留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国高速列车气动减阻优化综述

李田 戴志远 刘加利 吴娜 张卫华

李田, 戴志远, 刘加利, 吴娜, 张卫华. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003
引用本文: 李田, 戴志远, 刘加利, 吴娜, 张卫华. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003
LI Tian, DAI Zhi-yuan, LIU Jia-li, WU Na, ZHANG Wei-hua. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003
Citation: LI Tian, DAI Zhi-yuan, LIU Jia-li, WU Na, ZHANG Wei-hua. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. doi: 10.19818/j.cnki.1671-1637.2021.01.003

中国高速列车气动减阻优化综述

doi: 10.19818/j.cnki.1671-1637.2021.01.003
基金项目: 

国家重点研发计划项目 2020YFA0710902

四川省科技计划项目 2019YJ0227

中国博士后科学基金项目 2019M663550

牵引动力国家重点实验室自主课题 2019TPL_T02

详细信息
    作者简介:

    李田(1984-),男,湖南醴陵人,西南交通大学副研究员,工学博士,从事列车空气动力学研究

  • 中图分类号: U271.91

Review on aerodynamic drag reduction optimization of high-speed trains in China

Funds: 

National Key Research and Development Program of China 2020YFA0710902

Sichuna Science and Technology Program 2019YJ0227

China Postdoctoral Science Foundation 2019M663550

Independent Subject of State Key Laboratory of Traction Power 2019TPL_T02

More Information
  • 摘要: 研究了中国高速列车气动减阻优化进展,总结了典型部件的压力分布特性与各部件在列车气动阻力中的贡献占比,评析了惰行试验、风洞试验与数值模拟3种列车气动阻力研究方法,论述了和谐号、复兴号等系列列车头型气动性能的差异,阐述了高速列车头型气动减阻优化方法与技术,梳理了转向架区域、车端连接处、受电弓及导流罩等局部不平顺区域的气动减阻措施,归纳了适用于高速列车的前沿减阻技术。研究结果表明:数值模拟和风洞试验各有优缺点,经过风洞试验有效验证的数值模拟是准确计算列车气动阻力的有效途径; 列车气动阻力中贡献占比的主要部件为头车、尾车、转向架、受电弓与车端连接处; 由于现有高速列车的高度流线化,头型优化较难实现大幅度的减阻,改善转向架区域裙板、设计全包外风挡与优化受电弓和导流罩外形是进一步减阻的有效措施; 减阻降噪、提升运行平稳性和舒适性等多目标优化是列车头型设计的发展趋势,通过直接寻优计算或者代理模型寻优计算能够提高优化效率与降低优化设计成本; 未来应重点研究高速列车的仿生表面微结构、吹吸气流动控制、等离子体减阻与涡流发生器减阻技术,实现中国高速列车的绿色、节能、高速化发展。

     

  • 图  1  中国典型高速列车

    Figure  1.  Typical high-speed trains in China

    图  2  CRH380A列车表面压力分布

    Figure  2.  Surface pressure distributions of CRH380A train

    图  3  CRH380A列车车体压力与黏性阻力系数

    Figure  3.  Coefficients of pressure and friction for CRH380A train body

    图  4  高速列车转向架压力分布

    Figure  4.  Bogie pressure distributions of high-speed train

    图  5  受电弓表面压力分布

    Figure  5.  Surface pressure distributions of pantograph

    图  6  CRH2、CRH3与CRH380B高速列车惰行试验阻力曲线

    Figure  6.  Idle running test resistance curves of CRH2, CRH3 and CRH380B high-speed trains

    图  7  高速列车风洞试验

    Figure  7.  Wind tunnel tests of high-speed train

    图  8  高速列车气动数值模拟结果

    Figure  8.  Numerical simulation results of aerodynamics for high-speed train

    图  9  高速列车头型

    Figure  9.  Head models of high-speed train

    图  10  高速列车风挡

    Figure  10.  Wind-shields of high-speed train

    图  11  受电弓安装形式

    Figure  11.  Installation forms of pantograph

    图  12  受电弓下沉凹坑模型

    Figure  12.  Pit models of sinking pantograph

    图  13  仿生结构单元体模型

    Figure  13.  Bionic structural unit models

    图  14  高速列车车门

    Figure  14.  High-speed train doors

    图  15  空调导流罩安装位置

    Figure  15.  Installation locations of air conditioning deflector

    图  16  高速列车多目标气动优化流程

    Figure  16.  Multi-objective aerodynamic optimization process of high-speed train

    图  17  列车头部流线型控制参数

    Figure  17.  Control parameters of train head streamline

    图  18  流线型鼻尖凹坑表面

    Figure  18.  Surface with round pits in streamline nose

    图  19  压差阻力形成与抑制原理

    Figure  19.  Principle of pressure drag formation and suppression

    图  20  涡流发生器

    Figure  20.  Vortex generator

    表  1  列车气动阻力研究方法的优缺点

    Table  1.   Advantages and disadvantages of research methods for train aerodynamic drag

    方法 列车要求 平台要求 优点 缺点
    惰行试验 实际编组实车 线路、气候环境 测试结果可信度最高; 获得列车运行阻力曲线 受气候环境影响较大; 不能有效指导减阻设计; 试验次数较少
    风洞试验 缩比模型列车 高品质风洞 测试结果可信度高 存在缩比尺度和地面效应; 暂无标准模型; 成本较高
    数值仿真 计算机辅助设计模型 高性能计算机 计算结果可信度较高; 获取空间流场信息; 成本较低 依赖于试验结果验证; 计算网格及方法等不确定性; 较难准确模拟长大编组列车; 受限于软件版权
    下载: 导出CSV
  • [1] 张卫华, 王伯铭. 中国高速列车的创新发展[J]. 机车电传动, 2010, 50(1): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201001006.htm

    ZHANG Wei-hua, WANG Bo-ming. Innovation and development of high-speed railway in China[J]. Electric Drive for Locomotives, 2010, 50(1): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201001006.htm
    [2] TIAN Hong-qi. Review of research on high-speed railway aerodynamics in China[J]. Transportation Safety and Environment, 2019, 1(1): 1-21. doi: 10.1093/tse/tdz014
    [3] 张卫华, 张曙光. 高速列车耦合大系统动力学及服役模拟[J]. 西南交通大学学报, 2008, 43(2): 147-152. doi: 10.3969/j.issn.0258-2724.2008.02.001

    ZHANG Wei-hua, ZHANG Shu-guang. Dynamics and service simulation for general coupling system of high-speed trains[J]. Journal of Southwest Jiaotong University, 2008, 43(2): 147-152. (in Chinese) doi: 10.3969/j.issn.0258-2724.2008.02.001
    [4] BAKER C J. A review of train aerodynamics, Part 1— Fundamentals[J]. Aeronautical Journal, 2014, 118(1201): 201-228. doi: 10.1017/S000192400000909X
    [5] BAKER C J. A review of train aerodynamics, Part 2— Applications[J]. Aeronautical Journal, 2014, 118(1202): 345-382. doi: 10.1017/S0001924000009179
    [6] HAJIPOUR A, RASHIDI M M, LI T, et al. A review of recent studies on simulations for flow around high-speed trains[J]. Journal of Applied and Computational Mechanics, 2018, 5(2): 311-333. http://www.researchgate.net/publication/329877751_A_Review_of_Recent_Studies_on_Simulations_for_Flow_around_High-Speed_Trains
    [7] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6/7): 469-514. http://www.sciencedirect.com/science/article/pii/S0376042102000295
    [8] SCHETZ, JOSEPH A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33(1): 371-414. doi: 10.1146/annurev.fluid.33.1.371
    [9] 肖京平, 黄志祥, 陈立. 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm

    XIAO Jing-ping, HUNAG Zhi-xiang, CHEN Li. Review of aerodynamic investigations for high-speed train[J]. Mechanics in Engineering, 2013, 35(2): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201302000.htm
    [10] 田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [11] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41. doi: 10.3969/j.issn.1009-1742.2015.04.004

    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Strategic Study of CAE, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004
    [12] 梁习锋, 田红旗, 邹建军. 动力车纵向气动力风洞试验及数值模拟[J]. 国防科技大学学报, 2003, 25(6): 101-105. doi: 10.3969/j.issn.1001-2486.2003.06.023

    LIANG Xi-feng, TIAN Hong-qi, ZOU Jian-jun. The wind tunnel test and numerical simulation of longitudinal aerodynamic force of the traction car[J]. Journal of National University of Defense Technology, 2003, 25(6): 101-105. (in Chinese) doi: 10.3969/j.issn.1001-2486.2003.06.023
    [13] DAI Zhi-yuan, LI Tian, ZHANG Wei-hua, et al. Numerical study on aerodynamic performance of high-speed pantograph with double strips[J]. Fluid Dynamics and Materials Processing, 2019, 15(4): 31-40. http://www.researchgate.net/publication/339232221_Numerical_Study_on_Aerodynamic_Performance_of_High-Speed_Pantograph_with_Double_Strips
    [14] 蔡国华. 高速客车模型气动特性实验研究[J]. 实验流体力学, 2007, 21(4): 27-31. doi: 10.3969/j.issn.1672-9897.2007.04.006

    CAI Guo-hua. An experimental research of aerodynamic characteristics of the high-speed passenger train model[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 27-31. (in Chinese) doi: 10.3969/j.issn.1672-9897.2007.04.006
    [15] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23. doi: 10.3969/j.issn.1001-8360.2012.07.003

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.07.003
    [16] 孙帮成, 李明高, 安超, 等. 高速列车节能降耗关键技术研究[J]. 中国工程科学, 2015, 17(4): 69-82. doi: 10.3969/j.issn.1009-1742.2015.04.008

    SUN Bang-cheng, LI Ming-Gao, AN Chao, et al. Research on key technology of high-speed train energy consumption[J]. Strategic Study of CAE, 2015, 17(4): 69-82. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.008
    [17] 田红旗, 高广军. 270 km·h-1高速列车气动力性能研究[J]. 中国铁道科学, 2003, 24(2): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200302003.htm

    TIAN Hong-qi, GAO Guang-jun. The analysis and evaluation on the aerodynamic behavior of 270 km·h-1 high-speed train[J]. China Railway Science, 2003, 24(2): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200302003.htm
    [18] ZHANG Xiao-han, JIANG Yao, LI Tian. Effect of streamlined nose length on the aerodynamic performance of an 800 km·h-1 evacuated tube train[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 67-76. doi: 10.32604/fdmp.2020.07776
    [19] 张胜, 戴志远, 李田. 明线运行列车气动地面效应数值模拟[J]. 交通运输工程与信息学报, 2020, 18(1): 120-125, 132. doi: 10.3969/j.issn.1672-4747.2020.01.016

    ZHANG Sheng, DAI Zhi-yuan, LI Tian. Numerical simulation of aerodynamic ground effect of a train running in the open air[J]. Journal of Transportation Engineering and Information, 2020, 18(1): 120-125, 132. (in Chinese) doi: 10.3969/j.issn.1672-4747.2020.01.016
    [20] 李田, 秦登, 邹栋, 等. 高速受电弓开闭口运行气动特性及对比研究[J]. 机械工程学报, 2020, 56(4): 177-184. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004022.htm

    LI Tian, QIN Deng, ZOU Dong, et al. Study on aerodynamic characteristics and comparisons of high-speed pantograph in knuckle-downstream or knuckle-upstream direction[J]. Journal of Mechanical Engineering, 2020, 56(4): 177-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004022.htm
    [21] 黄问盈, 杨宁清, 黄民. 列车基本阻力的思考[J]. 中国铁道科学, 2000, 21(3): 44-57. doi: 10.3321/j.issn:1001-4632.2000.03.006

    HUANG Wen-ying, YANG Ning-qing, HUANG Min. Ponderation on railway train basic resistance[J]. China Railway Science, 2000, 21(3): 44-57. (in Chinese) doi: 10.3321/j.issn:1001-4632.2000.03.006
    [22] 张帅, 魏伟. HXD1组合列车牵引与电制动模型的验证[J]. 铁道机车车辆, 2018, 38(5): 45-50. doi: 10.3969/j.issn.1008-7842.2018.05.11

    ZHANG Shuai, WEI Wei. Verification of traction and dynamic braking models for HXD1 combined train[J]. Railway Locomotive and Car, 2018, 38(5): 45-50. (in Chinese) doi: 10.3969/j.issn.1008-7842.2018.05.11
    [23] 姚拴宝. 高速列车气动优化设计研究[D]. 北京: 中国科学院大学, 2014.

    YAO Shuan-bao. Aerodynamical optimization and design of high-speed trains[D]. Beijing: University of Chinese Academy of Sciences, 2014. (in Chinese)
    [24] 张业. 高速列车参数化方法研究及整车气动外形优化设计[D]. 北京: 中国科学院大学, 2017.

    ZHANG Ye. The Study on parameterization methods of the high-speed train and optimization design for the whole train[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [25] 张在中, 周丹. 不同头部外形高速列车气动性能风洞试验研究[J]. 中南大学学报(自然科学版), 2013, 44(6): 2603-2608. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm

    ZHANG Zai-zhong, ZHOU Dan. Wind tunnel experiment on aerodynamic characteristic of streamline head of high-speed train with different head shapes[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2603-2608. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306058.htm
    [26] 张健. 高速列车动车头形风洞试验研究[J]. 流体力学实验与测量, 1997, 14(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199702014.htm

    ZHANG Jian. The research on nose shapes of high-speed train's power car with the wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 1997, 14(2): 85-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199702014.htm
    [27] 缪新乐, 李明, 姚勇, 等. 高速列车头车外形结构优化风洞试验研究[J]. 铁道科学与工程学报, 2012, 9(2): 94-98. doi: 10.3969/j.issn.1672-7029.2012.02.018

    MIAO Xin-le, LI Ming, YAO Yong, et al. Wind tunnel test investigation on the shape optimization of head car of the high-speed train[J]. Journal of Railway Science and Engineering, 2012, 9(2): 94-98 (in Chinese) doi: 10.3969/j.issn.1672-7029.2012.02.018
    [28] 蔡国华. 高速列车受电弓低速风洞试验技术[J]. 铁道工程学报, 2006, 23(4): 67-70. doi: 10.3969/j.issn.1006-2106.2006.04.016

    CAI Guo-hua. The experimental technique of pantograph of super express train in low speed wind tunnel[J]. Journal of Railway Engineering Society, 2006, 23(4): 67-70. (in Chinese) doi: 10.3969/j.issn.1006-2106.2006.04.016
    [29] 孙健, 余以正, 姜旭东, 等. 裙板对列车空气阻力及侧风稳定性影响的风洞试验研究[J]. 企业技术开发, 2016, 35(24): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201624012.htm

    SUN Jian, YU Yi-zheng, JIANG Xu-dong, et al. The wind tunnel test on the influence of skirt plates on air-drag and crosswind stability of high-speed trains[J]. Technological Development of Enterprise, 2016, 35(24): 39-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201624012.htm
    [30] 刘凤华. 高速列车气动性能低温风洞试验[J]. 交通运输工程学报, 2018, 18(6): 93-100. doi: 10.3969/j.issn.1671-1637.2018.06.010

    LIU Feng-hua. Test on aerodynamic performance of high-speed train in cryogenic wind tunnel[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 93-100. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.010
    [31] 王英学, 骆建军, 李伦贵, 等. 高速列车模型试验装置及相似特征分析[J]. 西南交通大学学报, 2004, 39(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200401005.htm

    WANG Ying-xue, LUO Jian-jun, LI Lun-gui, et al. Model experiment system for high-speed trains and analysis of its similarity[J]. Journal of Southwest Jiaotong University, 2004, 39(1): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT200401005.htm
    [32] 王英学, 高波. 高速列车进出隧道空气动力学研究的新进展[J]. 中国铁道科学, 2003, 24(2): 83-88. doi: 10.3321/j.issn:1001-4632.2003.02.016

    WANG Ying-xue, GAO Bo. New development of the aerodynamics of high-speed trains passing in and out tunnels[J]. China Railway Science, 2003, 24(2): 83-88. (in Chinese) doi: 10.3321/j.issn:1001-4632.2003.02.016
    [33] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391. doi: 10.3785/j.issn.1008-973X.2017.12.010

    HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(12): 2383-2391. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.12.010
    [34] BAKER C J, JONES J, LOPEZ-CALLEJA F, et al. Measurements of the cross wind forces on trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8): 547-563. http://www.sciencedirect.com/science/article/pii/S0167610504000327
    [35] SUZUKI M, TANEMOTO K, MAEDA T. Aerodynamic characteristics of train vehicles under cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(1/2): 209-218. http://www.sciencedirect.com/science/article/pii/S016761050200346X
    [36] 夏超, 单希壮, 杨志刚, 等. 风洞地面效应对高速列车空气动力学特性的影响[J]. 铁道学报, 2015, 37(4): 8-16. doi: 10.3969/j.issn.1001-8360.2015.04.002

    XIA Chao, SHAN Xi-zhuang, YANG Zhi-gang, et al. Influence of ground effect in wind tunnel on aerodynamics of high-speed train[J]. Journal of the China Railway Society, 2015, 37(4): 8-16. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.04.002
    [37] 黄志祥, 陈立, 蒋科林. 高速列车模型风洞试验数据的影响因素分析[J]. 铁道学报, 2016, 38(7): 34-39. doi: 10.3969/j.issn.1001-8360.2016.07.005

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin. The analysis of effect factors on wind tunnel testing data of high-speed train model[J]. Journal of the China Railway Society, 2016, 38(7): 34-39. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.07.005
    [38] ZHANG Jie, LI Jing-juan, TIAN Hong-qi, et al. Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance[J]. Journal of Fluids and Structures, 2016, 61: 249-261. doi: 10.1016/j.jfluidstructs.2015.10.006
    [39] 庞加斌, 林志兴, 余卓平, 等. TJ-2风洞汽车模型试验的修正方法[J]. 汽车工程, 2002, 24(5): 371-375. doi: 10.3321/j.issn:1000-680X.2002.05.001

    PANG Jia-bin, LIN Zhi-xing, YU Zhuo-ping, et al. Correction methods for automotive model tests in TJ-2 wind tunnel[J]. Automotive Engineering, 2002, 24(5): 371-375. (in Chinese) doi: 10.3321/j.issn:1000-680X.2002.05.001
    [40] LI Tian, LI Ming, WANG Zheng, et al. Effect of the inter-car gap length on the aerodynamic characteristics of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 233(4): 1-18. http://www.researchgate.net/publication/327794812_Effect_of_the_inter-car_gap_length_on_the_aerodynamic_characteristics_of_a_high-speed_train
    [41] 侯硕, 曹义华. 基于雷诺平均Navier-Stokes方程的表面传热系数计算[J]. 航空动力学报, 2015, 30(6): 1319-1327. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201506007.htm

    HOU Shuo, CAO Yi-hua. Calculation of surface heat transfer coefficient based on Reynolds-averaged Navier-Stokes equations[J]. Journal of Aerospace Power, 2015, 30(6): 1319-1327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201506007.htm
    [42] LI Tian, ZHANG Ji-ye, RASHIDI M M, et al. On the Reynolds-averaged Navier-Stokes modelling of the flow around a simplified train in crosswinds[J]. Journal of Applied Fluid Mechanics, 2019, 12(2): 551-563. doi: 10.29252/jafm.12.02.28958
    [43] LI Tian, QIN Deng, ZHANG Ji-ye. Aerodynamic drag reduction of a high-speed train nose with bionic round pits[J]. Computing in Science and Engineering, 2019, 21(3): 31-41. doi: 10.1109/MCSE.2019.2902474
    [44] LI Tian, QIN Deng, ZHANG Ji-ye. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2020, DOI:org/ 10.1186/s10033-019-0402-2.
    [45] FLYNN D, HEMIDA H, SOPER D, et al. Detached-eddy simulation of the slipstream of an operational freight train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132: 1-12. doi: 10.1016/j.jweia.2014.06.016
    [46] XIA Chao, WANG Han-feng, SHAN Xi-zhuang, et al. Effects of ground configurations on the slipstream and near wake of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168: 177-189. doi: 10.1016/j.jweia.2017.06.005
    [47] 李田, 秦登, 安超, 等. 计算网格对列车空气动力学不确定性的影响[J]. 西南交通大学学报, 2019, 54(4): 816-822. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201904020.htm

    LI Tian, QIN Deng, AN Chao, et al. Effect of computational grid on uncertain in train aerodynamic[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 816-822. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201904020.htm
    [48] WANG Shi-bo, BELL J R, BURTON D, et al. The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165: 46-57. doi: 10.1016/j.jweia.2017.03.001
    [49] LI Tian, DAI Zhi-yuan, ZHANG Wei-hua. Effect of RANS model on aerodynamic characteristics of trains in crosswind using DDES[J]. Computer Modeling in Engineering and Sciences, 2020, 122(1): 555-570. http://www.ingentaconnect.com/content/tsp/cmes/2020/00000122/00000002/art00007
    [50] 戴志远, 潘锋, 于梦阁, 等. 计算区域尺寸对列车绕流数值模拟的影响[J]. 现代交通技术, 2019, 16(5): 88-92. doi: 10.3969/j.issn.1672-9889.2019.05.019

    DAI Zhi-yuan, PAN Feng, YU Meng-ge, et al. Influence of calculation area on numerical simulation of train flow[J]. Modern Transportation Technology, 2019, 16(5): 88-92. (in Chinese) doi: 10.3969/j.issn.1672-9889.2019.05.019
    [51] ZHAO Hong-wei, LIANG Jian-ying, LIU Chang-qi. High-speed EMUs: characteristics of technological development and trends[J]. Engineering, 2020, 6(3): 234-244. doi: 10.1016/j.eng.2020.01.008
    [52] 舒信伟, 谷传纲, 梁习锋, 等. 具有流线型头部的高速磁浮列车气动性能数值模拟[J]. 上海交通大学学报, 2006, 40(6): 1034-1037. doi: 10.3321/j.issn:1006-2467.2006.06.035

    SHU Xin-wei, GU Chuan-gang, LIANG Xi-feng, et al. The numerical simulation on the aerodynamic performance of high-speed maglev train with streamlined nose[J]. Journal of Shanghai Jiaotong University, 2006, 40(6): 1034-1037. (in Chinese) doi: 10.3321/j.issn:1006-2467.2006.06.035
    [53] 黄志祥, 陈立, 蒋科林. 高速列车空气动力学特性的风洞试验研究[J]. 铁道车辆, 2011, 49(12): 1-5. doi: 10.3969/j.issn.1002-7602.2011.12.001

    HUANG Zhi-xiang, CHEN Li, JIANG Ke-lin. The wind tunnel test and research on aerodynamics characteristics of high-speed trains[J]. Rolling Stock, 2011, 49(12): 1-5. (in Chinese) doi: 10.3969/j.issn.1002-7602.2011.12.001
    [54] 陈秉智, 翟景娟. 高速列车车头外形优化[J]. 大连交通大学学报, 2012, 33(4): 16-20. doi: 10.3969/j.issn.1673-9590.2012.04.004

    CHEN Bing-zhi, ZHAI Jing-juan. Shape optimization of high-speed train head[J]. Journal of Dalian Jiaotong University, 2012, 33(4): 16-20. (in Chinese) doi: 10.3969/j.issn.1673-9590.2012.04.004
    [55] 冯志鹏. 高速列车气动性能与外形设计[D]. 成都: 西南交通大学, 2008.

    FENG Zhi-peng. Aerodynamic performance of high-speed train with the train shape design[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
    [56] 朱卫. 高速列车气动外形风洞试验研究[J]. 流体力学实验与测量, 1997, 11(2): 105-107, 25. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199702018.htm

    ZHU Wei. Wind tunnel test investigation of aerodynamic contour of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 1997, 11(2): 105-107, 25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199702018.htm
    [57] 郗艳红, 毛军, 李明高, 等. 高速列车侧风效应的数值模拟[J]. 北京交通大学学报, 2010, 34(1): 14-19. doi: 10.3969/j.issn.1673-0291.2010.01.004

    XI Yan-hong, MAO Jun, LI Ming-gao, et al. Numerical study on the crosswind effects of high-speed train[J]. Journal of Beijing Jiaotong University, 2010, 34(1): 14-19. (in Chinese) doi: 10.3969/j.issn.1673-0291.2010.01.004
    [58] 杨志刚, 高喆, 陈羽, 等. 裙板安装对高速列车气动性能影响的数值分析[J]. 计算机辅助工程, 2010, 19(3): 16-21. doi: 10.3969/j.issn.1006-0871.2010.03.004

    YANG Zhi-gang, GAO Zhe, CHEN Yu, et al. Numerical analysis on influence on aerodynamic performance of high-speed train caused by installation of skirt plates[J]. Computer Aided Engineering, 2010, 19(3): 16-21. (in Chinese) doi: 10.3969/j.issn.1006-0871.2010.03.004
    [59] 郑循皓, 张继业, 张卫华. 高速列车转向架空气阻力的数值模拟[J]. 交通运输工程学报, 2011, 11(2): 45-51. doi: 10.3969/j.issn.1671-1637.2011.02.008

    ZHENG Xun-hao, ZHANG Ji-ye, ZHANG Wei-hua. Numerical simulation of aerodynamic drag for high-speed train bogie[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 45-51 (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.02.008
    [60] ZHANG Jie, WANG Jia-bin, WANG Qian-xuan, et al. A study of the influence of bogie cut outs' angles on the aerodynamic performance of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 175: 153-168. doi: 10.1016/j.jweia.2018.01.041
    [61] 游守庆, 张继业, 张亚东, 等. 高速列车转向架气动性能分析[C]//中国力学学会. 第十五届全国非线性振动暨第十二届全国非线性动力学和运动稳定性学术会议. 北京: 中国力学学会, 2015: 64-65.

    YOU Shou-qing, ZHANG Ji-ye, ZHANG Ya-dong, et al. Analysis of aerodynamic performance of high-speed train bogies[C]//Chinese Society of Theoretical and Applied Mechanics. The 15th National Nonlinear Vibration and the 12th National Academic Conference on Nonlinear Dynamics and Motion Stability. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2015: 64-65. (in Chinese)
    [62] 刘珍. 高速列车风挡气动特性及气动疲劳强度研究[D]. 长沙: 中南大学, 2012.

    LIU Zhen. Research on windshield aerodynamic characteristic and pneumatic fatigue strength of high-speed train[D]. Changsha: Central South University, 2012. (in Chinese)
    [63] 单魏, 邓海, 王金田, 等. CRH3型高速动车组空气动力学阻力特性优化设计[J]. 铁道车辆, 2012, 50(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201202000.htm

    SHAN Wei, DENG Hai, WANG Jin-tian, et al. The optimization design of aerodynamic resistance characteristics of CRH3 high-speed multiple units[J]. Rolling Stock, 2012, 50(2): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201202000.htm
    [64] 唐明赞, 熊小慧, 钟睦, 等. 高速列车外风挡安装间距对风挡气动特性的影响[J]. 铁道科学与工程学报, 2019, 16(4): 850-859. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201904003.htm

    TANG Ming-zan, XIONG Xiao-hui, ZHONG Mu, et al. Influence of installation spacing of external vestibule diaphragm of high-speed train on aerodynamic characteristics of the vestibule diaphragm[J]. Journal of Railway Science and Engineering, 2019, 16(4): 850-859. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201904003.htm
    [65] 张业, 孙振旭, 郭迪龙, 等. 风挡缝宽对高速列车气动性能的影响[J]. 铁道学报, 2017, 39(3): 19-24. doi: 10.3969/j.issn.1001-8360.2017.03.004

    ZHANG Ye, SUN Zhen-xu, GUO Di-long, et al. Effects of windshield slot width on aerodynamics of high-speed trains[J]. Journal of the China Railway Society, 2017, 39(3): 19-24. (in Chinese) doi: 10.3969/j.issn.1001-8360.2017.03.004
    [66] 梁习锋, 舒信伟. 列车风挡对空气阻力影响的数值模拟研究[J]. 铁道学报, 2003, 25(1): 34-37. doi: 10.3321/j.issn:1001-8360.2003.01.007

    LIANG Xi-feng, SHU Xin-wei. Numerical simulation research on train aerodynamic drag affected by the train windshield[J]. Journal of the China Railway Society, 2003, 25(1): 34-37. (in Chinese) doi: 10.3321/j.issn:1001-8360.2003.01.007
    [67] 张淼, 熊红兵. 高速列车部件对整车气动力的影响分析[J]. 制造业自动化, 2011, 33(4): 202-204, 217. doi: 10.3969/j.issn.1009-0134.2011.2.67

    ZHANG Miao, XIONG Hong-bing. Effects of different components on the aerodynamics of high-speed train[J]. Manufacturing Automation, 2011, 33(4): 202-204, 217. (in Chinese) doi: 10.3969/j.issn.1009-0134.2011.2.67
    [68] 王东屏, 何正凯, 李明高, 等. 动车组气动阻力降阻优化数值研究[J]. 铁道学报, 2011, 33(10): 15-18. doi: 10.3969/j.issn.1001-8360.2011.10.003

    WANG Dong-ping, HE Zheng-kai, LI Ming-gao, et al. Numerical research on aerodynamic drag reduction optimization of EMU[J]. Journal of the China Railway Society, 2011, 33(10): 15-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.10.003
    [69] 孔学舟, 杨明智. 受电弓下沉对高速列车气动阻力的影响[J]. 铁道科学与工程学报, 2017, 14(9): 1805-1813. doi: 10.3969/j.issn.1672-7029.2017.09.001

    KONG Xue-zhou, YANG Ming-zhi. Influence of pantograph subsidence on high-speed train aerodynamic drag[J]. Journal of Railway Science and Engineering, 2017, 14(9): 1805-1813. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.09.001
    [70] 林鹏, 张业, 郭迪龙. 高速列车受电弓平台的优化设计[J]. 力学研究, 2018, 7(2): 27-35.

    LIN Peng, ZHANG Ye, GUO Di-long. Optimal design of pantograph platform for high-speed trains[J]. International Journal of Mechanics Research, 2018, 7(2): 27-35. (in Chinese)
    [71] 张雷, 杨明智. 受电弓设备对列车气动特性影响的风洞试验[J]. 中南大学学报(自然科学版), 2011, 42(12): 3894-3898. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201112048.htm

    ZHANG Lei, YANG Ming-zhi. Wind tunnel experimental of impact on aerodynamic characteristics for vehicle by pantograph equipment[J]. Journal of Central South University (Science and Technology), 2011, 42(12): 3894-3898. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201112048.htm
    [72] 樊光建. 高速动车组受电弓导流罩优化设计[J]. 科技与企业, 2013, 5(8): 337. https://www.cnki.com.cn/Article/CJFDTOTAL-KJYQ201308309.htm

    FAN Guang-jian. Optimal design of pantograph shroud for high-speed EMUs[J]. Technology and Enterprise, 2013, 5(8): 337. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJYQ201308309.htm
    [73] 刘海涛, 徐志龙. 基于仿生非光滑结构的高速列车受电弓杆件减阻降噪研究[J]. 噪声与振动控制, 2018, 38(增1): 269-272. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1064.htm

    LIU Hai-tao, XU Zhi-long. Study on drag and noise reduction of pantograph rods based on bionic non-smooth structures[J]. Noise and Vibration Control, 2018, 38(S1): 269-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK2018S1064.htm
    [74] KING W F, PFIZENMAIER E. An experimental study of sound generated by flows around cylinders of different cross-section[J]. Journal of Sound and Vibration, 2009, 328(3): 318-337. doi: 10.1016/j.jsv.2009.07.034
    [75] 石磊. 圆柱杆件气动噪声仿生控制研究[D]. 长春: 吉林大学, 2013.

    SHI Lei. Research on control of aerodynamic noise of circular cylinder using bio-inspired method[D]. Changchun: Jilin University, 2013. (in Chinese)
    [76] LI Tian, QIN Deng, ZHANG Wei-hua, et al. Study on the aerodynamic noise characteristics of high-speed pantographs with different strip spacings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104191. doi: 10.1016/j.jweia.2020.104191
    [77] 于淼, 石俊杰, 耿亚彬. 列车气动阻力风洞试验研究[J]. 铁道机车车辆, 2017, 37(2): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201702013.htm

    YU Miao, SHI Jun-jie, GENG Ya-bin. Train aerodynamic performance of wind tunnel test research[J]. Railway Locomotive and Car, 2017, 37(2): 50-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201702013.htm
    [78] 马梦林, 邓海, 王东屏, 等. 空调导流罩对列车气动阻力影响的研究[J]. 铁道车辆, 2011, 49(3): 5-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201103003.htm

    MA Meng-lin, DENG Hai, WANG Dong-ping, et al. Research on effect of air-conditioning domes on aerodynamic resistance of trains[J]. Rolling Stock, 2011, 49(3): 5-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201103003.htm
    [79] 洪琪琛, 杨明智, 丁畅. 空调安装方式优化对列车气动特性影响研究[J]. 铁道科学与工程学报, 2018, 15(10): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201810024.htm

    HONG Qi-chen, YANG Ming-zhi, DING Chang. Study of the optimization of air conditioner installation mode's effect on aerodynamic performance of high speed train[J]. Journal of Railway Science and Engineering, 2018, 15(10): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201810024.htm
    [80] 刘加利, 李明高, 张继业, 等. 高速列车流线型头部多目标气动优化设计[J]. 中国科学: 技术科学, 2013, 43(6): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201306013.htm

    LIU Jia-li, LI Ming-gao, ZHANG Ji-ye, et al. Multi-objective aerodynamic optimization design of high-speed train streamline head[J]. Scientia Sinica: Technologica, 2013, 43(6): 689-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201306013.htm
    [81] 张亮, 张继业, 李田, 等. 超高速列车流线型头型多目标优化设计[J]. 机械工程学报, 2017, 53(2): 106-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702014.htm

    ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Multi-objective optimization design of the streamlined head shape of super high-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201702014.htm
    [82] 李明, 李明高, 李国清, 等. 参数化驱动的高速列车头型气动外形优化设计[J]. 铁道学报, 2013, 35(11): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201311003.htm

    LI Ming, LI Ming-gao, LI Guo-qing, et al. Optimized design of parametric-driven aerodynamic shape of high-speed EMU head-type[J]. Journal of the China Railway Society, 2013, 35(11): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201311003.htm
    [83] 黄烈威, 李明, 李国清, 等. 高速动车组受电弓导流罩多学科优化设计[J]. 城市轨道交通研究, 2013, 16(6): 53-57. doi: 10.3969/j.issn.1007-869X.2013.06.014

    HUANG Lie-wei, LI Ming, LI Guo-qing, et al. Optimum multidisciplinary design of the pantograph flow guide mantle for high-speed EMUs[J]. Urban Mass Transit, 2013, 16(6): 53-57. (in Chinese) doi: 10.3969/j.issn.1007-869X.2013.06.014
    [84] YAO Shuan-bao, GUO Di-long, SUN Zhen-xu, et al. Parametric design and optimization of high-speed train nose[J]. Optimization and Engineering, 2015, 17(3): 1-26. doi: 10.1007/s11081-015-9298-6
    [85] 姚拴宝, 郭迪龙, 杨国伟. 基于GA-GRNN的高速列车头型三维优化设计[J]. 中国科学: 技术科学, 2012, 42(11): 1283-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201211007.htm

    YAO Shuan-bao, GUO Di-long, YANG Guo-wei. Three-dimensional aerodynamic optimization design of high-speed train nose based on GA-GRNN[J]. Scientia Sinica Technologica, 2012, 42(11): 1283-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201211007.htm
    [86] LI Rui, PING Xu, PENG Yong, et al. Multi-objective optimization of a high-speed train head based on the FFD method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 152: 41-49. doi: 10.1016/j.jweia.2016.03.003
    [87] SUN Zhen-xu, SONG Jing-jing, AN Yi-ran. Optimization of the head shape of the CRH3 high speed train[J]. Science China Technological Sciences, 2010, 53(12): 3356-3364. doi: 10.1007/s11431-010-4163-5
    [88] ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. Multi-objective aerodynamic optimization design of high-speed train head shape[J]. Journal of Zhejiang University- Science A (Applied Physics and Engineering), 2017, 18(11): 841-854. doi: 10.1631/jzus.A1600764
    [89] 龚明, 孙守光, 李强. 横风环境下高速列车头型的多目标优化设计[J]. 中国铁道科学, 2019, 40(2): 97-106. doi: 10.3969/j.issn.1001-4632.2019.02.13

    GONG Ming, SUN Shou-guang, LI Qiang. Multi-objective optimization design for nose shape of high-speed train in cross wind conditions[J]. China Railway Science, 2019, 40(2): 97-106. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.02.13
    [90] ZHANG Liang, ZHANG Ji-ye, LI Tian, et al. A multi-objective aerodynamic optimization design of a high-speed train head under crosswinds[J]. Journal of Rail and Rapid Transit, 2018, 232(3): 895-912. doi: 10.1177/0954409717701784
    [91] 李春曦, 薛全喜, 张硕, 等. 微结构表面防微生物粘附机理研究[J]. 系统仿真学报, 2018, 30(10): 3903-3913. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201810038.htm

    LI Chun-xi, XUE Quan-xi, ZHANG Shuo, et al. Mechanism of biofouling control on micro-structured surface[J]. Journal of System Simulation, 2018, 30(10): 3903-3913. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201810038.htm
    [92] 霍志浩. 高速列车微结构减阻功能表面设计分析与加工实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    HUO Zhi-hao. Design analysis and processing experimental research on microstructure surface of high-speed train with drag reduction function[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [93] 王政, 李田, 李明, 等. 仿生表面微结构减阻优化及机理研究综述[J]. 河北科技大学学报, 2017, 38(4): 325-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ201704003.htm

    WANG Zheng, LI Tian, LI Ming, et al. Review of mechanical research and aerodynamic drag reduction of bionic surface micro-structures[J]. Journal of Hebei University of Science and Technology, 2017, 38(4): 325-334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ201704003.htm
    [94] 孙朋朋. 高速列车非光滑车身气动减阻特性研究[D]. 杭州: 浙江大学, 2012.

    SUN Peng-peng. Research on aerodynamic drag reduction of High-speed train with Non-smooth surface[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
    [95] 朱海燕, 张翼, 赵怀瑞, 等. 基于边界层控制的高速列车减阻技术[J]. 交通运输工程学报, 2017, 17(2): 64-72. doi: 10.3969/j.issn.1671-1637.2017.02.007

    ZHU Hai-yan, ZHANG Yi, ZHAO Huai-rui, et al. Drag reduction technology of high-speed train based on boundary layer control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(2): 64-72. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.02.007
    [96] 李明, 李明高, 李国清. 高速列车表面随行波微细结构减阻技术研究[J]. 铁道车辆. 2017, 55(2): 12-16. doi: 10.3969/j.issn.1002-7602.2017.02.004

    LI Ming, LI Ming-gao, LI Guo-qing. Research on drag reduction technology of traveling wave microstructure on the surface of high-speed train[J]. Railway Vehicle, 2017, 55(2): 12-16. (in Chinese) doi: 10.3969/j.issn.1002-7602.2017.02.004
    [97] 张渊, 张继业, 李田. 基于非光滑表面的高速列车转向架区域气动减阻性能[J]. 机械, 2016, 43(9): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201609003.htm

    ZHANG Yuan, ZHANG Ji-ye, LI Tian. Research on the drag reduction characteristics of high-speed train with non-smooth surface[J]. Machinery, 2016, 43(9): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201609003.htm
    [98] 杜健, 龚明, 田爱琴, 等. 基于仿生非光滑沟槽的高速列车减阻研究[J]. 铁道科学与工程学报, 2014, 11(5): 70-76. doi: 10.3969/j.issn.1672-7029.2014.05.013

    DU Jian, GONG Ming, TIAN Ai-qin, et al. Study on the drag reduction of the high-speed train based on the bionic non-smooth riblets[J]. Journal of Railway Science and Engineering, 2014, 11(5): 70-76. (in Chinese) doi: 10.3969/j.issn.1672-7029.2014.05.013
    [99] 王昊, 牛中国, 蒋甲利. 二维翼型吹/吸气流动控制试验研究[J]. 航空科学技术, 2020, 31(5): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005009.htm

    WANG Hao, NIU Zhong-guo, JIANG Jia-li. Experimental study on 2D airfoil blowing and suction flow control[J]. Aeronautical Science and Technology, 2020, 31(5): 56-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX202005009.htm
    [100] 贲宝佳. 一种新型吹吸气相结合的方法控制流动分离[J]. 科技创新与应用, 2017, 7(2): 56. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201702033.htm

    BEN Bao-jia. A new method of combined blowing and suction to control flow separation[J]. Technology Innovation and Application, 2017, 7(2): 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201702033.htm
    [101] 刘沛清, 马利川, 屈秋林, 等. 低雷诺数下翼型层流分离泡及吹气控制数值研究[J]. 空气动力学学报, 2013, 31(4): 518-524, 540. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201304019.htm

    LIU Pei-qing, MA Li-chuan, QU Qiu-lin, et al. Numerical investigation of the laminar separation bubble control by blowing suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013, 31(4): 518-524, 540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201304019.htm
    [102] 孙宗祥. 等离子体减阻技术的研究进展[J]. 力学进展, 2003, 33(1): 87-94. doi: 10.3321/j.issn:1000-0992.2003.01.010

    SUN Zong-xiang. Progress in plasma assisted drag reduction technology[J]. Advances in Mechanics, 2003, 33(1): 87-94. (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.01.010
    [103] 胡兴军, 惠政, 郭鹏, 等. 基于等离子体流动控制的车辆减阻试验研究[J]. 华南理工大学学报(自然科学版), 2019, 47(11): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201911002.htm

    HU Xing-jun, HUI Zheng, GUO Peng, et al. Experimental investigation into vehicle drag deduction based on plasma flow control[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(11): 10-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201911002.htm
    [104] 王靖宇, 耿亚林, 惠政, 等. 基于等离子体流动控制的方背式汽车模型减阻研究[J]. 汽车工程, 2020, 42(6): 753-758, 770. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202006007.htm

    WANG Jing-yu, GENG Ya-lin, HUI Zheng, et al. Study on drag reduction of square-back ahmed model based on plasma flow control[J]. Automotive Engineering, 2020, 42(6): 753-758, 770. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202006007.htm
    [105] 高国强, 颜馨, 彭开晟, 等. 等离子体流动技术在列车减阻应用上的初步研究[J]. 电工技术学报, 2019, 34(4): 855-862. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201904024.htm

    GAO Guo-qiang, YAN Xin, PENG Kai-sheng, et al. Primary research on drag reduction of train based on plasma flow[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 855-862. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201904024.htm
    [106] 洪延姬, 李倩, 方娟, 等. 激光等离子体减阻技术研究进展[J]. 航空学报, 2010, 31(1): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001016.htm

    HONG Yan-ji, LI Qian, FANG Juan, et al. Advances in study of laser plasma drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 93-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201001016.htm
    [107] 张进, 余春锦, 张彬乾. 微型涡流发生器对超临界翼型升阻特性影响实验研究[J]. 机械科学与技术, 2016, 35(9): 1461-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201609027.htm

    ZHANG Jin, YU Chun-jin, ZHANG Bin-qian. Experimental study of micro vortex generator effects on lift-drag characteristics of a supercritical airfoil[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1461-1465. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201609027.htm
    [108] 刘小民, 党群, 张炜, 等. 涡流发生器在流体机械流动控制中应用研究进展[J]. 流体机械, 2007, 35(3): 33-40. doi: 10.3969/j.issn.1005-0329.2007.03.009

    LIU Xiao-min, DANG Qun, ZHANG Wei, et al. Study development of applying vortex generator jet to flow control in fluid machinery[J]. Fluid Machinery, 2007, 35(3): 33-40. (in Chinese) doi: 10.3969/j.issn.1005-0329.2007.03.009
    [109] 李斌斌, 姚勇, 印帅, 等. 基于涡流发生器的Ahmed模型分离流被动控制实验[J]. 西南科技大学学报, 2016, 31(3): 95-101. doi: 10.3969/j.issn.1671-8755.2016.03.019

    LI Bin-bin, YAO Yong, YIN Shuai, et al. Experimental investigation on passive control of Ahmed model separation flow based on vortex generator[J]. Journal of Southwest University of Science and Technology, 2016, 31(3): 95-101. (in Chinese) doi: 10.3969/j.issn.1671-8755.2016.03.019
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  2165
  • HTML全文浏览量:  1032
  • PDF下载量:  2934
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回