性极限; ②混凝土轨枕
    下载: 导出CSV

    表  6  GB/T 5599和GOST/R 55495的脱轨系数对比

    Table  6.   Comparison of derailment coefficients between GB/T 5599 and GOST/R 55495

    规范 GB/T 5599—2019 GOST/R 55495:2013
    指标定义 脱轨系数:轮缘贴靠侧 轮轴脱轨系数:构架力与轴重的比值
    限值 ≤ 0.80(R≥400 m) ≤ 0.30
    数据处理 2 m滑动平均处理; 对每个采样段取采样数据绝对值累计频次曲线对应99.85%的值作为每个采样段的结果 高通滤波,频率下限不低于悬挂固有频率的80%;采用雨流计数法计算最大值; 取3个最大值进行平均
    车速范围 最高试验速度
    下载: 导出CSV

    表  7  GB/T 5599和GOST/R 55495的减载率对比

    Table  7.   Comparison of unloading coefficients between GB/T 5599 and GOST/R 55495

    规范 GB/T 5599—2019 GOST/R 55495:2013
    定义 轮重减载率:轮重动态变化量与静轮重之比 一系减载率:一系弹簧的动载荷与静载荷之比 二系减载率:二系弹簧的动载荷与静载荷之比
    公式 $\Delta P/\bar P $ PS1d/PS1 PS2d/PS2
    限值 ≤0.80 (>160 km·h-1) ≤0.30 ≤0.20
    下载: 导出CSV

    表  8  GB/T 5599与GOST/R 55495平稳性指标计算方法

    Table  8.   Calculation methods of Sperling index in GB/T 5599 and GOST/R 55495

    项点 GB/T 5599—2019 GOST/R 55495:2013
    测点位置 对角布置在1、2位转向架中心偏向车体一侧1 m的车内地板,2个测点(图 15) 车体中心线,转向架重心上方车体及车体中部的内地板,3个测点
    载重工况 不载客、载满客
    线路几何 直线、曲线R≥600 m(低速); 曲线R≥1 000 m(高速)
    考察时间 5 s每段
    测量时长 ≥25段,每段250 m或500 m(≥220 km·h-1) ≥200 s
    速度范围 Vmax(间隔10或20 km·h-1) Vmax/2~Vmax(间隔10~20 km·h-1或25 km·h-1(Vmax≥200 km·h-1)
    计算公式 计算公式不同,详见GB/T 5599—2019[41]和GOST/R 55495:2013[40]
    结果处理 各种线路、速度等级工况的均值和标准差
    评定等级 分级评价:≤2.50时为优,≤2.75时为良,≤3.00时为合格 不进行分级评价,上限为3.25
    下载: 导出CSV

    表  9  MCAT分析结果

    Table  9.   Analysis results of MCAT

    激扰类型 波长/ft 最小轮重/% 车轮脱轨系数 轮轴脱轨系数 转向架脱轨系数 车体横向加速度峰峰值/g 车体垂向加速度峰峰值/g
    SW 20 53.0 0.321 0.315 0.258 0.225 0.288
    GN 31 50.6 0.335 0.274 0.261 0.228 0.056
    GW 40.4 0.408 0.330 0.280 0.262 0.077
    RS 35.2 0.285 0.281 0.195 0.048 0.282
    RA 44.0 0.483 0.334 0.305 0.179 0.057
    SS 39.4 0.281 0.256 0.218 0.198 0.239
    SA 39.9 0.408 0.332 0.281 0.264 0.076
    CP 42.0 0.350 0.328 0.274 0.307 0.180
    GN 62 49.5 0.325 0.294 0.247 0.233 0.061
    GW 38.7 0.366 0.324 0.329 0.369 0.080
    RS 18.2 0.403 0.361 0.316 0.170 1.140
    RA 40.6 0.367 0.345 0.317 0.411 0.113
    SS 29.9 0.328 0.292 0.284 0.274 0.356
    SA 35.7 0.371 0.332 0.333 0.380 0.087
    CP 30.4 0.369 0.343 0.355 0.436 0.275
    下载: 导出CSV
  • [1] 翟婉明. 货物列车动力学性能评定标准的研究与建议方案(待续)——防脱轨安全性评定标准[J]. 铁道车辆, 2002, 40(1): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200201003.htm

    ZHAI Wan-ming. Research on the dynamics performance evaluation standard for freight trains and the suggested schemes (to be continued)—safety evaluation standard for prevention of derailment[J]. Rolling Stock, 2002, 40(1): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200201003.htm
    [2] 翟婉明. 货物列车动力学性能评定标准的研究与建议方案(续一)——轮轨横向力评定标准[J]. 铁道车辆, 2002, 40(2): 9-10, 25. doi: 10.3969/j.issn.1002-7602.2002.02.003

    ZHAI Wan-ming. Research on the dynamics performance evaluation standard for freight trains and the suggested schemes (1st part continued)—evaluation standard for lateral wheel-rail force[J]. Rolling Stock, 2002, 40(2): 9-10, 25. (in Chinese) doi: 10.3969/j.issn.1002-7602.2002.02.003
    [3] 翟婉明. 货物列车动力学性能评定标准的研究与建议方案(续完)——轮轨垂向力及车钩力的评定标准[J]. 铁道车辆, 2002, 40(3): 10-13. doi: 10.3969/j.issn.1002-7602.2002.03.004

    ZHAI Wan-ming. Research on the dynamics performance evaluation standard for freight trains and the suggested schemes (last part continued)—evaluation standard for vertical wheel-rail force and coupler force[J]. Rolling Stock, 2002, 40(3): 10-13. (in Chinese) doi: 10.3969/j.issn.1002-7602.2002.03.004
    [4] 吕可维, 邵文东. 快捷铁路货车动力学性能考核评价标准探讨[C]//任玉君, 田葆栓. 中国铁道学会车辆委员会快捷货车转向架技术交流会论文集. 大连: 中国铁道学会, 2015: 62-67.

    LYU Ke-wei, SHAO Wen-dong. Discussion on evaluation standards for dynamic performance of express railway freight cars[C]//REN Yu-jun, TIAN Bao-shuan. Proceedings of Technical Exchange Conference on Fast Freight Car Bogies of the Vehicle Committee of China Railway Society. Dalian: China Railway Society, 2015: 62-67. (in Chinese)
    [5] 贾璐. 高速车辆动力学性能评价方法研究[D]. 成都: 西南交通大学, 2011.

    JIA Lu. Study on the methods of dynamic performance evaluation of high speed vehicles[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese)
    [6] 贾璐, 曾京, 池茂儒. 车辆系统横向运动稳定性评判的数值仿真研究[J]. 铁道车辆, 2011, 49(9): 1-7. doi: 10.3969/j.issn.1002-7602.2011.09.001

    JIA Lu, ZENG Jing, CHI Mao-ru. The numerical simulation research on judgment of lateral motion stability of the vehicle system[J]. Rolling Stock, 2011, 49(9): 1-7. (in Chinese) doi: 10.3969/j.issn.1002-7602.2011.09.001
    [7] POLACH O. On non-linear methods of bogie stability assessment using computer simulations[J]. Journal of Rail and Rapid Transit, 2006, 220: 13-27. doi: 10.1243/095440905X33251
    [8] DONG Hao, WANG Qun-sheng. On the critical speed, supercritical bifurcation, and stability problems of certain type of high-speed rail vehicle[J]. Shock and Vibration, 2017, 2017: 1-9. http://www.ingentaconnect.com/content/rsoc/10709622/2017/00002017/00000004/art00026
    [9] NADAL M J. Théorie de la stabilité des locomotives, Part Ⅱ: mouvement de lacet[J]. Annales des Mines, 1896, 10: 232-255.
    [10] WU H M, ELKINS J. Investigation of wheel flange climb derailment criteria[R]. Washington DC: Association of American Railroads, 1999.
    [11] KARMEL A, SWEET L M. Wheelset mechanics during wheel climb derailment[J]. Journal of Applied Mechanics, 1984, 51(5): 680-686. http://adsabs.harvard.edu/abs/1984JAM....51..680K
    [12] SWEET L M, KARMEL A. Evaluation of time-duration dependent wheel load criteria for wheel climb derailment[J]. Journal of Dynamic Systems, Measurement and Control, 1981, 103(2): 219-227. http://www.researchgate.net/publication/245372300_Evaluation_of_Time-Duration_Dependent_Wheel_Load_Criteria_for_Wheelclimb_Derailment
    [13] WEINSTOCK H. Wheel climb derailment criteria for evaluation of rail vehicle safety[C]//ASME. Proceedings of American Society of Mechanical Engineers (ASME) Winter Annual Meeting. New York: ASME, 1984: 1-7.
    [14] ELKINS J, WU H M. Angle of attack and distance-based criteria for flange climb derailment[J]. Vehicle System Dynamics, 2000, 33(2): 293-305. doi: 10.1080/00423114.1999.12063089
    [15] BRAGHIN F, BRUNI S, DIANA G. Experimental and numerical investigation on the derailment of a railway wheelset with solid axle[J]. Vehicle System Dynamics, 2006, 44(4): 305-325. doi: 10.1080/00423110500337494
    [16] BARBOSA R S. A 3D contact force safety criterion for flange climb derailment of a railway wheel[J]. Vehicle System Dynamics, 2004, 42(5): 289-300. doi: 10.1080/0042311042000266711
    [17] 曾庆元, 向俊, 娄平. 车桥及车轨时变系统横向振动计算中的根本问题与列车脱轨能量随机分析理论[J]. 中国铁道科学, 2002, 23(1): 1-10. doi: 10.3321/j.issn:1001-4632.2002.01.001

    ZENG Qing-yuan, XIANG Jun, LOU Ping. Fundamental problems in calculation of transverse vibration of train-bridge and train-track time-varying system and theory of energy random analysis for train derailment[J]. China Railway Science, 2002, 23(1): 1-10. (in Chinese) doi: 10.3321/j.issn:1001-4632.2002.01.001
    [18] 俞展猷, 李富达, 李谷. 车轮脱轨及其评价[J]. 铁道学报, 1999, 21(3): 33-38. doi: 10.3321/j.issn:1001-8360.1999.03.007

    YU Zhan-you, LI Fu-da, LI Gu. Wheel derailment and its evaluation[J]. Journal of China Railway Society, 1999, 21(3): 33-38. (in Chinese) doi: 10.3321/j.issn:1001-8360.1999.03.007
    [19] 翟婉明, 陈果. 根据车轮抬升量评判车辆脱轨的方法与准则[J]. 铁道学报, 2001, 23(2): 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200102004.htm

    ZHAI Wan-ming, CHEN Guo. Method and criteria for evaluation of wheel derailment based on wheel vertical rise[J]. Journal of China Railway Science, 2001, 23(2): 17-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200102004.htm
    [20] ZENG Jing, GUAN Qing-hua. Study on flange climb derailment criteria of a railway wheelset[J]. Vehicle System Dynamics, 2008, 46(3): 239-251. doi: 10.1080/00423110701313989
    [21] 曾京, 关庆华. 铁道车辆运行安全评判的轮对爬轨脱轨准则[J]. 交通运输工程学报, 2007, 7(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200706003.htm

    ZENG Jing, GUAN Qing-hua. Wheelset climb derailment criteria for evaluation of railway vehicle running safety[J]. Journal of Traffic and transportation Engineering, 2007, 7(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200706003.htm
    [22] 关庆华, 曾京, 陈哲明. 考虑冲角影响的改进脱轨准则[J]. 中国铁道科学, 2009, 30(3): 74-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200903015.htm

    GUAN Qing-hua, ZENG Jing, CHEN Zhe-ming. Improving the derailment criteria by taking the impact of attack angle into account[J]. China Railway Science, 2009, 30(3): 74-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200903015.htm
    [23] 魏来, 曾京, 邬平波, 等. 基于轮对模型的铁道车辆脱轨安全性评估[J]. 铁道学报, 2015, 37(9): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509004.htm

    WEI Lai, ZENG Jing, WU Ping-bo, et al. Derailment safety evaluation for railway vehicles based on wheelset model[J]. Journal of the China Railway Society, 2015, 37(9): 25-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201509004.htm
    [24] 金学松, 凌亮, 肖新标, 等. 复杂环境下高速列车动态行为数值仿真和运行安全域分析[J]. 计算机辅助工程, 2011, 20(3): 29-41, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201103007.htm

    JIN Xue-song, LING Liang, XIAO Xin-biao, et al. Dynamic behaviour numerical simulation and safety boundary analysis for high speed trains in severe environments[J]. Computer Aided Engineering, 2011, 20(3): 29-41, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201103007.htm
    [25] 沈钢, 王福天. 轮对蛇行失稳导致脱轨的机理研究[J]. 上海铁道大学学报, 2000, 21(8): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SHTY200008000.htm

    SHEN Gang, WANG Fu-tian. An theoretical investigation on the derailment index for high-speed railway vehicle[J]. Journal of Shanghai Tiedao University, 2000, 21(8): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHTY200008000.htm
    [26] MATSUDAIRA T. Dynamics of high speed rolling stock[J]. Railway Technical Research Institute, Quarterly Reports, 1966, 7(1): 45-97.
    [27] 49CFR 213, FRA regulations: 2003, transportation, Part 213—track safety standards[S].
    [28] BS 6841: 1987, measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock[S].
    [29] ISO 2631-1: 1997, mechanical vibration and shock—evaluation of human exposure to whole-body vibration—Part 1: general requirements[S].
    [30] JIANG Yan-ran, CHEN B K, THOMPSON C. A comparison study of ride comfort indices between Sperling's method and EN 12299[J]. International Journal of Rail Transportation, 2019, 7(4): 279-296. doi: 10.1080/23248378.2019.1616329?tab=permissions&scroll=top
    [31] DENG Chen-xin, ZHOU Jin-song, THOMPSON D, et al. Analysis of the consistency of the Sperling index for rail vehicles based on different algorithms[J]. Vehicle System Dynamics, 2021, 59(2): 313-330. doi: 10.1080/00423114.2019.1677923?cookieSet=1&src=recsys
    [32] LIU C, THOMPSON D, GRIFFIN M J, et al. Effect of train speed and track geometry on the ride comfort in high-speed railways based on ISO 2631-1[J]. Journal of Rail and Rapid Transit, 2020, 234(3): 765-778. http://www.researchgate.net/publication/335191153_Effect_of_train_speed_and_track_geometry_on_the_ride_comfort_in_high-speed_railways_based_on_ISO_2631-1
    [33] TSI RST HS 232: 2008, concerning a technical specification for interoperability relating to 'rolling stock' sub-system of the trans-European high-speed rail system[S].
    [34] TSI LOC and PAS 1302: 2014, concerning a technical specification for interoperability relating to the 'rolling stock—locomotives and passenger rolling stock' subsystem of the rail system in the European Union[S].
    [35] TSI INF 1299: 2014, the technical specifications for interoperability relating to the 'infrastructure' subsystem of the rail system in the European Union[S].
    [36] DENG Xiao-jun, SHI Huai-long. European high-speed bogie technology review[J]. International Journal of Vehicle Design, 2019, 79(1): 43-62. http://www.researchgate.net/publication/335051348_European_high-speed_bogie_technology_review/download
    [37] UIC 518: 2009, testing and approval of railway vehicles from the point of view of their dynamic behaviour-safety-track fatigue-ride quality, 4th edition[S].
    [38] UIC 515-1: 2003, passenger rolling stock-trailer bogies-running gear-general provisions applicable to the components of trailers bogies, 2nd edition[S].
    [39] UIC Kodex 515-1: 1984, reisezugwagen laufwerke (1)[S].
    [40] GOST/R 55495: 2013, railway multiple units—durability and dynamics requirements, standarty state standard GOST, Russian[S].
    [41] GB/T 5599—2019, 机车车辆动力学性能评定及试验鉴定规范[S].

    GB/T 5599—2019, specification for dynamic performance assessment and testing verification of rolling stock[S]. (in Chinese)
    [42] 49CFR 238, FRA regulations: 2003, transportation, Part 238— passenger equipment safety standards[S].
    [43] EN 14363: 2016, railway applications testing for the acceptance of running characteristics of railway vehicles testing of running behavior and stationary tests[S].
    [44] 西南交通大学. 时速400公里动车组转向架失稳监控技术研究报告[R]. 成都: 牵引动力国家重点实验室, 2018.

    Southwest Jiaotong University. Research report on monitoring technology for bogie instability of 400 km/h EMU[R]. Chengdu: State Key Laboratory of Traction Power, 2018. (in Chinese)
    [45] WILSON N, SHU X G, WU H M, et al. Distance-based flange climb L/V criteria[R]. Washington DC: Association of American Railroads/Transportation Technology Center, 2004.
    [46] 关庆华, 曾京. 轮轨横向碰撞引起的脱轨研究[J]. 振动与冲击, 2009, 28(12): 38-42, 201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200912011.htm

    GUAN Qing-hua, ZENG Jing. Study on derailment induced by lateral impact between wheel and rail[J]. Journal of Vibration and Shock, 2009, 28(12): 38-42, 201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200912011.htm
    [47] M1001. AAR mechanical division: 1987-1993, manual of standards and recommended practices, Section C—Part Ⅱ. Vol. 1, ChapterXI, Section 11.5.2 track-worthiness criteria[S].
    [48] ELKINS J, WU H M. New criteria for flange climb derailment[C]//ASME. IEEE/ASME Joint Railroad Conference. New York: ASME, 2000: 1-7.
    [49] MIYAMOTO M. Mechanism of derailment phenomena of railway vehicles[J]. Railway Technical Research Institute, Quarterly Reports, 1996, 37(3): 147-155. http://www.researchgate.net/publication/294417478_Mechanism_of_derailment_phenomena_of_railway_vehicles
    [50] JIN X S, XIAO X B, LING L, et al. Study on safety boundary for high-speed train running in severe environments[J]. International Journal of Rail Transportation, 2013, 1(1/2): 87-108. doi: 10.1080/23248378.2013.790138
    [51] APTA PR-M-S-017-06: 2007, standard for definition and measurement of wheel tread taper[S].
    [52] 曾京. 轮对稳态脱轨准则的研究[J]. 铁道学报, 1999, 21(6): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199906005.htm

    ZENG Jing. Steady-state derailment criteria of a railway wheelset[J]. Journal of the China Railway Society, 1999, 21(6): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199906005.htm
    [53] WEI Lai, ZENG Jing, WU Ping-bo, et al. Indirect method for wheel-rail force measurement and derailment evaluation[J]. Vehicle System Dynamics, 2014, 52(12): 1622-1641. http://www.ingentaconnect.com/content/tandf/vesd/2014/00000052/00000012/art00004
    [54] 魏来. 高速列车相关运行安全性问题研究[D]. 成都: 西南交通大学, 2015.

    WEI Lai. Study on related running safety problems for high speed trains[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [55] 石田, 弘明, 刘克鲜. 铁道车辆脱轨安全性评定标准[J]. 国外铁道车辆, 1996(5): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD605.007.htm

    SHI Tian, HONG Ming, LIU Ke-xian. Safety evaluation standard for railway vehicle derailment[J]. Foreign Rolling Stock, 1996(5): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD605.007.htm
    [56] GM/RT 2141: 1998, resistance of railway vehicles to derailment and roll-over[S].
    [57] AS 7509.2: 2009, railway rolling stock-dynamic behaviour—Part 2: freight rolling stock[S].
    [58] 张文龙, 吕可维. 基于澳大利亚标准的铁路货车动力学性能仿真分析[J]. 机械工程师, 2013(11): 108-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201311061.htm

    ZHANG Wen-long, LYU Ke-wei. Simulation and analysis of railway wagon dynamics behavior according to Australian standard[J]. Mechanical Engineer, 2013(11): 108-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXGU201311061.htm
    [59] UIC 513: 1994, guidelines for evaluating passenger comfort in relation to vibration in railway vehicles[S].
    [60] EN 12299: 2009, railway applications-ride comfort for passengers-measurement and evaluation[S].
    [61] 刘春艳, 吕晓辰. 基于美国CFR标准的地铁车辆动力学分析[J]. 大连交通大学学报, 2019, 40(2): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201902025.htm

    LIU Chun-yan, LYU Xiao-chen. Dynamics simulation of metro vehicles based on US CFR standard[J]. Journal of Dalian Jiaotong University, 2019, 40(2): 104-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201902025.htm
    [62] HUO W B, YANG S, WU P B. Analysis of vehicle dynamic performance under MCAT excitation[C]//IOP. 2019 International Conference on Optoelectronic Science and Materials. Hefei: IOP, 2020: 1-6.
    [63] 侯明林, 池茂儒. 特征谱下高速客车动力学性能分析[J]. 机械工程与自动化, 2016(5): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201605012.htm

    HOU Ming-lin, CHI Mao-ru. Analysis of dynamic performance of high-speed passenger train on track irregularity[J]. Mechanical Engineering and Automation, 2016(5): 34-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201605012.htm
    [64] GM/RC 2641: 2009, recommendations for vehicle static testing, railway group recommendation, Issue 2[S].
    [65] 石怀龙, 邬平波, 罗仁. 客车转向架回转阻力矩特性[J]. 交通运输工程学报, 2013, 13(4): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201304008.htm

    SHI Huai-long, WU Ping-bo, LUO Ren. Bogie rotation resistance torque characteristics of passenger car[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201304008.htm
    [66] APTA RP-M-RP-009-98: 1999, recommended practice for new truck design[S].
    [67] APTA PR-M-S-014-06: 2007, standard for wheel load equalization of passenger railroad rolling stock[S].
  • 加载中
图(22) / 表(9)
计量
  • 文章访问数:  2669
  • HTML全文浏览量:  422
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回