留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料在轨道交通车辆中的应用与展望

肖守讷 江兰馨 蒋维 何子坤 阳光武 杨冰 朱涛 王明猛

肖守讷, 江兰馨, 蒋维, 何子坤, 阳光武, 杨冰, 朱涛, 王明猛. 复合材料在轨道交通车辆中的应用与展望[J]. 交通运输工程学报, 2021, 21(1): 154-176. doi: 10.19818/j.cnki.1671-1637.2021.01.007
引用本文: 肖守讷, 江兰馨, 蒋维, 何子坤, 阳光武, 杨冰, 朱涛, 王明猛. 复合材料在轨道交通车辆中的应用与展望[J]. 交通运输工程学报, 2021, 21(1): 154-176. doi: 10.19818/j.cnki.1671-1637.2021.01.007
XIAO Shou-ne, JIANG Lan-xin, JIANG Wei, HE Zi-kun, YANG Guang-wu, YANG Bing, ZHU Tao, WANG Ming-meng. Application and prospect of composite materials in rail transit vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 154-176. doi: 10.19818/j.cnki.1671-1637.2021.01.007
Citation: XIAO Shou-ne, JIANG Lan-xin, JIANG Wei, HE Zi-kun, YANG Guang-wu, YANG Bing, ZHU Tao, WANG Ming-meng. Application and prospect of composite materials in rail transit vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 154-176. doi: 10.19818/j.cnki.1671-1637.2021.01.007

复合材料在轨道交通车辆中的应用与展望

doi: 10.19818/j.cnki.1671-1637.2021.01.007
基金项目: 

国家重点研发计划项目 2016YFB1200404

国家自然科学基金项目 51675446

牵引动力国家重点实验室自主课题 2020TPL_T07

详细信息
    作者简介:

    肖守讷(1964-), 男, 浙江上虞人, 西南交通大学研究员, 从事车辆结构强度及轻量化研究

  • 中图分类号: U270.4

Application and prospect of composite materials in rail transit vehicles

Funds: 

National Key Research and Development Program of China 2016YFB1200404

National Natural Science Foundation of China 51675446

Independent Subject of State Key Laboratory of Traction Power 2020TPL_T07

More Information
  • 摘要: 围绕玻璃纤维、碳纤维、铝基陶瓷等复合材料在轨道交通车辆中的应用展开了综述;介绍了针对上述复合材料开展的基础与应用研究历程及进展,分析了应用在大型复合材料构件的结构特点;针对头车/司机室、中间车车体、转向架、制动结构、其他结构,系统性地总结整理了复合材料种类、成型工艺、设计方法、优化方法等,全面阐述了复合材料在轨道交通车辆各个部件上的应用情况,并对目前应用存在的问题和未来应用发展方向进行了探讨。研究结果表明:复合材料的主要研究方法以理论研究为基础,在大型结构件中以有限元仿真研究为主,应用多尺度研究方法深入分析复合材料在微观、细观和宏观层面的性能;将复合材料应用到结构中时,在兼具刚度和轻量化的条件下,多采用三明治结构;复合材料之间、复合材料与金属材料的连接结构多采用胶接连接、螺栓连接、胶-螺混合连接等,其中混合连接结构强度大,稳定性高,在工程中应用最为广泛;复合材料已在轨道交通车辆中有一定的应用,纤维复合材料多用于头车/司机室、车体、转向架,而铝基陶瓷复合材料多用于制动结构;在未来应建立适用于轨道交通行业的复合材料相关标准与规范,研发新工艺,采用整体设计模式,扩大复合材料的使用范围,将更多高性能、低成本和轻质化的复合材料应用到轨道交通车辆中。

     

  • 图  1  微元体坐标系

    Figure  1.  Micro-unit coordinate system

    图  2  复合材料车体固有频率分析的有限元模型

    Figure  2.  Finite element model for natural frequency analysis of composite material carbody

    图  3  多尺度模型

    Figure  3.  Multiscale model

    图  4  复合材料多尺度分析方法

    Figure  4.  Multiscale analysis method of composite materials

    图  5  内聚力单元与接触单元计算结果对比

    Figure  5.  Calculation results comparison between cohesive element and contact element

    图  6  三明治结构和钎焊铝蜂窝板

    Figure  6.  Sandwich structure and brazing aluminum honeycomb plate

    图  7  胶-螺塔接结构与有限元模型

    Figure  7.  Adhesive-bolt tower connection structure and finite element model

    图  8  CRH挡风板和编织夹芯板结构

    Figure  8.  CRH wind deflector and structure of woven textiles and wich panel

    图  9  英国雷丁大学GFRP转向架

    Figure  9.  GFRP bogie of University of Reading in UK

    图  10  日本efWING转向架走行安全性试验结果

    Figure  10.  Running safety test results of Japanese efWING bogie

    图  11  青岛四方CFRP转向架

    Figure  11.  CFRP bogie of Qingdao Sifang

    图  12  瞬态温度场计算值

    Figure  12.  Transient temperature field calculated values

    图  13  高速列车全碳纤维复合材料设备舱

    Figure  13.  Full CFRP equipment cabin for high-speed train

    图  14  摆式列车混合复合材料车体

    Figure  14.  Hybrid composite material carbody of tilting train

    表  1  复合材料与金属材料的力学性能对比

    Table  1.   Mechanical properties comparison of composite materials and metal materials

    材料类型 密度/(g·cm-3) 抗拉强度/GPa 比强度/107 mm 抗拉模量/GPa 比模量/107 mm 线膨胀系数/10-4 K-1
    高强碳纤维/环氧 1.6 1.80 11.30 128 8.00 58.3
    芳纶/环氧 1.4 1.50 10.70 80 5.70 63.4
    硼纤维/环氧 2.1 1.60 7.60 220 10.50 70.6
    碳化硅纤维/环氧 2.0 1.50 7.50 130 6.50 66.0
    石墨纤维/铝 2.2 0.80 3.60 231 10.50 64.1
    玻璃钢 2.0 1.50 7.50 40 2.50
    7.8 1.40 1.80 210 2.70 96.5
    铝合金 2.8 0.50 1.70 77 2.80 132.1
    钛合金 4.5 1.00 2.20 110 2.40 86.8
    尼龙6 1.2 0.07 0.06 3 0.02 187.2
    下载: 导出CSV

    表  2  不同制动盘材料性能与价格

    Table  2.   Performances and prices of different brake disc materials

    材料 拉伸强度/MPa 延伸率/% 密度/(kg·m-3) 导热系数/[W·(m·K)-1] 线膨胀系数/(10-6·℃-1) 价格
    蠕墨铸铁 500 ≥1.5 7.2 42 12.5 较低
    锻钢 ≥800 13.0~20.0 7.9 45 12.0 一般
    铝基复合材料 ≥250 1.0 2.8 135 18.4 较高
    C/C复合材料 100 0.2 1.7 126 0.0 昂贵
    下载: 导出CSV
  • [1] 肖加余, 刘钧, 曾竟成, 等. 复合材料在高速列车上的应用现状与趋势[J]. 机车电传动, 2003(增): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1015.htm

    XIAO Jia-yu, LIU Jun, ZENG Jing-cheng, et al. Application status quo and trend of composites for high-speed train[J]. Electric Drive for Locomotives, 2003(S): 49-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1015.htm
    [2] 蒋鞠慧, 陈敬菊. 复合材料在轨道交通上的应用与发展[J]. 玻璃钢/复合材料, 2009(6): 81-85. doi: 10.3969/j.issn.1003-0999.2009.06.021

    JIANG Ju-hui, CHEN Jing-ju. Applications and development of composites in rail way transportation[J]. Fiber Reinforced Plastics/Composites, 2009(6): 81-85. (in Chinese) doi: 10.3969/j.issn.1003-0999.2009.06.021
    [3] 邱桂杰, 杨洪忠, 高国强, 等. 高速列车用复合材料国内外现状与趋势[J]. 高科技纤维与应用, 2005, 30(6): 26-30. doi: 10.3969/j.issn.1007-9815.2005.06.006

    QIU Gui-jie, YANG Hong-zhong, GAO Guo-qiang, et al. The status que and trend of the application of composites on high-speed train over the world[J]. Hi-Tech Fiber and Application, 2005, 30(6): 26-30. (in Chinese) doi: 10.3969/j.issn.1007-9815.2005.06.006
    [4] 蔡富刚, 王硕, 郭福海, 等. 高性能复合材料在轨道交通领域的发展现状[J]. 高科技纤维与应用, 2020, 45(2): 22-29. doi: 10.3969/j.issn.1007-9815.2020.02.003

    CAI Fu-gang, WANG Shuo, GUO Fu-hai, et al. Current status of high performance composite materials in the field of mass transit[J]. Hi-Tech Fiber and Application, 2020, 45(2): 22-29. (in Chinese) doi: 10.3969/j.issn.1007-9815.2020.02.003
    [5] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shan-yi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12. (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
    [6] ARONHIME J, HAREL H, GILBERT A, et al. The rate-dependence of flexural shear fatigue and uniaxial compression of carbon- and aramid-fibre composites and hybrids[J]. Composites Science and Technology, 1992, 43(2): 105-116. doi: 10.1016/0266-3538(92)90001-J
    [7] 李辰, 许淑萍, 张伟龙, 等. 复合材料在轨道交通转向架中的应用[J]. 纤维复合材料, 2019, 36(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903002.htm

    LI Chen, XU Shu-ping, ZHANG Wei-long, et al. Application of composite materials in bogie of rail transit[J]. Fiber Composites, 2019, 36(3): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903002.htm
    [8] JIANG Hong-yong, REN Yi-ru, LIU Zhi-hui, et al. Multi-scale analysis for mechanical properties of fiber bundle and damage characteristics of 2D triaxially braided composite panel under shear loading[J]. Thin-Walled Structures, 2018, 132: 276-286. doi: 10.1016/j.tws.2018.08.022
    [9] 周伟旭. 碳纤维增强树脂基复合材料在轨道交通车辆车体中的应用与思考[J]. 城市轨道交通研究, 2018, 21(12): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201812005.htm

    ZHOU Wei-xu. On the application of carbon fiber reinforced polymer to rail transit composite carbody[J]. Urban Mass Transit, 2018, 21(12): 10-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201812005.htm
    [10] 潘玉琴. 玻璃钢复合材料基体树脂的发展现状[J]. 纤维复合材料, 2006, 23(4): 55-59. doi: 10.3969/j.issn.1003-6423.2006.04.016

    PAN Yu-qin. Development status of FRP/composites matrix resin[J]. Fiber Composites, 2006, 23(4): 55-59. (in Chinese) doi: 10.3969/j.issn.1003-6423.2006.04.016
    [11] 樊星. 碳纤维复合材料的应用现状与发展趋势[J]. 化学工业, 2019, 37(4): 12-16. doi: 10.3969/j.issn.1673-9647.2019.04.004

    FAN Xing. Application status and development trend of carbon fiber reinforced plastic[J]. Chemical Industry, 2019, 37(4): 12-16. (in Chinese) doi: 10.3969/j.issn.1673-9647.2019.04.004
    [12] VALLONS K, BEHAEGHE A, LOMOV S V, et al. Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite[J]. Composites, Part A: Applied Science and Manufacturing, 2010, 41(8): 1019-1026. doi: 10.1016/j.compositesa.2010.04.008
    [13] JOHNSTON J, MIRZA O, KEMP M, et al. Flexural behaviour of alternate transom using composite fibre pultruded sections[J]. Engineering Failure Analysis, 2018, 94: 47-68. doi: 10.1016/j.engfailanal.2018.07.021
    [14] 李明高, 张丽娇. 轨道交通装备复合材料应用现状及发展趋势展望[J]. 纺织导报, 2020(7): 20-24. doi: 10.3969/j.issn.1007-6867.2020.07.006

    LI Ming-gao, ZHANG Li-jiao. Application status and development trends of composites for rail transit equipment[J]. China Textile Leader, 2020(7): 20-24. (in Chinese) doi: 10.3969/j.issn.1007-6867.2020.07.006
    [15] RIVEIRO A, QUINTERO F, LUSQUIÑOS F, et al. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite[J]. Composites, Part A: Applied Science and Manufacturing, 2012, 43(8): 1400-1409. doi: 10.1016/j.compositesa.2012.02.012
    [16] 王明猛. 碳纤维复合材料在高速列车上的应用研究[D]. 成都: 西南交通大学, 2012.

    WANG Ming-meng. Application and research of carbon fiber composite materials in vehicle hood of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [17] FARHAD A, YASAMAN A, NING Y, et al. Frictional behavior of resin-based brake composites: effect of carbon fibre reinforcement[J]. Wear, 2019, 420: 108-115. http://www.sciencedirect.com/science/article/pii/S0043164818308743
    [18] CHAMIS C C. Mechanics of composite materials: past, present and future[J]. Journal of Composite Technology Research, 1989(11): 3-14. http://www.researchgate.net/publication/4664242_Mechanics_of_composite_materials_-_Past_present_and_future
    [19] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574. doi: 10.1016/0001-6160(73)90064-3
    [20] TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. doi: 10.1177/002199837100500106
    [21] TOYODA M. Strength characteristics of composite materials[J]. Welding international, 1991, 5(5): 341-345. doi: 10.1080/09507119109446748
    [22] HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206. doi: 10.1177/002199836700100210
    [23] HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics—Transactions of the ASME, 1981, 48: 846-852. doi: 10.1115/1.3157744
    [24] HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464. doi: 10.1177/002199837300700404
    [25] OLMEDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints[J]. Composite Structures, 2012, 94(6): 2110-2117. doi: 10.1016/j.compstruct.2012.01.016
    [26] TSERPES K I, PAPANIKOS P, KERMANIDIS T. A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24(10): 663-675. doi: 10.1046/j.1460-2695.2001.00424.x
    [27] 周银华. 非线性本构在复合材料多钉螺栓连接结构中的应用[D]. 西安: 西北工业大学, 2016.

    ZHOU Yin-hua. A study of nonlinear models of composites and its application to composite multi-bolt joints[D]. Xi'an: Northwestern Polytechnical University, 2016. (in Chinese)
    [28] LIU Xi, WANG Guo-ping. Progressive failure analysis of bonded composite repairs[J]. Composite Structures, 2007, 81(3): 331-340. doi: 10.1016/j.compstruct.2006.08.024
    [29] 杨宇航. 复合材料层合板结构非局部渐进失效建模与有限元分析[D]. 杭州: 浙江大学, 2015.

    YANG Yu-hang. Nonlocal progressive failure modeling and finite element analysis of composite laminates[D].Hangzhou: Zhejiang University, 2015. (in Chinese)
    [30] 施建伟. 基于ABAQUS复合材料层合板渐进损伤有限元分析[D]. 太原: 中北大学, 2015.

    SHI Jian-wei. The finite element analysis of the progressive damage of composite laminated plates based on ABAQUS[D]. Taiyuan: North University of China, 2015. (in Chinese)
    [31] 闫亚萍. 考虑Z向应力复合材料层压板渐进失效计算方法[D]. 上海: 上海交通大学, 2015.

    YAN Ya-ping. Progressive failure analysis of composite laminate considering the stress of Z direction[D]. Shanghai: Shanghai Jiaotong University, 2015. (in Chinese)
    [32] 王文斌, 冀温源, 张栋栋, 等. 地铁车辆司机室碳纤维复合材料头罩的分步优化设计[J]. 城市轨道交通研究, 2018, 21(11): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811010.htm

    WANG Wen-bin, JI Wen-yuan, ZHANG Dong-dong, et al. Stepwise optimization design of metro train cab hood made of carbon fiber composite material[J]. Urban Mass Transit, 2018, 21(11): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811010.htm
    [33] 李永华, 温昕, 王剑, 等. 复合材料地铁车车头外罩铺层优化设计[J]. 现代制造工程, 2019(9): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201909014.htm

    LI Yong-hua, WEN Xin, WANG Jian, et al. Optimization design of the overlay of composite material subway car head cover[J]. Modern Manufacturing Engineering, 2019(9): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201909014.htm
    [34] 李兴元, 王悦东, 王剑. 动车组车头玻璃钢外壳强度有限元分析[J]. 农业装备与车辆工程, 2017, 55(10): 58-61. doi: 10.3969/j.issn.1673-3142.2017.10.013

    LI Xing-yuan, WANG Yue-dong, WANG Jian. Finite-element analysis on strength of glass-reinforced plastic shell of EMU locomotive-engine[J]. Agricultural Equipment and Vehicle Engineering, 2017, 55(10): 58-61. (in Chinese) doi: 10.3969/j.issn.1673-3142.2017.10.013
    [35] 李晓峰, 孙博飞, 高峰. 动车组玻璃钢车头及联接结构建模方法研究[J]. 大连交通大学学报, 2016, 37(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201601010.htm

    LI Xiao-feng, SUN Bo-fei, GAO Feng. Study of EMU GRP front and coupling structure modeling method[J]. Journal of Dalian Jiaotong University, 2016, 37(1): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201601010.htm
    [36] 王明猛, 肖守讷, 阳光武, 等. 碳纤维复合材料在高速列车头罩上的应用研究[J]. 电力机车与城轨车辆, 2015, 38(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1013.htm

    WANG Ming-meng, XIAO Shou-ne, YANG Guang-wu, et al. Application and research of carbon fiber composite materials in vehicle hood of high-speed train[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38(1): 53-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1013.htm
    [37] 王永刚, 李东锋, 刘森. 城市轨道交通车辆轻量化司机室结构研究[J]. 铁道机车与动车, 2013(11): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201311002.htm

    WANG Yong-gang, LI Dong-feng, LIU Sen. Study of light weight cab structure for urban rail transit vehicles[J]. Railway Locomotive and Motor Car, 2013(11): 5-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201311002.htm
    [38] 张胜, 江大治, 周升, 等. 高速列车复合材料司机室混杂结构有限元分析[J]. 玻璃钢/复合材料, 2006(2): 10-13. doi: 10.3969/j.issn.1003-0999.2006.02.003

    ZHANG Sheng, JIANG Da-zhi, ZHOU Sheng, et al. Finite element analysis of composite cab for high speed trains[J]. Fiber Reinforced Plastics/Composites, 2006(2): 10-13. (in Chinese) doi: 10.3969/j.issn.1003-0999.2006.02.003
    [39] 王悦东, 兆文忠, 陈秉智, 等. 高速客车车体端板复合材料层合结构的力学性能数值模拟[J]. 大连交通大学学报, 2008(5): 22-26. doi: 10.3969/j.issn.1673-9590.2008.05.005

    WANG Yue-dong, ZHAO Wen-zhong, CHEN Bing-zhi, et al. Numerical simulation of composite material mechanical strength of flat end coverings on high-speed train[J]. Journal of Dalian Jiaotong University, 2008(5): 22-26. (in Chinese) doi: 10.3969/j.issn.1673-9590.2008.05.005
    [40] KIM J S, JEONG J C. Natural frequency evaluation of a composite train carbody with length of 23 m[J]. Composites Science and Technology, 2006, 66(13): 2272-2283. doi: 10.1016/j.compscitech.2005.11.036
    [41] KIM J S, JEONG J C, LEE S J. Numerical and experimental studies on the deformational behavior a composite train carbody of the Korean tilting train[J]. Composite Structures, 2006, 81(2): 168-175. http://www.sciencedirect.com/science/article/pii/S0263822306003084
    [42] KIM J S, YOON H J. Structural behaviors of a GFRP composite bogie frame for urban subway trains under critical load conditions[J]. Procedia Engineering, 2011, 10: 2375-2380. doi: 10.1016/j.proeng.2011.04.391
    [43] JEON K W, SHIN K B, KIM J S. A study on fatigue life and strength of a GFRP composite bogie frame for urban subway trains[J]. Procedia Engineering, 2011, 10: 2405-2410. doi: 10.1016/j.proeng.2011.04.396
    [44] KIM J S, SHIN K B, YOON H J, et al. Durability evaluation of a composite bogie frame with bow-shaped side beams[J]. Journal of Mechanical Science and Technology, 2012, 26(2): 531-536. doi: 10.1007/s12206-011-1034-3
    [45] KIM J S. Fatigue assessment of tilting bogie frame for Korean tilting train: analysis and static tests[J]. Engineering Failure Analysis, 2006, 13(8): 1326-1337. doi: 10.1016/j.engfailanal.2005.10.007
    [46] HARTE A M, MCNAMARA J F, RODDY I D. A multilevel approach to the optimisation of a composite light rail vehicle bodyshell[J]. Composite Structures, 2004, 63(3): 447-453. http://www.sciencedirect.com/science/article/pii/S0263822303001934
    [47] DOEBRICH O, GEREKE T, CHERIF C. Modeling the mechanical properties of textile-reinforced composites with a near micro-scale approach[J]. Composite Structures, 2016, 135(1): 1-7. http://www.sciencedirect.com/science/article/pii/S0263822315008466
    [48] 胡殿印, 杨尧, 郭小军, 等. 一种平纹编织复合材料的三维通用单胞模型[J]. 航空动力学报, 2019, 34(3): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201903012.htm

    HU Dian-yin, YANG Yao, GUO Xiao-jun, et al. A 3D general method of cells model for plain weave composites[J]. Journal of Aerospace Power, 2019, 34(3): 103-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201903012.htm
    [49] PRODROMOU A G, LOMOV S V, VERPOEST I. The method of cells and the mechanical properties of textile composites[J]. Composite Structures, 2011, 93(4): 1290-1299. doi: 10.1016/j.compstruct.2010.09.022
    [50] LOMOV S V, BERNAL E, IVANOV D S, et al. Homogenisation of a sheared unit cell of textile composites FEA and approximate inclusion model[J]. Revue Européenne Des Éléments Finis, 2005, 14(6/7): 709-728. doi: 10.3166/reef.14.709-728
    [51] TANG Xing-dong, WHITCOMB J D, KELKAR A D, et al. Progressive failure analysis of 2×2 braided composites exhibiting multiscale heterogeneity[J]. Composites Science and Technology, 2006, 66(14): 2580-2590. doi: 10.1016/j.compscitech.2006.01.026
    [52] 严雪, 许希武, 张超. 二维三轴编织复合材料的弹性性能分析[J]. 固体力学学报, 2013, 34(2): 140-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201302004.htm

    YAN Xue, XU Xi-wu, ZHANG Chao. Analysis of elastic properties of 2D triaxial braided composites[J]. Chinese Journal of Solid Mechanics, 2013, 34(2): 140-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201302004.htm
    [53] 张超, 许希武, 郭树祥. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元分析[J]. 复合材料学报, 2011, 28(6): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201106036.htm

    ZHANG Chao, XU Xi-wu, GUO Shu-xiang. Microstructure model and finite element analysis of mechanical properties of 2D 1×1 biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 215-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201106036.htm
    [54] 张超, 许希武. 二维二轴编织复合材料几何模型及弹性性能预测[J]. 复合材料学报, 2010, 27(5): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201005023.htm

    ZHANG Chao, XU Xi-wu. Geometrical model and elastic properties prediction of 2D biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 129-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201005023.htm
    [55] PIBO M, HONG H, SUN Bao-zhong. Finite element analyses of tensile impact behaviors of co-woven-knitted composite from unit-cell approach[J]. Journal of the Textile Institute, 2013, 104(4): 446-459. doi: 10.1080/00405000.2012.741775
    [56] SUN Bao-zhong, LIU Yuan-kun, GU Bo-hong. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite[J]. Composites, Part B: Engineering, 2009, 40(6): 552-560. doi: 10.1016/j.compositesb.2009.01.012
    [57] SUN Zhi-hong, CHEN Yang, ZHOU Shen-hua. Analysis of micro structure and elastic property on 3-D tubular woven carbon fiber composite[J]. Advanced Materials Research, 2014, 887/888: 11-16. doi: 10.4028/www.scientific.net/AMR.887-888.11
    [58] CHEN Ding-ding, LU Fang-yun, JIANG Bang-hai. Tensile properties of a carbon fiber 2D woven reinforced polymer matrix composite in through-thickness direction[J]. Journal of Composite Materials, 2012, 46(26): 3297-3309. doi: 10.1177/0021998312437800
    [59] 俞程亮. 三明治复合板结构高速磁浮列车承载结构优化研究[D]. 上海: 同济大学, 2006.

    YU Cheng-liang. Optimization of high-speed maglev train with sandwich composite board[J]. Shanghai: Tongji University, 2006. (in Chinese)
    [60] LINDSTRÖM A, HALLSTRÖM S. In-plane compression of sandwich panels with debonds[J]. Composite Structure, 2010, 92: 532-540. doi: 10.1016/j.compstruct.2009.08.039
    [61] SLEIGHT D W, WANG J T. Buckling analysis of debonded sandwich panel under compression[D]. Hampton: NASA Langley Research Center, 1995.
    [62] LEE C, MIGNOSA L, BASCI M. A postbuckling solution for debonded sandwich panel under in-plane compression[C]//AIAA. 38th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1997: 2584-2590.
    [63] MAMALIS A G, MANOKAKOS D E, IOANNIDIS M B, et al. On the crushing response of composite sandwich panels subjected to edgewise compression: experimental[J]. Composite Structure, 2005, 71: 246-257. doi: 10.1016/j.compstruct.2004.10.006
    [64] LIU Cheng-jun, ZHANG Yi-xia, QIN Qing-hua, et al. High velocity impact modelling of sandwich panels with aluminium foam core and aluminium sheet skins[J]. Applied Mechanics and Materials, 2014, 553: 745-750. doi: 10.4028/www.scientific.net/AMM.553.745
    [65] JIANG Lan-xin, YANG Bing, XIAO Shou-ne, et al. Simulation study of adhesive material for sandwich panel under edgewise compression condition [J]. Materials, 2020, 13: 1-14. http://www.researchgate.net/publication/340039547_Simulation_Study_of_Adhesive_Material_for_Sandwich_Panel_under_Edgewise_Compression_Condition
    [66] LIU Long-quan, MENG Peng, WANG Hai, et al. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall[J]. Composites, Part B: Engineering, 2015, 76: 122-132. doi: 10.1016/j.compositesb.2015.02.017
    [67] OGASAWARA N, CHIBA N, KOBAYASHI E, et al. Crushing strength of aluminum honeycomb with thinning cell wall[J]. Journal of Solid Mechanics and Materials Engineering, 2010, 4(8): 1338-1445. doi: 10.1299/jmmp.4.1338
    [68] AMINANDA Y, CASTANIE B, BARRAU J, et al. Experimental analysis and modeling of the crushing of honeycomb cores[J]. Applied Composite Materials, 2005, 12: 213-227. doi: 10.1007/s10443-005-1125-3
    [69] MUHAMMAD K K, WANG Qing-yuan. Experimental and finite element based investigations of in-plane and out-of-plane properties of aluminum honeycomb[J]. Applied Mechanics and Materials, 2013, 275-277: 111-116. doi: 10.4028/www.scientific.net/AMM.275-277.111
    [70] WANG Zhong-gang, LI Zhen-dong, ZHOU Wei, et al. On the influence of structural defects for honeycomb structure[J]. Composite, Part B: Engineering, 2018, 142: 183-192. doi: 10.1016/j.compositesb.2018.01.015
    [71] WANG Zhong-gang, LIU Jie-fu, LU Zhai-jun. Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites, Part B: Engineering, 2017, 114: 128-138. doi: 10.1016/j.compositesb.2017.01.018
    [72] BANG S O, CHO J U. A study on the compression property of sandwich composite with porous core[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(6): 1117-1122. doi: 10.1007/s12541-015-0144-8
    [73] RAJKUMAR S, ARULMURUGAN B, MANIKANDAN M, et al. Analysis of physical and mechanical properties of A3003 aluminum honeycomb core sandwich panels[J]. Applied Mechanics and Materials, 2016, 867: 245-253. http://www.scientific.net/AMM.867.245
    [74] CAI Liang-cai, ZHANG Duo-yao, ZHOU Shao-hui, et al. Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6585-6596. doi: 10.1007/s11665-018-3771-2
    [75] LEE H S, HONG S H, LEE J R, et al. Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures[J]. Journal of Materials Science, 2002, 37: 1265-1272. doi: 10.1023/A:1014344228141
    [76] PAIK J K, THAYAMBALLIB A K, KIMA G S. The strength characteristics of aluminum honeycomb sandwich panels[J]. Thin-Walled Structures, 1999, 35: 205-231. doi: 10.1016/S0263-8231(99)00026-9
    [77] WANG Dong-mei, BAI Zi-you. Mechanical property of paper honeycomb structure under dynamic compression[J]. Materials and Design, 2015, 77: 59-64. doi: 10.1016/j.matdes.2015.03.037
    [78] ZHANG Da-hai, JIANG Dong, FEI Qing-gong, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis and Design, 2016, 117/118: 21-30. doi: 10.1016/j.finel.2016.04.003
    [79] LIU P F, LI X K, LI Z B. Finite element analysis of dynamic mechanical responses of aluminum honeycomb sandwich structures under low-velocity impact[J]. Journal of Failure Analysis and Prevention, 2017, 17: 1202-1207. doi: 10.1007/s11668-017-0358-4
    [80] NURASHIKIN S, HAZIZANA. Preparation and properties of thermoplastic honeycomb core sandwich structure with aluminum skin[J]. Journal of Composite Materials, 2011, 46(2): 183-191. http://adsabs.harvard.edu/abs/2012JCoMa..46..183N
    [81] HE Wen-tao, LIU Jing-xi, TAO Bo, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composite Structures, 2016, 158: 30-43. doi: 10.1016/j.compstruct.2016.09.009
    [82] PENG Ming-jun, SUN Yong, YAO Ji, et al. Finite element simulation on three-point bending of brazed aluminum honeycomb panel[J]. Advanced Materials Research, 2010, 168-170: 1046-1050. doi: 10.4028/www.scientific.net/AMR.168-170.1046
    [83] XIONG Jian, ZHANG Meng, STOCCHI A, et al. Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression[J]. Composites, Part B: Engineering, 2014, 60: 350-358. doi: 10.1016/j.compositesb.2013.12.049
    [84] SUN Zhi, SHI Shan-shan, GUO Xu, et al. On compressive properties of composite sandwich structures with grid reinforced honeycomb core[J]. Composites, Part B: Engineering, 2016, 94: 245-252. doi: 10.1016/j.compositesb.2016.03.054
    [85] BUDHE S, BANEA M D, BARROS S D, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [86] BANEA M D, SILVA L F M D. Adhesively bonded joints in composite materials: an overview[J]. Journal of Materials Design and Applications, 2009, 223(1): 1-18. http://www.researchgate.net/publication/245389850_Adhesively_bonded_joints_in_composite_materials_An_overview
    [87] YOU Min, LI Zhi, ZHENG Xiao-ling, et al. A numerical and experimental study of preformed angle in the lap zone on adhesively bonded steel single lap joint[J]. International Journal of Adhesion and Adhesives, 2009, 29(3): 280-285. doi: 10.1016/j.ijadhadh.2008.07.001
    [88] ARENAS J M, NARBÓN J J, ALÍA C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution[J]. International Journal of Adhesion and Adhesives, 2010, 30(3): 160-165. doi: 10.1016/j.ijadhadh.2009.12.003
    [89] LI Gang, LEE S P, THRING R W. Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints[J]. Composite Structures, 1999, 46(4): 395-403. doi: 10.1016/S0263-8223(99)00106-3
    [90] XU Wei, WEI Yue-guang. Strength and interface failure mechanism of adhesive joints[J]. International Journal of Adhesion and Adhesives, 2012(34): 80-92. http://www.sciencedirect.com/science/article/pii/S0143749611001710
    [91] SILVA L F M D, NEVES P J C D, ADAMS R D, et al. Analytical models of adhesively bonded joints—Part Ⅰ: literature survey[J]. International Journal of Adhesion and Adhesives, 2009, 29(3): 319-330. doi: 10.1016/j.ijadhadh.2008.06.005
    [92] COSTA MATTOS H S, MONTEIRO A H, SAMPAIO E M. Modelling the strength of bonded butt-joints[J]. Composites, Part B: Engineering, 2010, 41(8): 654-662. doi: 10.1016/j.compositesb.2010.09.002
    [93] 李曙光. FRP构件的连接及其设计方法研究[D]. 西安: 西安建筑科技大学, 2012.

    LI Shu-guang. Research on connecting and design method for frp constructional elements[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. (in Chinese)
    [94] 朱红红. 复合材料螺栓连接接头失效分析与强度预测[D]. 郑州: 郑州大学, 2012.

    ZHU Hong-hong. Failure analysis and strength prediction of composite bolted joints[D]. Zhengzhou: Zhengzhou University, 2012. (in Chinese)
    [95] 谢宗蕻, 李想, 郭家平, 等. 考虑间隙配合的复合材料钉载分配均匀化方法[J]. 复合材料学报, 2016, 33(4): 806-813. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201604013.htm

    XIE Zong-hong, LI Xiang, GUO Jia-ping, et al. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 806-813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201604013.htm
    [96] LIU Xiang-dong, LI Ya-zhi, YAO Zhen-hua, et al. Study on the pin-load distribution of multiple-bolted composite to metal joints[J]. Key Engineering Materials, 2013, 525/526: 285-288. http://www.scientific.net/KEM.525-526.285
    [97] 朱红红, 李成, 何龙, 等. 复合材料两钉斜削搭接接头钉载分配与连接强度研究[J]. 机械工程学报, 2012, 48(20): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220014.htm

    ZHU Hong-hong, LI Cheng, HE Long, et al. Research on pin load distribution and joining strength for multi-bolt beveled-lap composite joints[J]. Journal of Mechanical Engineering, 2012, 48(20): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220014.htm
    [98] KADIR T, MUSTAFA G, METE O K. Progressive failure analysis of pin-loaded unidirectional carbon-epoxy laminated composites[J]. Mechanics of Advanced Materials and Structures, 2014, 21(2): 98-106. doi: 10.1080/15376494.2012.677109
    [99] KADIR T, METE O K, MUSTAFA G. Progressive failure analysis of laminated composite plates with two serial pinned joints[J]. Mechanics of Advanced Materials and Structures, 2015, 22(10): 839-849. doi: 10.1080/15376494.2012.761302
    [100] KARAKUZU R, CALISKAN C R, AKTAS M, et al. Failure behavior of laminated composite plates with two serial pin-loaded holes[J]. Composite Structures, 2008, 82(2): 225-234. doi: 10.1016/j.compstruct.2007.01.002
    [101] LIU F, QI L, FENG S F. Influence of stacking sequence and number of pin on load distribution of composite joints[C]//AIP. 2nd International Conference on New Material and Chemical Industry. New York: AIP, 2017: 1-6.
    [102] 段元欣. CFRP螺栓干涉连接结构预紧行为及静强度研究[D]. 西安: 西北工业大学, 2015.

    DUAN Yuan-xin. The preloading behavior and strength of bolted CFRP laminate joints with interference-fit[D]. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese)
    [103] MCCARTHY M A, LAWLOR V P, STANLEY W F, et al. Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints[J]. Composites Science and Technology, 2002, 62(10): 1415-1431. http://www.sciencedirect.com/science/article/pii/s026635380200088x
    [104] CHANG Fu-kuo. The effect of pin load distribution on the strength of pin loaded holes in laminated composites[J]. Journal of Composite Materials, 1986, 20(4): 401-408. doi: 10.1177/002199838602000407
    [105] CHOI J H, CHUN Y J. Failure load prediction of mechanically fastened composite joints[J]. Journal of Composite Materials, 2003, 37(24): 2163-2177. doi: 10.1177/002199803038108
    [106] SUN H T, CHANG Fu-kuo, QING Xin-lin. The response of composite joints with bolt-clamping loads, Part Ⅰ: model development[J]. Journal of Composite Materials, 2002, 36(1): 47-67. doi: 10.1177/0021998302036001301
    [107] CHOWDHURY N M, CHIU W K, JOHN W, et al. Experimental and finite element studies of bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy panels used in aircraft structures[J]. Composites, Part B: Engineering, 2016(100): 68-77. http://smartsearch.nstl.gov.cn/paper_detail.html?id=173428acf862c033bd3986cb3e5e2f60
    [108] VALLEE T, TANNERT T, MEENA R, et al. Dimensioning method for bolted, adhesively bonded, and hybrid joints involving fibre-reinforced-polymers[J]. Composites, Part B: Engineering, 2013(46): 179-187. http://www.sciencedirect.com/science/article/pii/S1359836812006257
    [109] BOIS C, WARGNIER H, WAHL J C, et al. An analytical model for the strength prediction of hybrid (bolted/bonded) composite joints[J]. Composite Structures, 2013(97): 252-260. http://www.sciencedirect.com/science/article/pii/S0263822312005144
    [110] 李刚, 赵亚峰, 张江田, 等. 复合材料在200km/h机车头型设计中的研究与应用[J]. 纤维复合材料, 2019, 36(3): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903003.htm

    LI Gang, ZHAO Ya-feng, ZHANG Jiang-tian, et al. Research and application of composite materials in 200km/h locomotive appearance design[J]. Fiber Composites, 2019, 36(3): 12-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903003.htm
    [111] 孟春红. 玻璃钢在动车及机车司机室内装饰中的应用[J]. 铁道车辆, 2007, 45(4): 19-21. doi: 10.3969/j.issn.1002-7602.2007.04.006

    MENG Chun-hong. Application of FRP in decoration inside driver's cabs of motor cars and locomotives[J]. Rolling Stock, 2007, 45(4): 19-21. (in Chinese) doi: 10.3969/j.issn.1002-7602.2007.04.006
    [112] 孟庆利, 杨国纪. 城轨车辆司机室头罩的结构功能以及造型分析[J]. 电力机车与城轨车辆, 2011, 34(1): 21-24. doi: 10.3969/j.issn.1672-1187.2011.01.007

    MENG Qing-li, YANG Guo-ji. Analysis of properties and styles of cab front mask of metro vehicle[J]. Electric Locomotives and Mass Transit Vehicles, 2011, 34(1): 21-24. (in Chinese) doi: 10.3969/j.issn.1672-1187.2011.01.007
    [113] 赵亚峰, 陈锡嘉. 机车司机室复合材料选用原则[J]. 高科技纤维与应用, 2019, 44(5): 47-53. doi: 10.3969/j.issn.1007-9815.2019.05.006

    ZHAO Ya-feng, CHEN Xi-jia. Principles for the selection of composite materials in locomotive cab[J]. Hi-Tech Fiber and Application, 2019, 44(5): 47-53. (in Chinese) doi: 10.3969/j.issn.1007-9815.2019.05.006
    [114] 刘钧, 曾竟成, 马良, 等. 高速列车机车用复合材料车头盖的研制[J]. 纤维复合材料, 2003(4): 36-38. doi: 10.3969/j.issn.1003-6423.2003.04.012

    LIU Jun, ZENG Jing-cheng, MA Liang, et al. The development of composite frontmask for high-speed train[J]. Fiber Composites, 2003(4): 36-38. (in Chinese) doi: 10.3969/j.issn.1003-6423.2003.04.012
    [115] 张胜. 高速机车司机室混杂结构设计与优化[D]. 长沙: 国防科技大学, 2005.

    ZHANG Sheng. Design and optimization of combined structure driver cab of high speed train[D]. Changsha: National University of Defense Technology, 2005. (in Chinese)
    [116] 夏为林, 曾湘江. FRP复合材料及其在高速列车上的应用[J]. 电力机车技术, 2001, 24(1): 25-27. doi: 10.3969/j.issn.1672-1187.2001.01.009

    XIA Wei-lin, ZENG Xiang-jiang. Compound material and its application on high-speed locomotive[J]. Technology for Electric Locomotives, 2001, 24(1): 25-27. (in Chinese) doi: 10.3969/j.issn.1672-1187.2001.01.009
    [117] 蔡千华. 新干线电车CFRP车头构件的研究[J]. 国外机车车辆工艺, 2001(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200102012.htm

    CAI Qian-hua. Development of the CFRP nose body structure of Shinkansen train using carbon fiber reinforced plastics[J]. Foreign Locomotive and Rolling Stock Technology, 2001(2): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200102012.htm
    [118] 冯学斌, 李晓, 曾竟成, 等. 非对称碳-玻璃混合纤维复合材料地铁司机室头罩设计[J]. 铁道机车车辆, 2015, 35(3): 96-99. doi: 10.3969/j.issn.1008-7842.2015.03.24

    FENG Xue-bin, LI Xiao, ZENG Jing-cheng, et al. Design of subway driver chamber hood made of asymmetric carbon-glass fiber mixed composite material[J]. Railway Locomotive and Car, 2015, 35(3): 96-99. (in Chinese) doi: 10.3969/j.issn.1008-7842.2015.03.24
    [119] 杨梓童. 地铁头车玻璃钢外罩结构设计及分析[D]. 大连: 大连交通大学, 2018.

    YANG Zi-tong. Structure design and analysis of GFRP cover for the metro head[D]. Dalian: Dalian Jiaotong University, 2018. (in Chinese)
    [120] 方炅任, 张亚楠, 赵川宇, 等. 碳纤维车头在市域快轨车辆上的应用[J]. 铁道机车车辆, 2019, 39(6): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201906029.htm

    FANG Jiong-ren, ZHANG Ya-nan, ZHAO Chuan-yu, et al. Application of CFRP material in cab mask of rail vehicle[J]. Railway Locomotive and Car, 2019, 39(6): 119-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201906029.htm
    [121] 邬志华, 肖加余, 刘钧, 等. 地铁司机室用非对称泡沫夹芯结构抗撞击性能仿真[J]. 复合材料学报, 2013, 30(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1009.htm

    WU Zhi-hua, XIAO Jia-yu, LIU Jun, et al. Crashworthiness performance simulation on unsymmetrical foam sandwich structures of subway cab[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1009.htm
    [122] GONG Ming, SUN Shou-guang, LI Qiang. Carbon fiber reinforced composite materials for self-supporting subway train cab[J]. Materials Science and Engineering, 2018, 436: 012007-1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=CDLK201808001009
    [123] 丁叁叁, 田爱琴, 王建军, 等. 高速动车组碳纤维复合材料应用研究[J]. 电力机车与城轨车辆, 2015, 38(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1001.htm

    DING San-san, TIAN Ai-qin, WANG Jian-jun, et al. Research on application of carbon fiber composite in high-speed EMUs[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1001.htm
    [124] 曾竟成, 刘钧, 杜刚, 等. 景区游览车聚合物复合材料车体的研制[J]. 玻璃钢/复合材料, 2001(3): 38-41. doi: 10.3969/j.issn.1003-0999.2001.03.013

    ZENG Jing-cheng, LIU Jun, DU Gang, et al. Develop FRP coach for touring train[J]. Fiber Reinforced Plastics/Composites, 2001(3): 38-41. (in Chinese) doi: 10.3969/j.issn.1003-0999.2001.03.013
    [125] 刘晓波, 杨颖. 轻量化高性能碳纤维复合材料车体研发关键技术[J]. 合成纤维, 2013, 42(10): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201310009.htm

    LIU Xiao-bo, YANG Ying. Key technologies of lightweight and high-performance carbon fiber composite train carbody[J]. Synthetic Fiber in China, 2013, 42(10): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201310009.htm
    [126] 刘宇, 王峰, 苏强, 等. 轻量化复合材料车体设计与分析[J]. 城市轨道交通研究, 2018, 21(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201801010.htm

    LIU Yu, WANG Feng, SU Qiang, et al. Design and analysis on lightweight composite car body[J]. Urban Mass Transit, 2018, 21(1): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201801010.htm
    [127] 李光友, 倪亭, 郭辉. 轨道交通用碳纤维复合材料的技术进展与应用[J]. 纺织导报, 2020(7): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDB202007007.htm

    LI Guang-you, NI Ting, GUO Hui. Technical progress and application of carbon fiber composites for rail transit[J]. China Textile Leader, 2020(7): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDB202007007.htm
    [128] KIM J S, LEE S J, SHIN K B. Manufacturing and structural safety evaluation of a composite train carbody[J]. Composite Structures, 2005, 78(4): 468-476. http://www.sciencedirect.com/science/article/pii/S0263822305003302
    [129] SEO S I, KIM J S, CHO S H. Development of a hybrid composite bodyshell for tilting trains[J]. Journal of Rail and Rapid Transit, 2008, 222(1): 1-13. doi: 10.1243/09544097JRRT96
    [130] HOZHABR M, HABIBOLLAH M, VINCENZO C, et al. In plane compressive response and crushing of foam filled aluminum honeycombs[J]. Journal of Composite Materials, 2015, 49(26): 3215-3228. doi: 10.1177/0021998314561069
    [131] KIM J S, JEONG J C, CHO S H, et al. Fire resistance evaluation of a train carbody made of composite material by large scale tests[J]. Composite Structures, 2007, 83(3): 295-303. http://www.sciencedirect.com/science/article/pii/S0263822307001274
    [132] JANG B W, LEE J R, PARK A O, et al. A health management algorithm for composite train carbody based on FEM/FBG hybrid method[J]. Composite Structures, 2009, 92(4): 1019-1026. http://www.sciencedirect.com/science/article/pii/S0263822309003894
    [133] ZHANG He, KUANG Ning, SUN Fang-fang, et al. Ultra-light CRH wind deflector fabricated by woven lattice sandwich composites[J]. Composites Science and Technology, 2014, 102(6): 145-151. http://www.sciencedirect.com/science/article/pii/S0266353814002607
    [134] ONDER A, ONEILL C, ROBINSON M. Flying ballast resistance for composite materials in railway vehicle carbody shells[J]. Transportation Research Procedia, 2016, 14: 595-604. doi: 10.1016/j.trpro.2016.05.301
    [135] FAN Hua-lin, OUYANG Jian-feng, SUN Fang-fang, et al. Light-weight design of CRH wind deflector panels based on woven textile sandwich composites[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 208-220. doi: 10.1016/S0894-9166(16)30109-4
    [136] 康兴东. 韩国摆式列车复合材料车体的探究及思考[J]. 国外铁道车辆, 2017, 54(6): 12-20. doi: 10.3969/j.issn.1002-7610.2017.06.003

    KANG Xing-dong. Research and thought on the carbodies made of composite materials for tilting trains in Korea[J]. Foreign Rolling Stock, 2017, 54(6): 12-20. (in Chinese) doi: 10.3969/j.issn.1002-7610.2017.06.003
    [137] CHVOJAN R, JOZEFY R, MAYER R, et al. Shaker rig test of EB25 GRP boogie[J]. EPJ Web of Conferences, 2010, 6: 19007-1-8. doi: 10.1051/epjconf/20100619007
    [138] 虞大联, 邓小军, 刘韶庆, 等. 复合材料技术在转向架中的应用[J]. 电力机车与城轨车辆, 2015, 38: 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1004.htm

    YU Da-lian, DENG Xiao-jun, LIU Shao-qing, et al. Application of composite material technology on bogie[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38: 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1004.htm
    [139] CHVOJANA J, VACLAVIKA J. Experimental methods for the GRP bogie structure integrity assessment[J]. Procedia Engineering, 2015, 114: 627-634. doi: 10.1016/j.proeng.2015.08.003
    [140] 门永林, 楚永萍, 冯遵委. 纤维增强复合材料在转向架上的应用研究[J]. 铁道机车车辆, 2019, 39(3): 92-94, 100. doi: 10.3969/j.issn.1008-7842.2019.03.21

    MEN Yong-lin, CHU Yong-ping, FENG Zun-wei. Application research of fiber-reinforced polymer in bogie[J]. Railway Locomotive and Car, 2019, 39(3): 92-94, 100. (in Chinese) doi: 10.3969/j.issn.1008-7842.2019.03.21
    [141] 李梁京, 王继荣, 李军. 新型轻材料在转向架部件中的应用[J]. 青岛大学学报(自然科学版), 2017(4): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QDDD201704009.htm

    LI Liang-jing, WANG Ji-rong, LI Jun. The application of new-type lightweight materials in bogie parts[J]. Journal of Qingdao University (Natural Science Edition), 2017(4): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDDD201704009.htm
    [142] 宋丕麟. 新型轻量化转向架设计[J]. 科技视界, 2018, 26: 23-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201826008.htm

    SONG Pi-lin. New lightweight bogie design[J]. Science and Technology Vision, 2018, 26: 23-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201826008.htm
    [143] KIM J S, YOON H J, SHIN K B. Design of a composite side beam for the railway bogie frame[J]. Materials Science Forum, 2010, 654-656: 2676-2679. doi: 10.4028/www.scientific.net/MSF.654-656.2676
    [144] KIM J S, LEE W G, KIM K, et al. Natural frequency evaluation of a lightweight GFRP composite bogie frame[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16: 105-111. doi: 10.1007/s12541-015-0013-5
    [145] KIM J H, SHIN K B, KIM J S, et al. Optimum design on suspension joint parts of GFRP composite bogie frame with H-shaped side beams for urban railway trains[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 71-76. doi: 10.1007/s12541-012-0010-x
    [146] KIM J S, LEE W G, KIM I K. Manufacturing and testing of a GFRP composite bogie frame with straight side beam members[J]. Journal of Mechanical Science and Technology, 2013, 27(9): 2761-2767. doi: 10.1007/s12206-013-0722-6
    [147] GOO J, KIM J, SHIN K. Evaluation of structural integrity after ballast-flying impact damage of a GFRP lightweight bogie frame for railway vehicles[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2349-2356. doi: 10.1007/s12206-015-0528-9
    [148] YAO Kai, YANG Ying, LI Hui-min, et al. Material characterization of a multi-cavity composite structure for the bogie frame of urban maglev train[J]. Composites, Part B: Engineering, 2016, 99(15): 277-287. http://www.sciencedirect.com/science/article/pii/S1359836816309672
    [149] 梁云, 谌亮, 杨集友, 等. 碳纤维复合材料在轨道交通车辆转向架上的应用[J]. 城市轨道交通研究, 2020(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001032.htm

    LIANG Yun, CHEN Liang, YANG Ji-you, et al. Application of carbon fiber composite polymer on urban rail transit vehicle bogy[J]. Urban Mass Transit, 2020(1): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001032.htm
    [150] MAURIN L, BOUSSOIR J, ROUGEAULT S, et al. FBG-based smart composite bogies for railway applications[C]//IEEE. Optical Fiber Sensors Conference Technical Digest. New York: IEEE, 2002: 91-94.
    [151] 王曦, 付晨. 复合材料转向架构架及其疲劳损伤分析方法研究综述[J]. 北京交通大学学报, 2019, 43(1): 42-53. doi: 10.11860/j.issn.1673-0291.2019.01.005

    WANG Xi, FU Chen. Review of composite bogie frame and its fatigue damage analysis methods[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 42-53. (in Chinese) doi: 10.11860/j.issn.1673-0291.2019.01.005
    [152] HOU Jin-ping, JERONIMIDIS G. A novel bogie design made of glass fibre reinforced plastic[J]. Materials and Design, 2012, 37(5): 1-7. http://www.sciencedirect.com/science/article/pii/S0261306911008557
    [153] 李建利, 张元, 张新元. 碳纤维复合材料刹车片的发展及应用前景[J]. 材料开发与应用, 2012, 27(2): 107-111. doi: 10.3969/j.issn.1003-1545.2012.02.025

    LI Jian-li, ZHANG Yuan, ZHANG Xin-yuan. Development and application of carbon fiber composite braking block[J]. Development and Application of Materials, 2012, 27(2): 107-111. (in Chinese) doi: 10.3969/j.issn.1003-1545.2012.02.025
    [154] 王京波. 高摩合成闸瓦在快速货车上的适应性[J]. 铁道机车车辆, 2000(3): 8-9. doi: 10.3969/j.issn.1008-7842.2000.03.003

    WANG Jing-bo. Applicability of high friction composite brake shoes on speed freight train[J]. Railway Locomotive and Car, 2000(3): 8-9. (in Chinese) doi: 10.3969/j.issn.1008-7842.2000.03.003
    [155] 齐海波, 樊云昌, 籍凤秋. 高速列车制动盘材料的研究现状与发展趋势[J]. 石家庄铁道学院学报, 2001(1): 52-57. doi: 10.3969/j.issn.2095-0373.2001.01.013

    QI Hai-bo, FAN Yun-chang, JI Feng-qiu. Researching situation and developing trends of brake discs' materials for high speed train[J]. Journal of Shijiazhuang Railway Institute, 2001(1): 52-57. (in Chinese) doi: 10.3969/j.issn.2095-0373.2001.01.013
    [156] 高鸣, 陈跃, 张永振. 高速铁路刹车片的研究现状与展望[J]. 热加工工艺, 2010, 39(24): 113-115. doi: 10.3969/j.issn.1001-3814.2010.24.032

    GAO Ming, CHEN Yue, ZHANG Yong-zhen. Research status and prospect of high-speed railway brake profile[J]. Hot Working Technology, 2010, 39(24): 113-115. (in Chinese) doi: 10.3969/j.issn.1001-3814.2010.24.032
    [157] 王广达, 方玉诚, 罗锡裕. 高速列车摩擦制动材料的研究进展[J]. 中国冶金, 2007(7): 12-15. doi: 10.3969/j.issn.1006-9356.2007.07.003

    WANG Guang-da, FANG Yu-cheng, LUO Xi-yu. Research and development of materials for friction braking on high speed train[J]. China Metallurgy, 2007(7): 12-15. (in Chinese) doi: 10.3969/j.issn.1006-9356.2007.07.003
    [158] 赵田臣, 孟凡爱, 裴龙刚. 高速列车金属陶瓷复合材料制动闸片研制[J]. 石家庄铁道学院学报, 2004, 17(1): 64-66. doi: 10.3969/j.issn.2095-0373.2004.01.015

    ZHAO Tian-chen, MENG Fan-ai, PEI Long-gang. Fabrication of metal-matrix ceramics composite brake for high-speed trains[J]. Journal of Shijiazhuang Railway Institute, 2004, 17(1): 64-66. (in Chinese) doi: 10.3969/j.issn.2095-0373.2004.01.015
    [159] 喻亮, 周立智, 姜艳丽. SiC3D/Al复合材料高速列车制动盘紧急制动热流耦合有限元模拟[J]. 热加工工艺, 2019, 48(12): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201912020.htm

    YU Liang, ZHOU Li-zhi, JIANG Yan-li. Heat flow finite element simulation of emergency brake of SiC3D/Al composite brake disc for high speed train[J]. Hot Working Technology, 2019, 48(12): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201912020.htm
    [160] 金云学, LEE J M, KANG S B. A356/SiCP与列车实用中的有机闸片的滑动摩擦磨损特性[J]. 稀有金属材料与工程, 2008(11): 1956-1960. doi: 10.3321/j.issn:1002-185X.2008.11.016

    JIN Yun-xue, LEE J M, KANG S B. Wear characteristics of dry friction between the A356/SiCP composite and applied organic brake pad of medium speed train[J]. Rare Metal Materials and Engineering, 2008(11): 1956-1960. (in Chinese) doi: 10.3321/j.issn:1002-185X.2008.11.016
    [161] 盛欢, 王泽华, 邵佳, 等. 高速列车制动盘材料的研究现状与展望[J]. 机械工程材料, 2016, 40(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201601001.htm

    SHENG Huan, WANG Ze-hua, SHAO Jia, et al. Research status and prospect of brake disc materials for high-speed train[J]. Materials for Mechanical Engineering, 2016, 40(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201601001.htm
    [162] 宋宝韫, 高飞, 陈吉光, 等. 高速列车制动盘材料的研究进展[J]. 中国铁道科学, 2004(4): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404002.htm

    SONG Bao-wen, GAO Fei, CHEN Ji-guang, et al. Development of materials for high-speed train brake discs[J]. China Railway Science, 2004(4): 12-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404002.htm
    [163] MCCONNELL V P. Rail—an evolving market for FRP components[J]. Reinforced Plastics, 2008, 52(11): 24-29. doi: 10.1016/S0034-3617(08)70404-1
    [164] 王明猛, 肖守讷, 罗丹. 芳纶纤维复合材料在高速试验列车设备舱底板上的应用研究[J]. 铁道车辆, 2013, 51(5): 8-10. doi: 10.3969/j.issn.1002-7602.2013.05.003

    WANG Ming-meng, XIAO Shou-ne, LUO Dan. Application of AFRC on equipment cabin floor on high-speed train[J]. Rolling Stock, 2013, 51(5): 8-10. (in Chinese) doi: 10.3969/j.issn.1002-7602.2013.05.003
    [165] FAN Hua-lin, ZHAO Long, CHEN Hai-long, et al. Ductile deformation mechanisms and designing instructions for integrated woven textile sandwich composites[J]. Composite Science Technology, 2012, 72(12): 1338-1343. doi: 10.1016/j.compscitech.2012.04.017
    [166] 宫高霞, 许保磊, 王力, 等. 高速动车组转向架区域裙板结构优化研究[J]. 铁道车辆, 2019(12): 14-16. doi: 10.3969/j.issn.1002-7602.2019.12.006

    GONG Gao-xia, XU Bao-lei, WANG Li, et al. Optimization of apron in high-speed EMU bogie[J]. Rolling Stock, 2019(12): 14-16. (in Chinese) doi: 10.3969/j.issn.1002-7602.2019.12.006
    [167] 刘钧, 肖加余, 曾竟成, 等. VARTM工艺整体成型复合材料连接裙局部性能试验研究[J]. 复合材料学报, 2010, 27(6): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201006034.htm

    LIU Jun, XIAO Jia-yu, ZENG Jing-cheng, et al. Experimental study on local properties of the composites skirt integrally manufactured by VARTM[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 193-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201006034.htm
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1788
  • HTML全文浏览量:  654
  • PDF下载量:  2899
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-30
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回