留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁路车辆部件抗疲劳评估的进展与挑战

吴圣川 任鑫焱 康国政 马利军 张晓军 钱坤才 滕万秀

吴圣川, 任鑫焱, 康国政, 马利军, 张晓军, 钱坤才, 滕万秀. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004
引用本文: 吴圣川, 任鑫焱, 康国政, 马利军, 张晓军, 钱坤才, 滕万秀. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004
WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, MA Li-jun, ZHANG Xiao-jun, QIAN Kun-cai, TENG Wan-xiu. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004
Citation: WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, MA Li-jun, ZHANG Xiao-jun, QIAN Kun-cai, TENG Wan-xiu. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004

铁路车辆部件抗疲劳评估的进展与挑战

doi: 10.19818/j.cnki.1671-1637.2021.01.004
基金项目: 

中国铁路总公司科技研究开发计划课题 P2018J003

牵引动力国家重点实验室自主课题 2021TPL_T06

国家自然科学基金项目 U1934214

详细信息
    作者简介:

    吴圣川(1979-),男,山东菏泽人,西南交通大学研究员,工学博士,从事车辆结构的损伤、疲劳与断裂研究

  • 中图分类号: U270

Progress and challenge on fatigue resistance assessment of railway vehicle components

Funds: 

Project of Scientific and Technological Research and Development of China Railway P2018J003

Independent Project of State Key Laboratory of Traction Power 2021TPL_T06

National Natural Science Foundation of China U1934214

More Information
  • 摘要: 从铁路车辆的安全运用及服役评估出发,论述了转向架部件(如构架、车轴等)的抗疲劳评估及应用进展,重点分析了合金钢EA4T车轴和碳素钢S38C车轴的设计理念差别,阐明了车轴运用评估中存在的难定量和过保守的理论局限性; 首创了“名义应力”+“损伤容限”有机融合的阶梯疲劳评估方法,给出了样本信息聚集改进原理、基于单轴拉伸的裂纹扩展模型、应力-缺陷-寿命的三参数评估图和表面残余应力重建等四大关键技术。分析结果表明:基于传统名义应力法的抗疲劳设计给出的寿命预测偏于保守,导致车辆部件维修不足或者过度维修; 基于单轴拉伸性能的新型裂纹扩展模型的精度优于NASGRO方程; Kitagawa-Takahashi图把基于名义应力的疲劳极限和基于断裂力学的缺陷特征有机关联起来,比Goodman图更直观、定量和全面; 基于表面单位压力法,获得了与实测结果一致的S38C车轴的压缩残余应力分布,表明压缩残余应力的引入提高了新干线车轴的抗微动磨损能力和抗疲劳裂纹扩展能力; 广域环境服役、超高周疲劳、增材修复再制造、断裂求解技术及动力学和强度学结合等问题成为未来研究的重要课题。

     

  • 图  1  车轴表面损伤

    Figure  1.  Surface damages of axles

    图  2  日本新干线构架开裂事故[7]

    Figure  2.  Cracked bogie frame accident of Japan Shinkansen train[7]

    图  3  高强钢SUJ2的疲劳寿命[30-31]

    Figure  3.  Fatigue life of high-strength SUJ2 steel[30-31]

    图  4  基于钢材料的车轴设计方法[5]

    Figure  4.  Design method of axles based on steel materials[5]

    图  5  考虑超高周疲劳的车轴设计方法[5]

    Figure  5.  Axles design method considering ultra-high cycle fatigue[5]

    图  6  考虑损伤累积的车轴设计方法[5]

    Figure  6.  Axles design method considering cumulated damage[5]

    图  7  考虑损伤等效处理的车轴设计方法[5]

    Figure  7.  Axles design method considering equivalent damage[5]

    图  8  车轴损伤容限设计原理[41]

    Figure  8.  Damage tolerance design principle of axle[41]

    图  9  日本新干线S38C车轴

    Figure  9.  Japanese Shinkansen S38C axle

    图  10  中国和欧洲EA4T车轴

    Figure  10.  Chinese and European EA4T axle

    图  11  新型内置轴箱车轴典型受力特性

    Figure  11.  Load-carrying feature of newly-developed axles with inside axle boxes

    图  12  车轴断口形貌[44, 53]

    Figure  12.  Axle fractography[44, 53]

    图  13  裂纹闭合诱导的门槛值变化

    Figure  13.  Threshold changes induced by crack clousure effect

    图  14  现役车轴FOD统计特征

    Figure  14.  FOD statistical features of in-service axles

    图  15  铸钢G20Mn5焊接构架Goodman图[120]

    Figure  15.  Goodman diagram for welded casting G20Mn5 bogie frame[120]

    图  16  转向架焊接构架的阶梯疲劳评估

    Figure  16.  Stepwise fatigue assessment of bogie welded frames

    图  17  不同应力下的寿命等效方法

    Figure  17.  Fatigue life equivalent method with different stress levels

    图  18  全尺寸部件的疲劳P-S-N曲线[123]

    Figure  18.  Fatigue P-S-N curves of full-scale components[123]

    图  19  合金钢EA4T车轴的疲劳P-S-N曲线

    Figure  19.  Fatigue P-S-N curves of alloy steel EA4T axle

    图  20  焊接构架用SMA490材料的疲劳寿命曲线

    Figure  20.  Fatigue life curves of SMA490 material of welded frames

    图  21  新干线S38C材料的疲劳寿命曲线

    Figure  21.  Fatigue life curves of Shinkansen S38C axle

    图  22  刮擦对车轴EA4T钢疲劳寿命的影响

    Figure  22.  Effect of artificial scratches on fatigue life of axle EA4T steel

    图  23  卸荷槽裂纹导致的车轴断裂[131]

    Figure  23.  Axle fracture from relief groove[131]

    图  24  标准NASGRO和最新iLAPS方程对比

    Figure  24.  Comparison between standard NASGRO and newly-developed iLAPS equations

    图  25  日本S38C车轴不同区域的裂纹扩展速率

    Figure  25.  Fatigue crack growth rates of different material layers of Japan S38C axle

    图  26  车轴钢34CrMo4的微动疲劳K-T图[142]

    Figure  26.  Fretting fatigue induced K-T diagram of railway axles used 34CrMo4 steel[142]

    图  27  关联应力和缺陷的标准和修正K-T图

    Figure  27.  Original and modified K-T diagrams correlated to stress and defect

    图  28  异物致损车轴的修正K-T图

    Figure  28.  Modified K-T diagrams of FODed alxes

    图  29  新干线S38C车轴梯度硬度和残余应力

    Figure  29.  Gradient-distributed hardness and residual stress of Shinkansen S38C axles

    图  30  相同截面上缺陷前缘的残余应力

    Figure  30.  Residual stress ahead of a growing crack at same axle section

    图  31  深滚压前后EA4T损伤车轴运行里程变化

    Figure  31.  Operation mileage changes before and after deep rolling for damaged EA4T axles

    图  32  表面强化对FOD车轴寿命的影响

    Figure  32.  Effect of surface strengthening on lifetime of FOD axles

    图  33  现役EA4T和S38C车轴的缺陷分布

    Figure  33.  Defect distributions of EA4T and S38C axles

    图  34  不同应力比下车轴缺陷处应力状态

    Figure  34.  Stress states of axle defect under different stress ratios

    图  35  异物致损EA4T车轴试样的疲劳寿命曲线

    Figure  35.  Fatigue life curves of foreign objected damaged EA4T axle

    图  36  异物致损EA4T车轴的三参数评估图

    Figure  36.  Three-parameters assessment diagram of foregin object impacted EA4T axles

    图  37  铸板焊接构架有限元网格模型

    Figure  37.  Finite element model of welded frame with casting steel plates

    图  38  制动吊座与横梁焊缝处应力

    Figure  38.  Stresses at welded joint of brake hanger and crossbeam

    图  39  制动吊座与横梁焊缝缺陷尺寸与寿命关系

    Figure  39.  Relationship between service life and defect size around brake hanger and crossbeam welded joint

    图  40  增材钛合金的三参数评定图

    Figure  40.  Three-parameters assessment diagram of additive titanium alloy

    图  41  车轴钢EA1N的表面腐蚀形貌[83, 89]

    Figure  41.  Corroded surface morphology of axle steel EA1N[83, 89]

    图  42  集成型原位疲劳试验机

    Figure  42.  Integrated in situ fatigue testing machine

    图  43  合金钢EA4T激光熔覆[184]

    Figure  43.  Laserc ladded alloy steel EA4T[184]

    图  44  不同裂纹扩展模型寿命预测[25, 195]

    Figure  44.  Lifetime prediction from different crack growth models[25, 195]

    图  45  基于系统动力学的应力强度因子范围

    Figure  45.  Stress intensity factor ranges based on system dynamics

  • [1] 周平宇. 高速动车组车轴材料及疲劳设计方法[J]. 铁道车辆, 2009, 47(2): 29-31. doi: 10.3969/j.issn.1002-7602.2009.02.011

    ZHOU Ping-yu. The axle material and fatigue design method for high speed multiple units[J]. Railway Vehicle, 2009, 47(2): 29-31. (in Chinese) doi: 10.3969/j.issn.1002-7602.2009.02.011
    [2] 朱静, 顾家琳, 周惠华, 等. 高速列车空心车轴国产化的选材和试制[J]. 中国铁道科学, 2015, 36(2): 60-67. doi: 10.3969/j.issn.1001-4632.2015.02.09

    ZHU Jing, GU Jia-lin, ZHOU Hui-hua, et al. Material selection and trial manufacture for localization of hollow axle for high speed train[J]. China Railway Science, 2015, 36(2): 60-67. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.02.09
    [3] 徐忠伟, 吴圣川, 段浩, 等. 考虑压装和实测动应力的含缺陷空心车轴剩余寿命评估[J]. 中国科学: 技术科学, 2017, 47(6): 656-665. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm

    XU Zhong-wei, WU Sheng-chuan, DUAN Hao, et al. Fatigue crack growth life prediction of railway hollow axis with flaws under press fitting and measured dynamic stress spectrum[J]. Scientia Sinica: Technologica, 2017, 47(6): 656-665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm
    [4] 周素霞. 高速列车空心车轴损伤容限理论与方法研究[D]. 北京: 北京交通大学, 2010.

    ZHOU Su-xia. Theory and method research on damage tolerance of the hollow axles of high speed trains[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese)
    [5] ZERBST U, BERETTA S, KÖHLER G, et al. Safe life and damage tolerance aspects of railway axles—a review[J]. Engineering Fracture Mechanics, 2013, 98(1): 214-271. http://www.sciencedirect.com/science/article/pii/S0013794412003918
    [6] 沈彩瑜. 铁道车辆转向架构架疲劳强度研究[D]. 成都: 西南交通大学, 2018.

    SHEN Cai-yu. Fatigue strength analysis of the welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [7] LU Yao-hui, XIANG Peng-lin, DONG Ping-sha, et al. Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis, 2018, 89: 222-241. doi: 10.1016/j.engfailanal.2018.02.025
    [8] 孙璐. 高速列车转向架构架长期服役应力谱及损伤演化规律研究[D]. 北京: 北京交通大学, 2016.

    SUN Lu. Study on stress spectrum and damage evolution law of the long-term service for high-speed EMU's bogie frame[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [9] 段浩. 铁道车辆转向架构架疲劳寿命及损伤容限评价[D]. 成都: 西南交通大学, 2018.

    DUAN Hao. Fatigue life and damage tolerance assessment on bogie frame of railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [10] 李丛珊. 中国标准动车组动车转向架构架结构疲劳可靠性研究[D]. 北京: 北京交通大学, 2018.

    LI Cong-shan. Structural fatigue reliability research on motor bogie frame of China standard EMUs[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [11] SCHIJVE J. Fatigue of Structures and Materials[M]. Dordrecht: Kluwer Academic Publishers, 2009.
    [12] SURESH S. Fatigue of Materials[M]. Cambridge: Cambridge University Press, 1998.
    [13] 刘霞, 王长生. 车轴磁粉探伤机夹持装置的分析与改进[J]. 中国铁路, 2012(10): 74-76. doi: 10.3969/j.issn.1001-683X.2012.10.019

    LIU Xia, WANG Chang-sheng. Improved holding device of railway axle used magnetic particle testing[J]. Chinese Railways, 2012(10): 74-76. (in Chinese) doi: 10.3969/j.issn.1001-683X.2012.10.019
    [14] 蔡晓野. HXD3C型机车车轴磁粉检测磁痕显示分析[J]. 无损探伤, 2018, 42(2): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201802012.htm

    CAI Xiao-ye. Display analysis on magnetic mark of magnetic particle testing on HXD3C locomotive axles[J]. Nondestructive Testing Technology, 2018, 42(2): 40-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201802012.htm
    [15] 丁然, 李强. 基于漏探概率的车轴探伤周期制定方法[J]. 中国铁道科学, 2017, 38(4): 101-106. doi: 10.3969/j.issn.1001-4632.2017.04.14

    DING Ran, LI Qiang. Method for detecting flaw detection period of axle based on missed detection probability[J]. China Railway Science, 2017, 38(4): 101-106. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.04.14
    [16] 彭朝勇, 高晓蓉, 王艾. 车轴压装部相控阵超声波探伤的各向异性扩散去燥改进算法[J]. 中国铁道科学, 2017, 38(3): 77-82. doi: 10.3969/j.issn.1001-4632.2017.03.11

    PENG Chao-yong, GAO Xiao-rong, WANG Ai. An improved anisotropic diffusion denoising algorithm for phased array ultrasonic flaw detection of axle press-fit area[J]. China Railway Science, 2017, 38(3): 77-82. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.03.11
    [17] 汤立新. 一种空心车轴超声自动探伤图像合成显示方法[J]. 控制与信息技术, 2018(5): 51-55, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201805012.htm

    TANG Li-xin. A combined signal display method for hollow axle automated ultrasonic test system[J]. Control and Information Technology, 2018(5): 51-55, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201805012.htm
    [18] 刘志勇, 彭朝勇. 一种基于轴端耦合的实心车轴相控阵超声波探伤方法[J]. 机车电传动, 2018(2): 108-110.

    LIU Zhi-yong, PENG Chao-yong. A method for solid axle flaw inspection based on axle end coupling by phased array ultrasonic technology[J]. Electric Drive for Locomotives, 2018(2): 108-110. (in Chinese)
    [19] 周庆祥, 傅晔, 詹发福, 等. 阵列涡流技术在车轴在役检测中的应用研究[J]. 金属加工(冷加工), 2016(增1): 399-400. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGR2016S1130.htm

    ZHOU Qing-xiang, FU Ye, ZHAN Fa-fu, et al. Applications of eddy current arrays to in-service axle detection[J]. Metal Processing (Cold Working), 2016(S1): 399-400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXGR2016S1130.htm
    [20] 杜寅飞. 基于脉冲涡流检测技术的车轴探伤系统的研究[D]. 天津: 天津大学, 2011.

    DU Yin-fei. Research on semi-axle testing system based on pulsed eddy current testing technology[D]. Tianjin: Tianjin University, 2011. (in Chinese)
    [21] SUN Zhen-guo, CAI Dong, ZOU Cheng, et al. A flexible arrayed eddy current sensor for inspection of hollow axle inner surfaces[J]. Sensors, 2016, 16(7): 952. doi: 10.3390/s16070952
    [22] 兰晓峰, 张渝. 重载铁路钢轨相控阵探伤系统研究[J]. 仪器仪表学报, 2019, 40(12): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912006.htm

    LAN Xiao-feng, ZHANG YU. Research on heavy haul railway inspection system based on the phased array technique[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 47-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912006.htm
    [23] 师睿鑫. 基于图像处理的轮轴探伤系统对铁路安全的控制研究[J]. 中国安全科学学报, 2018, 28(增1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2018S1005.htm

    SHI Rui-xin. Research on safety foundation control of wheel shaft flaw detection system based on image processing[J]. China Safety Science Journal, 2018, 28(S1): 22-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2018S1005.htm
    [24] MAKINO T, SAKAI H, KOZUKA C, et al. Overview of fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel[J]. International Journal of Fatigue, 2020, 132: 105361. doi: 10.1016/j.ijfatigue.2019.105361
    [25] LI Cun-hai, WU Sheng-chuan, ZHANG Jin-yuan, et al. Determination of the fatigue P-S-N curves—a critical review and improved backward statistical inference method[J]. International Journal of Fatigue, 2020, 139: 105789. doi: 10.1016/j.ijfatigue.2020.105789
    [26] WU S C, LI C H, LUO Y, et al. A uniaxial tensile behavior based fatigue crack growth model[J]. International Journal of Fatigue, 2020, 131: 105324. doi: 10.1016/j.ijfatigue.2019.105324
    [27] LUO Yan, WU Sheng-chuan, ZHAO Xin, et al. Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001. doi: 10.1016/j.matdes.2020.109001
    [28] HU Y N, WU S C, WU Z K, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 105584. doi: 10.1016/j.ijfatigue.2020.105584
    [29] WU S C, XU Z W, LIU Y X, et al. On the residual life assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6(4): 218-232. doi: 10.1080/23248378.2018.1427008
    [30] BATHIAS C. There is no infinite fatigue life in metallic materials[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22(7): 559-565. doi: 10.1046/j.1460-2695.1999.00183.x
    [31] SAKAI T, SATO Y, OGUMA N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8/9): 765-773. doi: 10.1046/j.1460-2695.2002.00574.x
    [32] 袁元豪. 日本和欧洲铁路车轴标准的比较[J]. 铁道技术监督, 2013, 41(9): 4-7. doi: 10.3969/j.issn.1006-9178.2013.09.002

    YUAN Yuan-hao. Comparison of railway axle standards between Japan and Europe[J]. Railway Quality Control, 2013, 41(9): 4-7. (in Chinese) doi: 10.3969/j.issn.1006-9178.2013.09.002
    [33] MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78: 810-825. doi: 10.1016/j.engfracmech.2009.12.013
    [34] 郑修麟, 王泓, 鄢君辉, 等. 材料疲劳理论与工程应用[M]. 北京: 科学出版社, 2013.

    ZHENG Xiu-lin, WANG Hong, YAN Jun-hui, et al. Fatigue Thoery and Engineering Applications of Materials[M]. Beijing: Science Press, 2013. (in Chinese)
    [35] 李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能——非金属夹杂物的影响[M]. 北京: 冶金工业出版社, 2010.

    LI Shou-xin, WENG Yu-qing, HUI Wei-jun, et al. Very High Cycle Fatigue Properties of High Strength Steels—Effects of Nonmetallic Inclusions[M]. Beijing: Metallurgical Industry Press, 2010. (in Chinese)
    [36] BATHIAS C, PINEAU A. Fatigue of Materials and Structures[M]. Hoboken: Wiley, 2013.
    [37] SONSINO C M. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety[J]. International Journal of Fatigue, 2007, 29(12): 2246-2258. doi: 10.1016/j.ijfatigue.2006.11.015
    [38] 洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48: 201801. doi: 10.6052/1000-0992-17-002

    HONG You-shi, SUN Cheng-qi, LIU Xiao-long. A review on mechanism and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48: 201801. (in Chinese) doi: 10.6052/1000-0992-17-002
    [39] 张继旺. 高速列车车轴钢超长寿命疲劳可靠性及强度改善方法[D]. 成都: 西南交通大学, 2011.

    ZHANG Ji-wang. Fatigue reliability behaviors of high-speed railway axle steel in very high cycle regime and methods for fatigue strengthen improvement[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese)
    [40] 钟群鹏, 周煜, 张峥, 等. 裂纹学[M]. 北京: 高等教育出版社, 2014.

    ZHONG Qun-peng, ZHOU Yu, ZHANG Zheng, et al. Cracking[M]. Beijing: High Education Press, 2014. (in Chinese)
    [41] 杨新华, 陈传尧. 疲劳与断裂(第二版)[M]. 武汉: 华中科技大学出版社, 2002.

    YANG Xin-hua, CHEN Chuan-yao. Fatigue and Fracture (2nd edition)[M]. Wuhan: Huazhong University of Science and Technology Press, 2002. (in Chinese)
    [42] BERETTA S, REGAZZI D. Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations[J]. International Journal of Fatigue, 2016, 86: 13-23. doi: 10.1016/j.ijfatigue.2015.08.010
    [43] 赵云生. 日本新干线车轴淬火技术应用综述[J]. 国外铁道车辆, 2011, 48(5): 9-12. doi: 10.3969/j.issn.1002-7610.2011.05.002

    ZHAO Yun-sheng. Survey of application of the quenching technology of axles for Shinkansen in Japan[J]. Foreign Railway Vehicle, 2011, 48(5): 9-12. (in Chinese) doi: 10.3969/j.issn.1002-7610.2011.05.002
    [44] HIROMICHI I, MAKOTO A, YASUO S, et al. Fracture mechanics evalution of fatigue tests using Shinkansen vehicle axles with artificial flaws created on their wheelsets[J]. The Japan Society of Mechanical Engineers, 1996, 62: 2527-2533. doi: 10.1299/kikaia.62.2527
    [45] 邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm

    DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
    [46] 刘志远, 张文康, 高纯友, 等. 美国波士顿地铁轴箱内置式转向架结构设计[J]. 城市轨道交通研究, 2019(3): 162-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201903038.htm

    LIU Zhi-yuan, ZHANG Wen-kang, GAO Chun-you, et al. Development of bogie with inboard bearing for Boston Metro in America[J]. Urban Mass Transit, 2019(3): 162-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201903038.htm
    [47] 李国栋, 王文华, 薛文根, 等. 内置轴箱式转向架轴箱轴承定位挡圈失效分析[J]. 轴箱, 2019(9): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201909002.htm

    LI Guo-dong, WANG Wen-hua, XUE Wen-gen, et al. Failure analysis on positioning retaining rings of axle box bearings for built-in axle box type bogie[J]. Bearing, 2019(9): 6-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201909002.htm
    [48] 王志明, 陈晓峰, 吴才香, 等. 轴箱内置式车辆走行部焊接构架及其疲劳强度分析[J]. 装备制造技术, 2019(1): 79-82. doi: 10.3969/j.issn.1672-545X.2019.01.020

    WANG Zhi-ming, CHEN Xiao-feng, WU Cai-xiang, et al. Welded frame and fatigue strength analysis of running part of axle box built-in vehicle[J]. Equipment Manufacturing Technology, 2019(1): 79-82. (in Chinese) doi: 10.3969/j.issn.1672-545X.2019.01.020
    [49] WU S C, LIU Y X, LI C H, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176-191. doi: 10.1016/j.engfracmech.2018.04.046
    [50] 刘宇轩. 内置轴箱式铁路车轴疲劳强度及损伤容限评价[D]. 成都: 西南交通大学, 2019.

    LIU Yu-xuan. Fatigue strength and damage tolerance assessment on railway axle with inside axle boxes[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [51] 刘宇轩, 吴圣川, 李存海, 等. 轴箱内置型铁路车轴疲劳性能与寿命评估[J]. 交通运输工程学报, 2019, 19(3): 100-108. doi: 10.3969/j.issn.1671-1637.2019.03.011

    LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.011
    [52] POKORN AY'G P, DLH AY'G P, PODUŠKA J, et al. Influence of heat treatment-induced residual stress on residual fatigue life of railway axles[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102732. doi: 10.1016/j.tafmec.2020.102732
    [53] REGAZZI D, BERETTA S, CARBONI M. An investigation about the influence of deep rolling on fatigue crack growth in railway axles made of a medium strength steel[J]. Engineering Fracture Mechanics, 2014, 131: 587-601. doi: 10.1016/j.engfracmech.2014.09.016
    [54] MAKOTO A, HIROMICHI I. Reliability analysis of Shinkansen vehicle axle using probabilistic fracture mechanics[J]. The Japan Society of Mechanical Engineers, 1994, 60: 46-51. doi: 10.1299/kikaia.60.46
    [55] MAKOTOA. Bayesian analysis for the results of fatigue test using full-scale models to obtain the accurate failure probabilities of the Shinkansen vehicle axle[J]. Reliability Engineering and System Safety, 2002, 75: 321-332. doi: 10.1016/S0951-8320(01)00129-6
    [56] YAMAMOTO M, MAKINO K, ISHIDUKA H. Comparison of crack growth behaviour between full-scale railway axle and scaled specimen[J]. International Journal of Fatigue, 2016, 92: 159-165. doi: 10.1016/j.ijfatigue.2016.07.001
    [57] NONAKA I, SETOWAKI S, ICHIKAWA Y. Effect of load frequency on high cycle fatigue strength of bullet train axle steel[J]. International Journal of Fatigue, 2014, 60: 43-47. doi: 10.1016/j.ijfatigue.2013.08.020
    [58] MAKINO K, BIWA S. Influence of axle-wheel interface on ultrasonic testing of fatigue cracks in wheelset[J]. Ultrasonics, 2013, 53: 239-248. doi: 10.1016/j.ultras.2012.06.007
    [59] YAMAMOTO M, MAKINO K, ISHIDUKA H. Experimental validation of railway axle fatigue crack growth using operational loading[J]. Engineering Fracture Mechanics, 2019, 213: 142-152. doi: 10.1016/j.engfracmech.2019.04.001
    [60] HIROMICHI I, MASANOBU K, CHU S, et al. Evaluation of fatigue crack propagation property on the wheelseat of normalized axles for narrow gauge line vehicles[J]. Journal of the Society of Materials Science Japan, 2006, 55(6): 550-557. doi: 10.2472/jsms.55.550
    [61] POKORNÝ P, HUTAŘ P, NÁHLÍK L. Residual fatigue lifetime estimation of railway axles for various loading spectra[J]. Theoretical and Applied Fracture Mechanics, 2016, 82: 25-32. doi: 10.1016/j.tafmec.2015.06.007
    [62] RIEGER M, MOSER C, BRUNNHOFER P, et al. Fatigue crack growth in full-scale railway axles-influence of secondary stresses and load sequence effects[J]. International Journal of Fatigue, 2020, 132: 105360. doi: 10.1016/j.ijfatigue.2019.105360
    [63] MAIERHOFER J, GANSER HP, SIMUNEK D, et al. Fatigue crack growth model including load sequence effects-model development and calibration for railway axle steels[J]. International Journal of Fatigue, 2020, 132: 105377. doi: 10.1016/j.ijfatigue.2019.105377
    [64] HANNEMANN R, KOSTER P, SANDER M. Fatigue crack growth in wheelset axles under bending and torsional loading[J]. International Journal of Fatigue, 2019, 118: 262-270. doi: 10.1016/j.ijfatigue.2018.07.038
    [65] BERETTA S, CARBONI M, REGAZZI D. Load interaction effects in propagation lifetime and inspections of railway axles[J]. International Journal of Fatigue, 2016, 91: 423-433. doi: 10.1016/j.ijfatigue.2016.03.009
    [66] AUERSCH L. Realistic axle load spectra from ground vibrations measured near railway lines[J]. International Journal of Rail Transportation, 2015, 3(4): 180-200. doi: 10.1080/23248378.2015.1076624
    [67] SMITH R A, HILLMANSEN S. A brief historical overview of the fatigue of railway axles[J]. Journal of Rail and Rapid Transit, 2004, 218(4): 267-277. doi: 10.1243/0954409043125932
    [68] CARBONI M, BERETTA S, MADIA M. Analysis of crack growth at R=-1 under variable amplitude loading on a steel for railway axles[J]. Journal of ASTM International, 2008, 5(7): JAI101648. doi: 10.1520/JAI101648
    [69] SANDER M, RICHARD H A. Investigations on fatigue crack growth under variable amplitude loading in wheelset axles[J]. Engineering Fracture Mechanics, 2011, 78: 754-763. doi: 10.1016/j.engfracmech.2010.05.001
    [70] WATSON A S, TIMMIS K. A method of estimating railway axle stress spectra[J]. Engineering Fracture Mechanics, 2011, 78(5): 836-847. doi: 10.1016/j.engfracmech.2009.12.001
    [71] CERVELLO S. Fatigue properties of railway axles: new results of full-scale specimens from Euraxles project[J]. International Journal of Fatigue, 2016, 86: 2-12. doi: 10.1016/j.ijfatigue.2015.11.028
    [72] FOLETTI S, BERETTA S, GURER G. Defect acceptability under full-scale fretting fatigue tests for railway axles[J]. International Journal of Fatigue, 2016, 86: 34-43. doi: 10.1016/j.ijfatigue.2015.08.023
    [73] GOMEZ M J, CASTEJON C, GARCIA-PRADA J C. New stopping criteria for crack detection during fatigue tests of railway axles[J]. Engineering Failure Analysis, 2015, 56: 530-537. doi: 10.1016/j.engfailanal.2014.10.018
    [74] LUKE M, VARFOLOMEEV I, LVTKEPOHL K, et al. Fatigue crack growth in railway axles: assessment concept and validation tests[J]. Engineering Fracture Mechanics, 2011, 78(5): 714-730. doi: 10.1016/j.engfracmech.2010.11.024
    [75] FILIPPINI M, LUKE M, VARFOLOMEEV I. Fatigue strength assessment of railway axles considering small-scale tests and damage calculations[J]. Procedia Structural Integrity, 2017, 4: 11-18. doi: 10.1016/j.prostr.2017.07.013
    [76] CARBONI M, BERETTA S. Effect of probability of detection upon the definition of inspection intervals for railway axles[J]. Journal of Rail and Rapid Transit, 2007, 221: 409-417. doi: 10.1243/09544097JRRT132
    [77] MÄDLER K, GEBURTIG T, ULLRICH D. An experimental approach to determining the residual lifetimes of wheelset axles on a full-scale wheel-rail roller test rig[J]. International Journal of Fatigue, 2016, 86: 58-63. doi: 10.1016/j.ijfatigue.2015.06.016
    [78] TRAUPE M, JENNE S, LVTKEPOHL K, et al. Experimental validation of inspection intervals for railway axles accompanying the engineering process[J]. International Journal of Fatigue, 2016, 86: 44-51. doi: 10.1016/j.ijfatigue.2015.09.020
    [79] KAPPES W, HENTSCHEL D, OELSCHLAGELT. Potential improvements of the presently applied in-service inspection of wheelset axles[J]. International Journal of Fatigue, 2016, 86: 64-76. doi: 10.1016/j.ijfatigue.2015.08.014
    [80] FAJKOS R, ZIMA R, STRNADEL B. Fatigue limit of induction hardened railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38: 1255-1264. doi: 10.1111/ffe.12337
    [81] HASSANI-GANGARAJ S M, CARBONI M, GUAGLIANO M. Finite element approach toward an advanced understanding of deep rolling induced residual stresses, and an application to railway axles[J]. Materials and Design, 2015, 83: 689-703. doi: 10.1016/j.matdes.2015.06.026
    [82] REGAZZI D, CANTINI S, CERVELLO S, et al. Improving fatigue resistance of railway axles by cold rolling: process optimisation and new experimental evidences[J]. International Journal of Fatigue, 2020, 137: 105603. doi: 10.1016/j.ijfatigue.2020.105603
    [83] BERETTA S, CARBONI M, FIORE G, et al. Corrosion- fatigue of A1N railway axle steel exposed to rainwater[J]. International Journal of Fatigue, 2010, 32: 952-961. doi: 10.1016/j.ijfatigue.2009.08.003
    [84] BERETTA S, CARBONI M, CONTE A L, et al. An investigation of the effects of corrosion on the fatigue strength of AlN axle steel[J]. Journal of Rail and Rapid Transit, 2008, 222: 129-143. doi: 10.1243/09544097JRRT157
    [85] MANERHOFER J, SIMUNEK D, GANSER H P, et al. Oxide induced crack closure in the near threshold regime The effect of oxide debris release[J]. International Journal of Fatigue, 2018, 117: 21-26. doi: 10.1016/j.ijfatigue.2018.07.021
    [86] VOJTECK T, POKORNY P, KUBENA I, et al. Quantitative dependence of oxide-induced crack closure on air humidity for railway axle steel[J]. International Journal of Fatigue, 2019, 123: 213-224. doi: 10.1016/j.ijfatigue.2019.02.019
    [87] SADANANDA K, VASUDEVAN A K. Analysis of pit to crack transition under corrosion fatigue and the safe-life approach using the modified Kitagawa-Takahashi diagram[J]. International Journal of Fatigue, 2020, 134: 105471. doi: 10.1016/j.ijfatigue.2020.105471
    [88] POKORNY P, VOJTECK T, NAHLIK L, et al. Crack closure in near-threshold fatigue crack propagation in railway axle steel EA4T[J]. Engineering Fracture Mechanics, 2017, 185: 2-19. doi: 10.1016/j.engfracmech.2017.02.013
    [89] BERETTA S, LO CONTE A, RUDLIN J, et al. From atmospheric corrosive attack to crack propagation for A1N railway axles steel under fatigue[J]. Engineering Failure Analysis, 2015, 47: 252-264. doi: 10.1016/j.engfailanal.2014.07.026
    [90] SIMUNEK D, LEITNER M, RIEGER M, et al. Fatigue crack growth in railway axle specimens—transferability and model validation[J]. International Journal of Fatigue, 2020, 137: 105603. doi: 10.1016/j.ijfatigue.2020.105603
    [91] GÄNSER H P, MAIERHOFER J, TICHY R, et al. Damage tolerance of railway axles-the issue of transferability revisited[J]. International Journal of Fatigue, 2016, 86: 52-57. doi: 10.1016/j.ijfatigue.2015.07.019
    [92] DE FREITAS M, FRANCOIS D. Analysis of fatigue crack growth in rotary bend specimens and railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(2): 171-178. doi: 10.1111/j.1460-2695.1995.tb00152.x
    [93] VARFOLOMEEV I, LUKE M, BURDACK M. Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics, 2011, 78: 742-753. doi: 10.1016/j.engfracmech.2010.11.011
    [94] 刘志明, 孙守光, 缪龙秀. 车轴裂纹扩展寿命的分析与计算方法[J]. 中国铁道科学, 2008, 29(3): 89-94. doi: 10.3321/j.issn:1001-4632.2008.03.017

    LIU Zhi-ming, SUN Shou-guang, MIAO Long-xiu. Analysis and calculation method of axle crack growth life[J]. China Railway Science, 2008, 29(3): 89-94. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.03.017
    [95] 张俊清. 高速列车空心车轴表面裂纹应力强度因子研究[D]. 北京: 北京交通大学, 2011.

    ZHANG Jun-qing. Research on stress intensity factor of surface crack of high-speed train hollow axle[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [96] 周素霞, 李福胜, 谢基龙, 等. 基于损伤容限的动车组车轴实测载荷谱等效应力评价[J]. 机械工程学报, 2015, 51(8): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm

    ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm
    [97] ZHAO Yong-xiang, HE Chao-ming, YANG Bing, et al. Probabilistic models for long fatigue crack growth rates of LZ50 axle steel[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(8): 1093-1099. doi: 10.1007/BF02466423
    [98] 包陈, 蔡力勋. LZ50车轴钢疲劳裂纹扩展试验研究[J]. 实验室研究与探索, 2007, 26(11): 255-258. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY200711088.htm

    BAO Chen, CAI Li-xun. Experimental study on fatigue crack propagation of LZ50 axle steels[J]. Research and Exploration in Laboratory, 2007, 26(11): 255-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY200711088.htm
    [99] 杨冰, 赵永翔. 表面滚压对LZ50车轴钢疲劳短裂纹行为的影响[J]. 金属学报, 2014, 48(8): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201208005.htm

    YANG Bing, ZHAO Yong-xiang. Influence of surface rolling on short fatigue crack behavior for LZ50 axle steel[J]. Acta Metallurgica Sinica, 2014, 48(8): 922-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201208005.htm
    [100] 赵永翔, 何忠. LZ50车轴钢的疲劳起裂阈值及强度[J]. 铁道学报, 2012, 34(11): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201211006.htm

    ZHAO Yong-xiang, HE Zhong. Fatigue cracking threshold and strength of railway LZ50 axle steel[J]. Journal of the China Railway Society, 2012, 34(11): 37-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201211006.htm
    [101] WU S C, ZHANG S Q, XU Z W, et al. Cyclic plastic strain based damage tolerance for railway axles in China[J]. International Journal of Fatigue, 2016, 93: 64-70. doi: 10.1016/j.ijfatigue.2016.08.006
    [102] 马利军. 断裂力学的含缺陷车轴服役寿命评估方法研究[D]. 北京: 北京交通大学, 2016.

    MA Li-jun. Study on service life evaluation of railway axle with flaws based on fracture mechanics[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [103] 林浩博. 高速动车组S38C车轴疲劳裂纹扩展特性及可靠性研究[D]. 北京: 北京交通大学, 2017.

    LIN Hao-bo. Studies on the fatigue crack propagation characteristics and reliability of EMU high speed S38C axle[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [104] 吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制与模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906001.htm

    WU Sheng-chuan, LI Cun-hai, ZHANG Wen, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906001.htm
    [105] 王玉光, 吴圣川, 李忠文, 等. 一种基于低周疲劳行为的含缺陷车轴剩余寿命模型[J]. 铁道学报, 2018, 40(11): 27-32. doi: 10.3969/j.issn.1001-8360.2018.11.004

    WANG Yu-guang, WU Sheng-chuan, LI Zhong-wen, et al. A low cycle fatigue characteristics based residual life prediction model for railway axles with flaws[J]. Journal of the China Railway Socienty, 2018, 40(11): 27-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.004
    [106] WU S C, XU Z W, YU C, et al. A physically short fatigue crack growth approach based on low cycle fatigue properties[J]. International Journal of Fatigue, 2017, 103(6): 185-195. http://www.sciencedirect.com/science/article/pii/S0142112317302104
    [107] SHI K K, CAI L X, BAO C, et al. Structural fatigue crack growth on a representative volume element under cyclic strain behavior[J]. International Journal of Fatigue, 2015, 74(5): 1-6. http://www.sciencedirect.com/science/article/pii/S014211231400320X
    [108] SHI K K, CAI L X, BAO C, et al. Prediction of fatigue crack growth based on low cycle fatigue properties[J]. International Journal of Fatigue, 2014, 61(4): 220-225. http://www.sciencedirect.com/science/article/pii/S0142112313003228
    [109] WU S C, LUO Y, SHEN Z, et al. Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020, 225: 106844. doi: 10.1016/j.engfracmech.2019.106844
    [110] 吴圣川, 徐忠伟, 康国政, 等. 外物损伤对25CrMo4合金车轴钢疲劳性能的影响[J]. 西南交通大学学报, 2020, 55(3): 658-663. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202003026.htm

    WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng, et al. Influences of foreign object damage on fatigue strength of 25CrMo4 axle alloy steel[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 658-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202003026.htm
    [111] LUO Y, WU S C, ZHAO X, et al. Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001. doi: 10.1016/j.matdes.2020.109001
    [112] XU Z W, WU S C, WANG X S. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86. doi: 10.1016/j.ijfatigue.2019.02.016
    [113] WU S C, XU Z W, KANG G Z, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100. doi: 10.1016/j.ijfatigue.2018.08.011
    [114] 高杰维. 表面凹坑缺陷对高速列车车轴钢疲劳性能影响研究[D]. 成都: 西南交通大学, 2017.

    GAO Jie-wei. Research on influence of surface PIT defects on the fatigue property of high-speed train axle steel[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [115] 潘向南. S38C车轴冲击损伤疲劳性能研究[J]. 成都: 西南交通大学, 2018.

    PAN Xiang-nan. Study on fatigue performance of impact damage on S38C axle[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [116] GAO J W, PAN X N, HAN J, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles[J]. International Journal of Fatigue, 2020, 139: 105746. doi: 10.1016/j.ijfatigue.2020.105746
    [117] LI X, ZHANG J W, YANG B, et al. Effect of micro-shot peening, conventional shot peening and their combination on fatigue property of EA4T axle steel[J]. Journal of Materials Processing Technology, 2020, 275: 116320. doi: 10.1016/j.jmatprotec.2019.116320
    [118] ZHANG J W, LI H, YANG B, et al. Fatigue properties and fatigue strength evaluation of railway axle steel: effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379. doi: 10.1016/j.ijfatigue.2019.105379
    [119] 罗艳. 异物致损合金钢EA4T车轴抗疲劳评估方法[D]. 成都: 西南交通大学, 2020.

    LUO Yan. Fatigue resistance assessment of externally impacted railway EA4T axle steel[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [120] 秦庆斌. 铁路客车铸造材料焊接构架疲劳性能及剩余寿命评估[D]. 成都: 西南交通大学, 2020.

    QIN Qing-bin. Fatigue performance and residual life evaluation of welded bogie frame made of casting materials for railway passenger vehicle[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [121] LEE Y L, PAN J, HATHAWAY R, et al. Fatigue Testing and Analysis: Theory and Practice[M]. Amsterdam: Elsevier, 2005.
    [122] 白鑫, 谢里阳, 钱文学. 基于样本聚集原理的疲劳可靠性评估方法及其在零部件上的应用[J]. 机械工程学报, 2016, 52(6): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201606029.htm

    BAI Xin, XIE Li-yang, QIAN Wen-xue. Fatigue probability evaluation method based on the principle of sample-polymerization[J]. Journal of Mechanical Engineering, 2016, 52(6): 206-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201606029.htm
    [123] 李存海, 吴圣川, 刘宇轩. 样本信息聚集原理改进及其在铁路车辆结构疲劳评定中的应用[J]. 机械工程学报, 2019, 55(4): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm

    LI Cun-hai, WU Sheng-chuan, LIU Yu-xuan. Improved sample polymerization principle and the applications onto fatigue assessment of railway vehicle structures[J]. Journal of Mechanical Engineering, 2019, 55(4): 42-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm
    [124] 汪开忠, 胡芳忠, 陈世杰, 等. 高速列车车轴用DZ2钢的腐蚀疲劳性能[J]. 金属热处理, 2019, 44(4): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201904024.htm

    WANG Kai-zhong, HU Fang-zhong, CHEN Shi-jie, et al. Corrosion fatigue property of DZ2 steel for high speed train axle[J]. Heat Treatment of Metals, 2019, 44(4): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201904024.htm
    [125] 许佑顶, 姚令侃. 川藏铁路沿线特殊环境地质问题的认识与思考[J]. 铁道工程学报, 2017(1): 1-5. doi: 10.3969/j.issn.1006-2106.2017.01.001

    XU You-ding, YAO Ling-kan. Some cognitions and thinkings about the specific geo-environmental problems along the Sichuan-Tibet Railway[J]. Journal of Railway Engineering Society, 2017(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.01.001
    [126] 吴毅, 尹鸿祥, 孟扬, 等. 高速列车车轴材料的低温高周疲劳性能[J]. 材料热处理学报, 2019, 40(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201904009.htm

    WU Yi, YIN Hong-xiang, MENG Yang, et al. High cycle fatigue properties of high speed axle materials at low temperature[J]. Transaction of Materials and Heat Treatment, 2019, 40(4): 54-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201904009.htm
    [127] 任尊松, 吕晓旭, 李秋泽. 典型缺陷车轴应力分布及对疲劳性能影响研究[J]. 北京交通大学学报, 2020, 44(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202001008.htm

    REN Zun-song, LYU Xiao-xu, LI Qiu-ze. Research on the stress distribution of axle with typical defects and its influence on fatigue performance[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202001008.htm
    [128] 陈玲, 马跃. EA4T车轴坯锻后表面开裂机理研究[J]. 铁道机车与动车, 2020(4): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX202004010.htm

    CHEN Ling, MA Yue. Study on surface cracking mechanism of EA4T axle blank after forging[J]. Railway Locomotive and Motor Car, 2020(4): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX202004010.htm
    [129] 卜玮杰, 高杰维, 戴光泽, 等. 人工缺陷对S38C车轴钢疲劳极限的影响[J]. 机械工程材料, 2020, 44(5): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202005005.htm

    BU Wei-jie, GAO Jie-wei, DAI Guang-ze, et al. Effect of artificial defects on fatigue limit of S38C axle steel[J]. Materials for Mechanical Engineering, 2020, 44(5): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202005005.htm
    [130] 尹鸿祥, 吴毅, 张关震, 等. 沟槽性缺陷对EA4T车轴钢疲劳性能影响规律研究[J]. 铁道技术监督, 2019, 47(8): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201908007.htm

    YIN Hong-xiang, WU Yi, ZHANG Guan-zhen, et al. The effects of groove defects on the fatigue performance of EA4T axle steel[J]. Railway Quality Control, 2019, 47(8): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201908007.htm
    [131] KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81. doi: 10.1016/j.engfailanal.2012.11.008
    [132] RICE J R. Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear[J]. Journal of Applied Mechanics, 1967, 34: 287-298. doi: 10.1115/1.3607681
    [133] KUJAWSKI D, ELLYIN F. On the size of plastic zone ahead of a crack-tip[J]. Engineering Fracture Mechanics, 1986, 25: 229-236. doi: 10.1016/0013-7944(86)90219-5
    [134] 宋川, 刘建华, 彭金方, 等. 接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J]. 材料工程, 2014(2): 34-38. doi: 10.3969/j.issn.1001-4381.2014.02.007

    SONG Chuan, LIU Jian-hua, PENG Jin-fang, et al. Effect of contact stress on rotating bending fretting fatigue life of railway axle steel[J]. Materials Engineering, 2014(2): 34-38. (in Chinese) doi: 10.3969/j.issn.1001-4381.2014.02.007
    [135] 陈刚, 曾东方, 张艳, 等. 空心和实心车轴微动磨损行为的对比研究[J]. 安徽工业大学学报(自然科学版), 2020, 37(1): 12-18. doi: 10.3969/j.issn.1671-7872.2020.01.003

    CHEN Gang, ZENG Dong-fang, ZHANG Yan, et al. A comparative study of fretting wear behavior of hollow and solid railway axles[J]. Journal of Anhui University of Technology (Natural Science), 2020, 37(1): 12-18. (in Chinese) doi: 10.3969/j.issn.1671-7872.2020.01.003
    [136] 王梦婕. DZ2车轴钢的切向微动磨损行为与冲击磨损行为研究[D]. 成都: 西南交通大学, 2019.

    WANG Meng-jie. Research on fretting wear behavior and impact behavior of DZ2 axle steels[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [137] 平学成, 赵辽翔. 新型空心车轴轮对过盈配合微动疲劳特性分析[J]. 机械设计与制造, 2014(7): 116-119. doi: 10.3969/j.issn.1001-3997.2014.07.036

    PING Xue-cheng, ZHAO Liao-xiang. Fretting fatigue characteristics of interference fit joints of wheel and shaft in a locomotive[J]. Machinery Design and Manufacture, 2014(7): 116-119. (in Chinese) doi: 10.3969/j.issn.1001-3997.2014.07.036
    [138] SUNDE S L, BERTO F, HAUGENB. Predicting fretting fatigue in engineering design[J]. International Journal of Fatigue, 2018, 117: 314-326. doi: 10.1016/j.ijfatigue.2018.08.028
    [139] NOWELL D, DINI D, HILLSDA. Recent developments in the understanding of fretting fatigue[J]. Engineering Fracture Mechanics, 2006, 73(2): 207-222. doi: 10.1016/j.engfracmech.2005.01.013
    [140] NESLADEK M, SPANIEL M, JURENKA J, et al. Fretting fatigue—experimental and numerical approaches[J]. International Journal of Fatigue, 2012, 44: 61-73. doi: 10.1016/j.ijfatigue.2012.05.015
    [141] CHOI S J, CHO Y T. Fretting fatigue behavior in railway axle materials[J]. Journal of Mechanical Science and Technology, 2015, 29(1): 23-31. doi: 10.1007/s12206-014-1204-1
    [142] GURER G, GUR C H. Failure analysis of fretting fatigue initiation and growth on railway axle press-fits[J]. Engineering Failure Analysis, 2018, 84: 151-166. doi: 10.1016/j.engfailanal.2017.06.054
    [143] SMITH R A. Fatigue of railway axles: a classic problem revisited[J]. European Structural Integrity Society, 2000, 26: 173-181.
    [144] 唐凯, 周留成, 何卫峰, 等. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究[J]. 中国机械工程, 2020, 31(3): 267-273. doi: 10.3969/j.issn.1004-132X.2020.03.003

    TANG Kai, ZHOU Liu-cheng, HE Wei-feng, et al. Experimental study on influence of laser shock processing on fatigue performance of LZ50 axle steels[J]. China Mechanical Engineering, 2020, 31(3): 267-273. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.03.003
    [145] 马天宇. 高速动车组车轴表面强化层的疲劳性能研究[D]. 北京: 北京交通大学, 2018.

    MA Tian-yu. The study on fatigue of high-speed EMU axle surface reinforcement layer[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [146] 王会英. 高速列车车轴材料超声挤压强化技术研究[D]. 北京: 北京交通大学, 2015.

    WANG Hui-ying. Research on the ultrasonic extrusion strengthening technology for hollow axle material of high speed train[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
    [147] 熊平, 贺婷婷, 丁志敏, 等. 提高铁路车轴疲劳性能的表面强化处理技术[J]. 电力机车与城轨车辆, 2014, 37(1): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201401017.htm

    XIONG Ping, HE Ting-ting, DING Zhi-min, et al. Technologies of surface hardening treatment for improving the fatigue property of railway axles[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(1): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201401017.htm
    [148] 梁晨, 覃作祥, 陆兴. EA4T车轴钢的超声冲击表面强化[J]. 大连交通大学学报, 2015, 36(4): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201504021.htm

    LIANG Chen, QIN Zuo-xiang, LU Xing. Surface strengthening study of EA4T axle steel by ultrasonic impact treatment (UIT)[J]. Journal of Dalian Jiaotong University, 2015, 36(4): 89-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201504021.htm
    [149] 蔡卫星, 邓鸿剑, 徐锋. 滚压强化技术在铁路车轴表面处理中的应用[J]. 机械, 2018, 45(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201806010.htm

    CAI Wei-xing, DENG Hong-jian, XU Feng. Application of rolling strengthening technology in surface treatment of railway axles[J]. Machinery, 2018, 45(4): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201806010.htm
    [150] 于鑫, 孙杰, 李世涛, 等. 滚压工艺对EA4T车轴表面质量完整性的影响及预测模型建立[J]. 中国表面工程, 2014, 27(5): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405015.htm

    YU Xin, SUN Jie, LI Shi-tao, et al. Influence of burnishing process on surface quality integrity of EA4T axles and establishing of prediction model[J]. China Surface Engineering, 2014, 27(5): 87-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405015.htm
    [151] 任学冲, 陈利钦, 刘鑫贵, 等. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J]. 材料工程, 2015, 43(12): 1-5. doi: 10.11868/j.issn.1001-4381.2015.12.001

    REN Xue-chong, CHEN Li-qin, LIU Xin-gui, et al. Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J]. Journal of Materials Engineering, 2015, 43(12): 1-5. (in Chinese) doi: 10.11868/j.issn.1001-4381.2015.12.001
    [152] 陈利钦, 项彬, 任学冲, 等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J]. 中国表面工程, 2014, 27(5): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405017.htm

    CHEN Li-qin, XIANG Bin, REN Xue-chong, et al. Influences of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J]. China Surface Engineering, 2014, 27(5): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405017.htm
    [153] 徐忠伟. 高速铁路外物损伤车轴疲劳评估方法[D]. 成都: 西南交通大学, 2018.

    XU Zhong-wei. Fatigue assessment method for high-speed railway axles due to foreign object damage[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [154] 李春来, 秦庆斌, 吴圣川, 等. G20Mn5铸钢MAG焊接接头的组织与力学性能[J]. 机械工程材料, 2020, 44(7): 8-11, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202007002.htm

    LI Chun-lai, QIN Qing-bin, WU Sheng-chuan, et al. Microstructure and mechanical properties of G20Mn5 cast steel MAG welded joint[J]. Materials for Mechanical Engineering, 2020, 44(7): 8-11, 17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202007002.htm
    [155] 李春来, 秦庆斌, 吴圣川, 等. 城市铁路转向架焊接构架强度有限元校核[J]. 焊接技术, 2019, 48(10): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201910027.htm

    LI Chun-lai, QIN Qing-bin, WU Sheng-chuan, et al. Finite element strength evaluation of an urban bogie welded frame[J]. Welding Technology, 2019, 48(10): 91-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201910027.htm
    [156] 唐琦. 时速120公里客车209P转向架焊接构架可靠性提升技术研究[D]. 北京: 北京交通大学, 2016.

    TANG Qi. Research on reliability improvement of 209P bogie welded frame of passenger car with 120 kilometers per hour[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [157] DEBROY T, MUKHERJEE T, MILEWSKI J O, et al. Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 2019, 18: 1026-1032. doi: 10.1038/s41563-019-0408-2
    [158] BERETTA S, ROMANO S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178-191. doi: 10.1016/j.ijfatigue.2016.06.020
    [159] ROMANO S, BRANDÃO A, GUMPINGER J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements[J]. Materials and Design, 2017, 131: 32-48. doi: 10.1016/j.matdes.2017.05.091
    [160] 郭云龙, 井国庆, 张辉. 铁路工程中的3D打印: 发展、挑战和展望[J]. 工业基础创新, 2017(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704005.htm

    GUO Yun-long, JING Guo-qing, ZHANG Hui. 3D printing in railway engineering: development, challenges and prospects[J]. Industrial Information Creativity, 2017(4): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704005.htm
    [161] 张浩然, 孙广合, 郑慧超, 等. 3D打印技术在铁路制动系统中的应用进展[J]. 铁道机车车辆, 2018, 38(3): 72-75. doi: 10.3969/j.issn.1008-7842.2018.03.17

    ZHANG Hao-ran, SUN Guang-he, ZHENG Hui-chao, et al. Application of 3D printing technology on braking system in railway system[J]. Railway Locomotive and Car, 2018, 38(3): 72-75. (in Chinese) doi: 10.3969/j.issn.1008-7842.2018.03.17
    [162] WU S C, YU C, YU P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science Engineering A, 2016, 651: 604-614. doi: 10.1016/j.msea.2015.11.011
    [163] ZHU M L, JIN L, XUAN F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes[J]. Acta Materialia, 2018, 157: 159-275. http://www.sciencedirect.com/science/article/pii/S1359645418305640
    [164] 苗秋玉, 刘妙然, 赵凯, 等. 铝合金增材制造技术研究进展[J]. 激光与光电子学进展, 2018, 55: 011405. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201801006.htm

    MIAO Qiu-yu, LIU Miao-ran, ZHAO Kai, et al. Research progress on technologies of additive manufacturing of aluminum alloys[J]. Laser and Optoelectronics Progress, 2018, 55: 011405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201801006.htm
    [165] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm

    WANG Hua-ming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
    [166] LE V D, PESSARD E, MOREL F, et al. Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach[J]. Engineering Fracture Mechanics, 2019, 214: 410-426. doi: 10.1016/j.engfracmech.2019.03.048
    [167] 吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都: 西南交通大学, 2020.

    WU Zheng-kai. Evaluation of anisotropic fatigue performance of additive manufactured aluminum alloy base don 3D X-ray computed tomography of defects[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [168] HU Y N, WU S C, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials and Design, 2020, 192: 108708. doi: 10.1016/j.matdes.2020.108708
    [169] BAO H Y X, WU S C, WU Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508
    [170] BATHIAS C. There is no infinite fatigue life in metallic mateirals[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22(7): 559-565. doi: 10.1046/j.1460-2695.1999.00183.x
    [171] SAKAI T, SATO Y, OGUMAN. Characteristics SN properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8/9): 763-773. doi: 10.1046/j.1460-2695.2002.00574.x
    [172] 陈一萍, 李亚波, 张晓乐, 等. EA4T车轴钢的高周和超高周疲劳性能研究[J]. 轨道交通装备与技术, 2017(1): 21-23. doi: 10.3969/j.issn.2095-5251.2017.01.008

    CHEN Yi-ping, LI Ya-bo, ZHANG Xiao-le, et al. High cycle and very high cycle fatigue behaviors of railway EA4T steel[J]. Railway Transit Equipment and Technology, 2017(1): 21-23. (in Chinese) doi: 10.3969/j.issn.2095-5251.2017.01.008
    [173] 王清远, 王中光, 李守新. 高速铁路关键材料超长寿命疲劳断裂性能[J]. 机车电传动, 2003(增): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1009.htm

    WANG Qing-yuan, WANG Zhong-guang, LI Shou-xin. Extra-long life fatigue behavior of key materials for high-speed railway[J]. Electric Drive for Locomotives, 2003(S): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1009.htm
    [174] 鲁连涛, 张卫华. 金属材料超高周疲劳研究综述[J]. 机械强度, 2005(3): 388-394. doi: 10.3321/j.issn:1001-9669.2005.03.021

    LU Lian-tao, ZHANG Wei-hua. Review of research on very high cycle fatigue of metal materials[J]. Mechanical Strength, 2005(3): 388-394. (in Chinese) doi: 10.3321/j.issn:1001-9669.2005.03.021
    [175] MURAKAMI Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions[M]. Amsterdam: Elsevier, 2002.
    [176] 吴圣川, 吴正凯, 胡雅楠, 等. 同步辐射光源四维原位成像助力材料微结构损伤高分辨表征[J]. 机械工程材料, 2020, 44(6): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202006017.htm

    WU Sheng-chuan, WU Zheng-kai, HU Ya-nan, et al. High-resolution characterization of microstructural damage in materials by synchrotron radiation source 4D in-situ tomography[J]. Materials for Mechanical Engineering, 2020, 44(6): 72-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202006017.htm
    [177] 姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学, 力学、天文学, 2014, 44(10): 1075-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201410009.htm

    JIANG Xiao-ming, WANG Jiu-qing, QIN Qing, et al. Chinese high energy phone source and the test facility[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2014, 44(10): 1075-1094. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201410009.htm
    [178] 程贺, 张玮, 王芳卫, 等. 中国散裂中子源的多学科应用[J]. 物理, 2019, 48(11): 701-707. doi: 10.7693/wl20191101

    CHENG He, ZHANG Wei, WANG Fang-wei, et al. Applications of the China spallation neutron source[J]. Physics, 2019, 48(11): 701-707. (in Chinese) doi: 10.7693/wl20191101
    [179] 胡海涛, 袁宝, 白波, 等. 中国散裂中子源样品变温环境设备技术[J]. 低温工程, 2019(228): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201902005.htm

    HU Hai-tao, YUAN Bao, BAI Bo, et al. Study on sample variable temperature environmental equipment technology in China spallation neutron source[J]. Cryogenics, 2019(228): 17-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201902005.htm
    [180] 王家鑫, 陈凤艳, 樊强, 等. 转向架构架用铸件缺陷焊接修复技术研究[J]. 焊接技术, 2019, 48(2): 101-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201902087.htm

    WANG Jia-xin, CHEN Feng-yan, FAN Qiang, et al. Welding repair technology of casting defects for bogie frame[J]. Welding Technology, 2019, 48(2): 101-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201902087.htm
    [181] 王东坡, 龚宝明, 吴世品, 等. 焊接接头与结构疲劳延寿技术研究进展综述[J]. 华东交通大学学报, 2016, 33(6): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201606001.htm

    WANG Dong-po, GONG Bao-ming, WU Shi-pin, et al. Research Review on fatigue life improvement of welding joint and structure[J]. Journal of East China Jiaotong University, 2016, 33(6): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201606001.htm
    [182] 吕晓兰, 王钊, 张龙, 等. 浅议铝合金车体型腔内焊缝背部缺陷避免及修复[J]. 装备制造技术, 2016(12): 213-215, 218. doi: 10.3969/j.issn.1672-545X.2016.12.072

    LYU Xiao-lan, WANG Zhao, ZHANG Long, et al. Discussion on defect prevention and repair of aluminum alloy car body cavity weld back defect[J]. Equipment Manufacturing Technology, 2016(12): 213-215, 218. (in Chinese) doi: 10.3969/j.issn.1672-545X.2016.12.072
    [183] 周希孺, 吴圣川, 郭峰, 等. 现代铁道车辆结构伤损形式与再制造修复技术[J]. 电焊机, 2020, 50(9): 31-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202009015.htm

    ZHOU Xi-ru, WU Sheng-chuan, GUO Feng, et al. Typical defects and remanufacturing and repairing technologies of modern railway vehicle components[J]. Electric Welding Machine, 2020, 50(9): 31-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202009015.htm
    [184] 侯有忠, 李世亮, 齐先胜, 等. 动车组车轴激光增材再制造工艺评定及分析[J]. 电焊机, 2020, 50(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202002014.htm

    HOU You-zhong, LI Shi-liang, QI Xian-sheng, et al. Analysis and processing assessment of laser additive manufacturing for high-speed railway axle[J]. Electric Welding Machine, 2020, 50(2): 69-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202002014.htm
    [185] 祝弘滨, 刘昱. 金属3D打印技术在轨道交通装备领域的应用研究现状[J]. 现代城市轨道交通, 2019(10): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201910019.htm

    ZHU Hong-bin, LIU Yu. Current research status of metal prototyping manufacturing (3D-printing) technology application in rail transit equipment[J]. Modern Urban Transit, 2019(10): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201910019.htm
    [186] 吴圣川, 朱宗涛, 李向伟. 铝合金的激光焊接及性能评价[M]. 北京: 国防工业出版社, 2014.

    WU Sheng-chuan, ZHU Zong-tao, LI Xiang-wei. Laser welding of Aluminum Alloys and the Performance Assessment[M]. Beijing: National Defense Industry Press, 2014. (in Chinese)
    [187] PENG X, KULASEGARAM S, WU S C, et al. An extended finite element method (XFEM) for linear elastic fracture with smooth nodal stress[J]. Computers and Structures, 2017, 179: 48-63. doi: 10.1016/j.compstruc.2016.10.014
    [188] WU S C, ZHANG W H, PENG X, et al. A twice-interpolation finite element method (TFEM) for crack propagation problems[J]. International Journal of Computational Methods, 2012, 9(4): 1250055. doi: 10.1142/S0219876212500557
    [189] TANG X H, WU S C, ZHENG C. A novel virtual node method for polygonal elements[J]. Applied Mathematics and Mechanics-English Edition, 2009, 30(10): 1233-1246. doi: 10.1007/s10483-009-1003-3
    [190] ZHENG C, TANG X H, ZHANG J H, et al. A novel mesh-free poly-cell Galerkin method[J]. Acta Mechanica Sinica, 2009, 25(4): 517-527. doi: 10.1007/s10409-009-0239-5
    [191] WU S C, ZHANG H O, ZHENG C, et al. A high performance large symmetric sparse solver for element-free Galerkin method[J]. International Journal of Computational Methods, 2008, 5(4): 533-550. doi: 10.1142/S0219876208001613
    [192] 吴圣川, 吴玉程. ALOF——新一代三维疲劳裂纹扩展分析软件[J]. 计算机辅助工程, 2011, 20(1): 136-140. doi: 10.3969/j.issn.1006-0871.2011.01.031

    WU Sheng-chuan, WU Yu-cheng. ALOF: new 3D fatigue crack propagation analysis software[J]. Computer Aided Engineering, 2011, 20(1): 136-140. (in Chinese) doi: 10.3969/j.issn.1006-0871.2011.01.031
    [193] TENG Z H, LIAO D M, WU S C, et al. An adaptively refined XFEM for the dynamic fracture problems with micro-defects[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102255. doi: 10.1016/j.tafmec.2019.102255
    [194] TENG Z H, SUN F, WU S C, et al. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems[J]. Computational Mechanics, 2018, 62(5): 1087-1106. doi: 10.1007/s00466-018-1553-1
    [195] 秦庆斌, 吴圣川, 胡雅楠, 等. 高速动车组S38C车轴疲劳强度及剩余寿命评价[J]. 中国科学: 技术科学, 2019, 49(7): 840-850. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201907009.htm

    QIN Qing-bin, WU Sheng-chuan, HU Ya-nan, et al. Fatigue strength and residual life assessment of high-speed railway vehicle used S38C hollow axles[J]. Scientia Sinica: Technologica, 2019, 49(7): 840-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201907009.htm
    [196] 李存海. 铁路车辆结构材料疲劳S-N曲线及裂纹扩展模型研究[D]. 成都: 西南交通大学, 2019.

    LI Cun-hai. Modeling the fatigue S-N and crack growth of railway vehicle structural materials[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [197] MAIERHOFER J, PIPPAN R, GÄNSER H P. Modified NASGRO equation for physically short cracks[J]. International Journal of Fatigue, 2014, 59: 200-207. doi: 10.1016/j.ijfatigue.2013.08.019
    [198] ZHAI W M, CAI C B, GUO S Z. Coupling model of vertical and lateral vehicle/track interactions[J]. Vehicle System Dynamics, 1996, 26(1): 61-79. doi: 10.1080/00423119608969302
    [199] 翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学: 技术科学, 2014, 44(7): 645-660. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm

    ZHAI Wan-ming, ZHAO Chun-fa, XIA He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica: Technologica, 2014, 44(7): 645-660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
    [200] 沈志云, 张卫华. 中国高铁技术发展中的理论突破和试验突破[J]. 中国发明与专利, 2020, 17(10): 6-16. doi: 10.3969/j.issn.1672-6081.2020.10.001

    SHEN Zhi-yun, ZHANG Wei-hua. Breakthrough in theory development and in experiment methodology of high-speed rail technology in China[J]. China Invention and Patent, 2020, 17(10): 6-16. (in Chinese) doi: 10.3969/j.issn.1672-6081.2020.10.001
    [201] GUO F, WU S C, LIU J X, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353
  • 加载中
图(45)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  423
  • PDF下载量:  2815
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回