留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道车辆永磁直驱技术综述

马光同 孙振耀 徐帅 姚春醒 任冠州 梁树林

马光同, 孙振耀, 徐帅, 姚春醒, 任冠州, 梁树林. 轨道车辆永磁直驱技术综述[J]. 交通运输工程学报, 2021, 21(1): 217-232. doi: 10.19818/j.cnki.1671-1637.2021.01.010
引用本文: 马光同, 孙振耀, 徐帅, 姚春醒, 任冠州, 梁树林. 轨道车辆永磁直驱技术综述[J]. 交通运输工程学报, 2021, 21(1): 217-232. doi: 10.19818/j.cnki.1671-1637.2021.01.010
MA Guang-tong, SUN Zhen-yao, XU Shuai, YAO Chun-xing, REN Guan-zhou, LIANG Shu-lin. Review on permanent magnet direct drive technology of railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 217-232. doi: 10.19818/j.cnki.1671-1637.2021.01.010
Citation: MA Guang-tong, SUN Zhen-yao, XU Shuai, YAO Chun-xing, REN Guan-zhou, LIANG Shu-lin. Review on permanent magnet direct drive technology of railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 217-232. doi: 10.19818/j.cnki.1671-1637.2021.01.010

轨道车辆永磁直驱技术综述

doi: 10.19818/j.cnki.1671-1637.2021.01.010
基金项目: 

国家自然科学基金项目 52072318

四川省中央引导地方科技发展专项项目 2020ZYD010

四川省科技厅重点研发项目 2020YFG0354

中国博士后科学基金项目 2020M673282

牵引动力国家重点实验室自主课题 2020TPL_T13

详细信息
    作者简介:

    马光同(1982-),男,河南周口人,西南交通大学研究员,工学博士,从事超导磁悬浮、直线电机和永磁牵引电机等新型轨道交通相关的基础理论、试验方法与应用技术研究

  • 中图分类号: U264.1

Review on permanent magnet direct drive technology of railway vehicles

Funds: 

National Natural Science Foundation of China 52072318

Central Guidance Special Subject for Local Science and Technology Development of Sichuan Province 2020ZYD010

Key Research and Development Program of Science and Technology Department of Sichuan Province 2020YFG0354

China Postdoctoral Science Foundation 2020M673282

Independent Subject of State Key Laboratory of Traction Power 2020TPL_T13

More Information
  • 摘要: 概述了国内外采用永磁直驱技术的轨道车辆发展状况,归纳了永磁直驱转向架的结构形式,讨论了抱轴式直驱结构与弹性架悬式直驱结构的特点及其适用情形,分析了永磁直驱转向架的蛇行运行稳定性与曲线通过性;针对轨道车辆应用,从磁性材料、冷却系统、温升效应、电机质量、气隙磁密、反电势抑制、失磁故障、电路结构等方面论述了永磁直驱牵引电机的结构设计与优化方法,分析了传统的牵引电机控制策略,讨论了模型预测控制技术和无位置传感器控制技术的研究现状及其用于永磁直驱电机的可行性和存在的问题;总结了轨道车辆永磁直驱技术的现存问题并展望了其未来发展方向。研究结果表明:刚性抱轴式永磁直驱结构紧凑,但电机受轮轨振动影响较大且增加了列车簧下质量,仅适用于低速轨道车辆;高速轨道车辆直驱技术宜采用弹性架悬式直驱结构,但需要进一步研究永磁牵引电机和直驱转向架的弹性连接方式和最优匹配参数,优化簧上、簧下质量分布;内置式永磁直驱转向架可缩短车轴长度和减少轴距,具有质量轻、动力特性好等优势,较适用于复杂的地形环境应用;需要研究更为快速准确的永磁电机故障在线诊断、预警与抑制方法,可结合基于故障诊断及预测的智慧运维技术,为车辆提供维修决策建议;需对永磁直驱电机定子、转子拓扑结构进一步优化,并提出更为有效的冷却结构及精确的温升计算方法;传统矢量控制与直接转矩控制难以兼顾高转矩动态响应和低转矩脉动,模型预测控制因其结构简单、动态响应快等优点,较适用于轨道车辆这类低开关频率大功率应用,但仍需进一步研究以降低其运算负荷并提升其稳态性能;无位置传感器技术可节省电机内部空间体积,且能防止编码器故障带来的可靠性问题,适用于内部空间狭小的直驱转向架,现有中高速无位置传感器技术已具有较好的性能,零速和低速下采用高频信号注入法虽能实现较准确的位置估计,但其对电机控制性能带来的一系列不利影响还需要进一步研究。

     

  • 图  1  西门子Syntegra转向架

    Figure  1.  Siemens Syntegra bogie

    图  2  日本直驱转向架

    Figure  2.  Japanese direct drive bogie

    图  3  中车青岛四方直驱转向架

    Figure  3.  Direct drive bogie of CRRC Qingdao-Sifang

    图  4  中车南京浦镇直驱转向架

    Figure  4.  Direct drive bogie of CRRC Nanjing-Puzhen

    图  5  中车大同永磁直驱电机

    Figure  5.  Permanent magnet direct drive motor of CRRC Datong

    图  6  Syntegra转向架构架

    Figure  6.  Frame of Syntegra bogie

    图  7  徐州地铁永磁直驱转向架

    Figure  7.  Permanent magnet direct drive bogie of Xuzhou Metro

    图  8  FLEXX Eco转向架

    Figure  8.  FLEXX Eco bogie

    图  9  Syntegra永磁直驱系统

    Figure  9.  Syntegra permanent magnet direct drive system

    图  10  中车大同永磁直驱系统

    Figure  10.  Permanent magnet direct drive system of CRRC Datong

    图  11  挠性板联轴器

    Figure  11.  Flexible plate coupling

    图  12  独立轮对转向架

    Figure  12.  Bogie with independent wheelset

    图  13  RMT8和RMT9永磁直驱结构

    Figure  13.  Permanent magnet direct drive structure of RMT8 and RMT9

    图  14  RMT11弹性悬挂结构

    Figure  14.  Structure of RMT11 direct drive structure with elastic suspension inner rotor

    图  15  电机本体结构优化

    Figure  15.  Structure optimization of motor body

    图  16  四角冷却水道布

    Figure  16.  Arrangement of four-corner cooling channel

    图  17  矢量控制基本原理

    Figure  17.  Rationale of vector control

    图  18  直接转矩控制基本原理

    Figure  18.  Rationale of direct torque control

    图  19  模型预测控制基本原理

    Figure  19.  Rationale of model predictive control

  • [1] 冯江华, 桂卫华, 符敏利, 等. 铁道车辆牵引系统用永磁同步电机比较[J]. 铁道学报, 2007, 29(5): 111-116. doi: 10.3321/j.issn:1001-8360.2007.05.021

    FENG Jiang-hua, GUI Wei-hua, FU Min-li, et al. Comparison of permanent magnet synchronous motors applied to railway vehicle traction system[J]. Journal of the China Railway Society, 2007, 29(5): 111-116. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.05.021
    [2] 张江, 钟文生, 刘高坤. 转向架永磁同步电机直接驱动技术在国内外的发展概述[J]. 铁道机车车辆, 2014, 34(3): 79-83. doi: 10.3969/j.issn.1008-7842.2014.03.20

    ZHANG Jiang, ZHONG Wen-sheng, LIU Gao-kun. General description of the development of the direct-drive technology of permanent magnet synchronous motor of bogie at home and abroad[J]. Railway Locomotive and Car, 2014, 34(3): 79-83. (in Chinese) doi: 10.3969/j.issn.1008-7842.2014.03.20
    [3] 胡土雄, 胡弼, 王伟, 等. 高密度永磁同步电机永磁体失磁特征量分析[J]. 电气工程学报, 2019, 14(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201902021.htm

    HU Tu-xiong, HU Bi, WANG Wei, et al. Analysis of demagnetization characteristics of permanent magnets in high density permanent magnet synchronous motor[J]. Journal of Electrical Engineering, 2019, 14(2): 121-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201902021.htm
    [4] JOCKEL A, 谢小海. 新型转向架Syntegra[J]. 国外机车车辆工艺, 2008(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200806009.htm

    JOCKEL A, XIE Xiao-hai. A new bogie Syntegra[J]. Foreign Locomotive and Rolling Stock Technology, 2008(6): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200806009.htm
    [5] 王渤洪. 创新的直接传动动力转向架Syntegra[J]. 机车电传动, 2007(2): 44-51. doi: 10.3969/j.issn.1000-128X.2007.02.013

    WANG Bo-hong. Innovative power bogie Syntegra with direct drive[J]. Electric Drive for Locomotives, 2007(2): 44-51. (in Chinese) doi: 10.3969/j.issn.1000-128X.2007.02.013
    [6] 吉田耕治, 李玉梅. 直接驱动式牵引电动机[J]. 中国铁路, 2005(11): 61-63. doi: 10.3969/j.issn.1001-683X.2005.11.014

    YOSHIDA Koguji, LI Yu-mei. Direct-drive traction motor[J]. China Railway, 2005(11): 61-63. (in Chinese) doi: 10.3969/j.issn.1001-683X.2005.11.014
    [7] MATSUOKA K. Development trend of the permanent magnet synchronous motor for railway traction[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2(2): 154-161. doi: 10.1002/tee.20121
    [8] 吴东华, 孙传铭. 基于永磁电机牵引系统高速动车组的研制[J]. 机车电传动, 2019(1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901008.htm

    WU Dong-hua, SUN Chuan-ming. Development of high-speed EMUs based on permanent magnet motor traction system[J]. Electric Drive for Locomotives, 2019(1): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901008.htm
    [9] 张雄飞. 国内外永磁电机直接驱动式转向架的发展[J]. 机车电传动, 2020(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202003001.htm

    ZHANG Xiong-fei. Development of direct drive bogies with permanent magnet motors at home and abroad[J]. Electric Drive for Locomotives, 2020(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202003001.htm
    [10] 毕鑫, 马卫华, 罗世辉. 机车转向架通过曲线的动态过程分析[J]. 机械工程学报, 2013, 49(22): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201322024.htm

    BI Xin, MA Wei-hua, LUO Shi-hui. Dynamic process analysis of locomotive bogie curve negotiation[J]. Journal of Mechanical Engineering, 2013, 49(22): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201322024.htm
    [11] 梁树林, 傅茂海. 内侧悬挂转向架在城轨车辆中的应用研究[J]. 铁道车辆, 2006, 44(4): 4-7, 45. doi: 10.3969/j.issn.1002-7602.2006.04.002

    LIANG Shu-lin, FU Mao-hai. Application of inner suspension bogie in urban rail vehicles[J]. Rolling Stock, 2006, 44(4): 4-7, 45. (in Chinese) doi: 10.3969/j.issn.1002-7602.2006.04.002
    [12] 邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm

    DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
    [13] 杨欣. 160 km·h-1内轴箱转向架总体方案设计及动力学性能研究[D]. 成都: 西南交通大学, 2018.

    YANG Xin. Overall design and research on dynamics performance of the 160 km·h-1 inner axle-box bogie[D]. Chengdu: Southwest Jiaotong University, 2018.
    [14] 刘德学, 艾正武, 蒋廉华, 等. 大功率交流传动电力机车轮盘制动装置设计[J]. 电力机车与城轨车辆, 2020, 43(4): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202004005.htm

    LIU De-xue, AI Zheng-wu, JIANG Lian-hua, et al. Design of wheel disc brake device for high power AC drive electric locomotive[J]. Electric Locomotives and Mass Transit Vehicles, 2020, 43(4): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202004005.htm
    [15] 刘毅, 韦雪丽, 李谋逵, 等. MTB7型踏面制动器的研制[J]. 铁道机车车辆, 2020, 40(3): 60-66. doi: 10.3969/j.issn.1008-7842.2020.03.12

    LIU Yi, WEI Xue-li, LI Mou-kui, et al. Development of MTB7 tread brake[J]. Railway Locomotive and Car, 2020, 40(3): 60-66. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.03.12
    [16] 张建柏, 彭辉水, 倪大成, 等. 高速列车制动技术综述[J]. 机车电传动, 2011(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htm

    ZHANG Jian-bo, PENG Hui-shui, NI Da-cheng, et al. Braking technology of the high-speed trains[J]. Electric Drive for Locomotives, 2011(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htm
    [17] 李广慧, 杨广军, 黄醒春, 等. 轮轨作用力计算分析及其校核[J]. 铁道车辆, 2007, 45(11): 5-8, 47. doi: 10.3969/j.issn.1002-7602.2007.11.002

    LI Guang-hui, YANG Guang-jun, HUANG Xing-chun, et al. Calculation and analysis of wheel-rail force and its checking[J]. Rolling Stock, 2007, 45(11): 5-8, 47. (in Chinese) doi: 10.3969/j.issn.1002-7602.2007.11.002
    [18] 张志和, 李华祥, 李前, 等. 采用永磁电机直接驱动方式的机车转向架[J]. 铁道机车车辆, 2020, 40(3): 39-42. doi: 10.3969/j.issn.1008-7842.2020.03.08

    ZHANG Zhi-he, LI Hua-xiang, LI Qian, et al. The locomotive bogie with permanent-magnet motor and direct driving pattern[J]. Railway Locomotive and Car, 2020, 40(3): 39-42. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.03.08
    [19] 原志强, 聂敏. 大功率永磁直驱客运机车的研制[J]. 机车电传动, 2019(1): 40-44, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901010.htm

    YUAN Zhi-qiang, NIE Min. Development of high-power permanent magnet direct drive passenger locomotive[J]. Electric Drive for Locomotives, 2019(1): 40-44, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901010.htm
    [20] 银豪, 王腾飞, 肖茂, 等. 新型低地板独立轮对转向架主动控制研究[J]. 机械制造与自动化, 2019, 48(5): 168-170, 192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201905043.htm

    YIN Hao, WANG Teng-fei, XIAO Mao, et al. Research on active control of new low floor independent wheelset bogies[J]. Machine Building and Automation, 2019, 48(5): 168-170, 192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201905043.htm
    [21] 李权, 廖道鹏, 李娜, 等. 独立轮对的结构特征及应用[J]. 铁道机车与动车, 2017(11): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201711009.htm

    LI Quan, LIAO Dao-peng, LI Na, et al. Structural features and applications of independent wheelsets[J]. Railway Locomotive and Motor Car, 2017(11): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201711009.htm
    [22] 梁树林, 张军. 独立车轮与钢轨接触问题的研究[J]. 哈尔滨工业大学学报, 2011, 43(增1): 222-227. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX2011S1048.htm

    LIANG Shu-lin, ZHANG Jun. A study on the contact problem of independent wheel and rail[J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 222-227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX2011S1048.htm
    [23] 任尊松, 孙守光, 缪龙秀. 减轻独立轮轮对系统轮轨磨耗方法的探讨[J]. 北京交通大学学报, 2003, 27(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200301004.htm

    REN Zun-song, SUN Shou-guang, MIAO Long-xiu. Discussing several methods of reducing the wheel/rail wearing of the independently rolling wheel system[J]. Journal of Beijing Jiaotong University, 2003, 27(1): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200301004.htm
    [24] 冯江华. 轨道交通永磁同步牵引系统研究[J]. 机车电传动, 2010(5): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201005004.htm

    FENG Jiang-hua. Study on the permanent magnet synchronous motor drive system of rolling stock[J]. Electric Drive for Locomotives, 2010(5): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201005004.htm
    [25] 薛蔚, 漆晖, 任利惠, 等. 永磁直驱柔性构架转向架的动力学模型研究[J]. 华东交通大学学报, 2013, 30(2): 58-62. doi: 10.3969/j.issn.1005-0523.2013.02.013

    XUE Wei, QI Hui, REN Li-hui, et al. Study on dynamic model for flexible frame bogie with PMSM[J]. Journal of East China Jiaotong University, 2013, 30(2): 58-62. (in Chinese) doi: 10.3969/j.issn.1005-0523.2013.02.013
    [26] 黄志辉, 许峻峰. 直驱转向架结构特点与应用展望[J]. 机车电传动, 2013(4): 67-69. doi: 10.3969/j.issn.1000-128X.2013.04.020

    HUANG Zhi-hui, XU Jun-feng. Structure feature and forecast of bogie driven directly[J]. Electric Drive for Locomotives, 2013(4): 67-69. (in Chinese) doi: 10.3969/j.issn.1000-128X.2013.04.020
    [27] 山长雄亮, 彭惠民. 车辆转向架蛇行运动的发生条件[J]. 国外铁道车辆, 2020, 57(5): 35-38. doi: 10.3969/j.issn.1002-7610.2020.05.009

    YAMAGA Yusuke, PENG Hui-min. Occurrence conditions of hunting motion of railway vehicle bogies[J]. Foreign Rolling Stock, 2020, 57(5): 35-38. (in Chinese) doi: 10.3969/j.issn.1002-7610.2020.05.009
    [28] 刘伟渭, 姜瑞金, 刘凤伟, 等. 高速列车蛇行运动稳定性研究概述[J]. 河北科技大学学报, 2018, 39(3): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ201803003.htm

    LIU Wei-wei, JIANG Rui-jin, LIU Feng-wei, et al. Survey on the hunting stability of high-speed trains[J]. Journal of Hebei University of Science and Technology, 2018, 39(3): 198-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ201803003.htm
    [29] 陈杨, 宁静, 王靖铭, 等. 轨道不平顺对高速列车小幅蛇行运动的影响[J]. 现代制造工程, 2019(7): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201907009.htm

    CHEN Yang, NING Jing, WANG Jing-ming, et al. Influence of track irregularity on small hunting of high-speed trains[J]. Modern Manufacturing Engineering, 2019(7): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201907009.htm
    [30] 晏永, 曾京, 徐坤, 等. 悬挂阻尼与车辆蛇行运动稳定性关系[J]. 系统仿真学报, https://kns.cnki.net/kcms/detail/11.3092.V.20201030.1446.009.html.

    YAN Yong, ZENG Jing, XU Kun, et al. Modal stability analysis of hunting motion of railway vehicle[J]. Journal of System Simulation, https://kns.cnki.net/kcms/detail/11.3092.V.20201030.1446.009.html. (in Chinese)
    [31] 干锋, 戴焕云, 宋春元, 等. 车轮高阶不圆对轮对蛇行运动和等效锥度的影响[J]. 铁道学报, 2020, 42(7): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm

    GAN Feng, DAI Huan-yun, SONG Chun-yuan, et al. Effect of out-of-round wheel on hunting movement and equivalent conicity of wheelset[J]. Journal of the China Railway Society, 2020, 42(7): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm
    [32] 马卫华, 宋荣荣, 罗世辉. 轴箱悬挂参数对高速动车动力学性能的影响[J]. 内燃机车, 2009(9): 15-19. doi: 10.3969/j.issn.1003-1820.2009.09.004

    MA Wei-hua, SONG Rong-rong, LUO Shi-hui. Influence of journal box suspension parameters on dynamic performance of high-speed motor car[J]. Railway Locomotive and Motor Car, 2009(9): 15-19. (in Chinese) doi: 10.3969/j.issn.1003-1820.2009.09.004
    [33] POPP K, KAISER I, KRUESE H. System dynamics of railway vehicles and track[J]. Archive of Applied Mechanics, 2003, 72: 949-961. doi: 10.1007/s00419-002-0261-6
    [34] 冯遵委, 胡定祥, 楚永萍. 永磁同步电机直接驱动柔性转向架的动力学性能研究[J]. 铁道机车车辆, 2013, 33(3): 73-76. doi: 10.3969/j.issn.1008-7842.2013.03.17

    FENG Zun-wei, HU Ding-xiang, CHU Yong-ping. Research on dynamic performance of direct-driven flexible bogie for permanent-magnetic synchronous motor[J]. Railway Locomotive and Car, 2013, 33(3): 73-76. (in Chinese) doi: 10.3969/j.issn.1008-7842.2013.03.17
    [35] 黄志辉, 周勇. 直接驱动转向架结构特点及对动力学性能的影响[J]. 铁道机车车辆, 2013, 33(增1): 31-33, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2013S1011.htm

    HUANG Zhi-hui, ZHOU Yong. Structure feature of bogie driven directly and the influences on dynamic performance of vehicle[J]. Railway Locomotive and Car, 2013, 33(S1): 31-33, 73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2013S1011.htm
    [36] 张青松, 陈喜红, 李冠军, 等. 四空气弹簧铰接式动车组转向架[J]. 电力机车与城轨车辆, 2019, 42(3): 31-34, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201903008.htm

    ZHANG Qing-song, CHEN Xi-hong, LI Guan-jun, et al. Articulated bogie equipped with four air springs for EMU[J]. Electric Locomotives and Mass Transit Vehicles, 2019, 42(3): 31-34, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201903008.htm
    [37] 王金生, 吴旭, 马卫华. 铰接式转向架车辆动力学性能分析[J]. 电力机车与城轨车辆, 2020, 43(5): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202005009.htm

    WANG Jin-sheng, WU Xu, MA Wei-hua. Analysis on the dynamic performance of articulated bogie vehicles[J]. Electric Locomotives and Mass Transit Vehicles, 2020, 43(5): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202005009.htm
    [38] 徐磊, 朱孝勇, 张超, 等. 直线旋转永磁电机及其控制技术综述与新发展[J]. 中国电机工程学报, 2020, 40(6): 1972-1985. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006024.htm

    XU Lei, ZHU Xiao-yong, ZHANG Chao, et al. Overview and new development of linear and rotary permanent magnet machines and control technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1972-1985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006024.htm
    [39] 刘鹏, 原志强, 贾流棡. 大功率永磁直驱系统技术研究及应用[J]. 机车电传动, 2019(6): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201906016.htm

    LIU Peng, YUAN Zhi-qiang, JIA Liu-gang. Research and application of high-power permanent magnet direct drive system technology[J]. Electric Drive for Locomotives, 2019(6): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201906016.htm
    [40] 符敏利, 陈致初, 王健, 等. 高速动车组永磁牵引电动机研制[J]. 机车电传动, 2016(3): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603001.htm

    FU Min-li, CHEN Zhi-chu, WANG Jian, et al. Development of permanent magnetic traction motors for high-speed EMUs[J]. Electric Drive for Locomotives, 2016(3): 1-4, 9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603001.htm
    [41] JEONG C L, KIM Y K, HUR J. Optimized design of PMSM with hybrid-type permanent magnet for improving performance and reliability[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4692-4701. doi: 10.1109/TIA.2019.2924614
    [42] 张道禄, 晏才松. 下一代地铁车辆TQ-250永磁同步牵引电机研制[J]. 电机与控制应用, 2019, 46(11): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD201911010.htm

    ZHANG Dao-lu, YAN Cai-song. Development of TQ-250 permanent magnet synchronous traction motor for next generation metro vehicles[J]. Electric Machines and Control Application, 2019, 46(11): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD201911010.htm
    [43] 何思源. 全封闭永磁同步牵引电动机冷却系统设计[J]. 大功率变流技术, 2012(3): 48-53. doi: 10.3969/j.issn.1671-8410-B.2012.03.012

    HE Si-yuan. Design of the cooling system for fully enclosed permanent magnet synchronous traction motor[J]. High Power Converter Technology, 2012(3): 48-53. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2012.03.012
    [44] 王健, 符敏利, 陈致初, 等. 地铁车辆用永磁直驱同步牵引电动机冷却结构设计[J]. 机车电传动, 2016(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604002.htm

    WANG Jian, FU Min-li, CHEN Zhi-chu, et al. Cooling structure design of direct-driven permanent magnet synchronous traction motor for metro vehicle[J]. Electric Drive for Locomotives, 2016(4): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604002.htm
    [45] 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. doi: 10.3969/j.issn.1000-6753.2015.06.001

    CHEN Ping, TANG Ren-yuan, TONG Wen-ming, et al. Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1-9. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.06.001
    [46] 傅雪军, 杨婷莉, 王晓元. 大功率永磁直驱电力机车牵引电机关键技术研究[J]. 铁道机车车辆, 2020, 40(3): 34-38. doi: 10.3969/j.issn.1008-7842.2020.03.07

    FU Xue-jun, YANG Ting-li, WANG Xiao-yuan. Study on key technologies of traction motor for high-power permanent magnet direct drive electric locomotive[J]. Railway Locomotive and Car, 2020, 40(3): 34-38. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.03.07
    [47] HAN Xue-yan, YANG Fei, TANG Ren-yuan, et al. Research on model of temperature field and structure optimization for disk type permanent magnet synchronous motor[C]//IEEE. Proceedings of the 2010 International Conference on Electrical and Control Engineering. New York: IEEE, 2010: 5892-5895.
    [48] BOGLIETTI A, COSSALE M, VASCHETTO S, et al. Thermal conductivity evaluation of fractional-slot concentrated winding machines[J]. IEEE Transactions on Industry Applications, 2016, 53(3): 2059-2065. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020418976500.html
    [49] HOWEY D A, HOLMES A S, PULLEN K R. Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines[J]. IEEE Transactions on Industry Applications, 2011, 47(4): 1716-1723. doi: 10.1109/TIA.2011.2156371
    [50] 刘雄, 陈文光, 许峻峰, 等. 地铁永磁直驱牵引系统优化策略与仿真分析[J]. 机车电传动, 2016(3): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603008.htm

    LIU Xiong, CHEN Wen-guang, XU Jun-feng, et al. Optimizing strategy and simulation analysis for direct-drive traction system of PMSM[J]. Electric Drive for Locomotives, 2016(3): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603008.htm
    [51] FANG Shu-hua, LIU Huan, WANG Hai-tao, et al. High power density PMSM with lightweight structure and high-performance soft magnetic alloy core[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5. http://ieeexplore.ieee.org/document/8606133
    [52] 庄艳. 永磁伺服电动机电磁场与温度场耦合计算及冷却系统设计[D]. 沈阳: 沈阳工业大学, 2011.

    ZHUANG Yan. Coupling calculation of electromagnetic filed and cooling system design for PM servo motor[D]. Shenyang: Shenyang University of Technology, 2011. (in Chinese)
    [53] 鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201906004.htm

    BAO Xiao-hua, LIU Ji-wei, SUN Yue, et al. Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201906004.htm
    [54] LI Y X, ZHU Z Q. Cogging torque and unbalanced magnetic force prediction in PM machines with axial-varying eccentricity by superposition method[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. http://ieeexplore.ieee.org/document/7917249
    [55] ZHU Z Q, WU L J, MOHD JAMIL M L. Influence of pole and slot number combinations on cogging torque in permanent-magnet machines with static and rotating eccentricities[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3265-3277. doi: 10.1109/TIA.2014.2308363
    [56] YANG Hao-dong, CHEN Yang-sheng. Influence of radial force harmonics with low mode number on electromagnetic vibration of PMSM[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 38-45. doi: 10.1109/TEC.2013.2290304
    [57] 柯以诺. 永磁同步电机传动系统在电动车辆上的应用[J]. 大功率变流技术, 2009(5): 31-37. doi: 10.3969/j.issn.1671-8410-B.2009.05.008

    KE Yi-nuo. Application of PMSM drive system for electric vehicle[J]. High Power Converter Technology, 2009(5): 31-37. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2009.05.008
    [58] 冯江华. 高速动车组永磁同步牵引系统的研制[J]. 机车电传动, 2016(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604001.htm

    FENG Jiang-hua. Research on the permanent magnet synchronous motor drive system for high-speed EMUs[J]. Electric Drive for Locomotives, 2016(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604001.htm
    [59] 周永刚, 陈超录, 刘雄. 地铁永磁直驱牵引系统设计方法[J]. 机车电传动, 2015(6): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201506011.htm

    ZHOU Yong-gang, CHEN Chao-lu, LIU Xiong. Metro permanent magnet direct-driving traction system design method[J]. Electric Drive for Locomotives, 2015(6): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201506011.htm
    [60] 冯江华. 轨道交通永磁同步牵引系统的发展概况及应用挑战[J]. 大功率变流技术, 2012(3): 1-7. doi: 10.3969/j.issn.1671-8410-B.2012.03.003

    FENG Jiang-hua. Development overview and application challenges of permanent magnet synchronous traction system for rail transit[J]. High Power Converter Technology, 2012(3): 1-7. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2012.03.003
    [61] 冯江华, 桂卫华. 永磁同步电动机定子磁链观测方法研究[J]. 电气传动, 2008, 38(6): 20-22. doi: 10.3969/j.issn.1001-2095.2008.06.005

    FENG Jiang-hua, GUI Wei-hua. Research of stator flux observer of permanent magnet synchronous machines[J]. Electric Drive, 2008, 38(6): 20-22. (in Chinese) doi: 10.3969/j.issn.1001-2095.2008.06.005
    [62] DOU R J, SONG F Z, LIU H N, et al. Demagnetization quantification of PMSM based on support vector regression[C]//IEEE. 2018 Prognostics and System Health Management Conference. New York: IEEE, 2018: 619-623.
    [63] DANG L, BERNARD N, BRACIKOWSKI N, et al. Analytical model and reluctance network for high-speed PMSM design optimization application to electric vehicles[C]//IEEE. 2016 XXⅡ International Conference on Electrical Machines. New York: IEEE, 2016: 1359-1365.
    [64] FENG Guo-dong, LAI Chun-yan, KAR N C. An analytical solution to optimal stator current design for PMSM torque ripple minimization with minimal machine losses[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7655-7665. doi: 10.1109/TIE.2017.2694354
    [65] AZAR Z, ZHU Z Q, OMBACH G. Influence of electric loading and magnetic saturation on cogging torque, back-emf and torque ripple of PM machines[J]. IEEE Transactions on Magnetics, 2012, 48(10): 2650-2658. doi: 10.1109/TMAG.2012.2201493
    [66] ZHU Z Q, WU D, CHU W Q. On-load performance in IPM machines having different slot/pole number combinations considering local magnetic saturation[C]//IEEE. 2016 IEEE Vehicle Power and Propulsion Conference. New York: IEEE, 2016: 1-6.
    [67] DHULIPATI H, GHOSH E, MUKUNDAN S, et al. Advanced design optimization technique for torque profile improvement in six-phase PMSM using supervised machine learning for direct-drive EV[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2041-2051. doi: 10.1109/TEC.2019.2933619
    [68] BARCARO M, BIANCHI N. Interior PM machines using ferrite to replace rare-earth surface PM machines[J]. IEEE Transactions on Industry Applications, 2014, 50(2): 979-985. doi: 10.1109/TIA.2013.2272549
    [69] 许峻峰, 冯江华, 许建平. 永磁同步电动机控制策略综述[J]. 机车电传动, 2005(3): 7-11, 76. doi: 10.3969/j.issn.1000-128X.2005.03.002

    XU Jun-feng, FENG Jiang-hua, XU Jian-ping. Overview on control strategies of permanent magnet synchronous motor[J]. Electric Drive for Locomotives, 2005(3): 7-11, 76. (in Chinese) doi: 10.3969/j.issn.1000-128X.2005.03.002
    [70] BOLOGNANI S, PERETTI L, ZIGLIOTTO M. Design and implementation of model predictive control for electrical motor drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1925-1936. doi: 10.1109/TIE.2008.2007547
    [71] YANG Yong, WEN Hui-qing, FAN Ming-di, et al. A constant switching frequency model predictive control without weighting factors for T-type single-phase three-level inverters[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5153-5164. doi: 10.1109/TIE.2018.2868290
    [72] AGUIRRE M, KOURO S, ROJAS C A, et al. Switching frequency regulation for FCS-MPC based on a period control approach[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5764-5773. doi: 10.1109/TIE.2017.2777385
    [73] OIKONOMOU N, GUTSCHER C, KARAMANAKOS P, et al. Model predictive pulse pattern control for the five-level active neutral-point-clamped inverter[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2583-2592. doi: 10.1109/TIA.2013.2263273
    [74] 尚敬, 刘可安, 年晓红, 等. 牵引电动机无速度传感器及带速度重投控制[J]. 中国电机工程学报, 2006, 26(15): 118-123. doi: 10.3321/j.issn:0258-8013.2006.15.022

    SHANG Jing, LIU Ke-an, NIAN Xiao-hong, et al. Speed sensorless control and restarting at unknown speed of traction motor[J]. Proceedings of the CSEE, 2006, 26(15): 118-123. (in Chinese) doi: 10.3321/j.issn:0258-8013.2006.15.022
    [75] XU Dian-guo, WANG Bo, ZHANG Guo-qiang, et al. A review of sensorless control methods for AC motor drives[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 104-115. doi: 10.23919/TEMS.2018.8326456
    [76] BOLOGNANI S, OBOE R, ZIGLIOTTO M. Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 184-191. doi: 10.1109/41.744410
    [77] BOLOGNANI S, TUBIANA L, ZIGLIOTTO M. Extended Kalman filter tuning in sensorless PMSM drives[J]. IEEE Transactions on Industry Application, 2003, 39(6): 1741-1747. doi: 10.1109/TIA.2003.818991
    [78] 张晓光, 赵克, 孙力, 等. 永磁同步电机滑模变结构调速系统动态品质控制[J]. 中国电机工程学报, 2011, 31(15): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201115007.htm

    ZHANG Xiao-guang, ZHAO Ke, SUN Li, et al. Sliding mode control of permanent magnet synchronous motor based on a novel exponential reaching law[J]. Proceedings of the CSEE, 2011, 31(15): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201115007.htm
    [79] 刘颖, 周波, 方斯琛. 基于新型扰动观测器的永磁同步电机滑模控制[J]. 中国电机工程学报, 2010, 30(9): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201009013.htm

    LIU Ying, ZHOU Bo, FANG Si-chen. Sliding mode control of PMSM based on a novel disturbance observer[J]. Proceedings of the CSEE, 2010, 30(9): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201009013.htm
    [80] ZHU Ying, CHENG Ming, HUA Wei, et al. Sensorless control strategy of electrical variable transmission machines for wind energy conversion systems[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3383-3386. doi: 10.1109/TMAG.2013.2243904
    [81] 禹继贤, 颜钢锋, 张斌. 基于MRAS的永磁同步电机无传感器控制[J]. 机电工程, 2015, 32(9): 1222-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201509017.htm

    YU Ji-xian, YAN Gang-feng, ZHANG Bin. Sensorless control of permanent magnet synchronous motors based on MRAS[J]. Journal of Mechanical and Electrical Engineering, 2015, 32(9): 1222-1228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201509017.htm
    [82] ZHANG Guo-qiang, WANG Guo-lin, XU Dian-guo, et al. ADALINE-network-based PLL for position sensorless interior permanent magnet synchronous motor drives[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1450-1460. doi: 10.1109/TPEL.2015.2424256
    [83] LIN F J, HUNG Y C, CHEN J M, et al. Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1226-1241. doi: 10.1109/TII.2014.2305591
    [84] LIN F J, YANG K J, SUN I F, et al. Intelligent position control of permanent magnet synchronous motor using recurrent fuzzy neural cerebellar model articulation network[J]. IET Electric Power Applications, 2015, 9(3): 248-264. doi: 10.1049/iet-epa.2014.0088
    [85] GAO Shi-gen, DONG Hai-rong, NING Bin, et al. Nonlinear mapping-based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification[J]. IET Control Theory and Applications, 2018, 12(6): 819-827. doi: 10.1049/iet-cta.2017.0550
    [86] CORLEY M J, LORENZ R D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 784-789. doi: 10.1109/28.703973
    [87] 陈飞, 白连平, 张巧杰. 基于脉振高频信号注入法的PMSM无传感器控制[J]. 微电机, 2014, 47(1): 61-65, 70. doi: 10.3969/j.issn.1001-6848.2014.01.014

    CHEN Fei, BAI Lian-ping, ZHANG Qiao-jie. Sensorless control of permanent magnet synchronous motor based on fluctuating high-frequency signal injection[J]. Micromotors, 2014, 47(1): 61-65, 70. (in Chinese) doi: 10.3969/j.issn.1001-6848.2014.01.014
    [88] 刘海东, 周波, 郭鸿浩, 等. 脉振高频信号注入法误差分析[J]. 电工技术学报, 2015, 30(6): 38-44. doi: 10.3969/j.issn.1000-6753.2015.06.005

    LIU Hai-dong, ZHOU Bo, GUO Hong-hao, et al. Error analysis of high frequency pulsating signal injection method[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 38-44. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.06.005
    [89] THAN H, KUNG Y S, HUANG L C. Digital hardware implementation of a sensorless speed controller for PMSM drives using HF signal injection and EKF[C]//IEEE. Proceedings of the IEEE International Conference on Advanced Materials for Science and Engineering: Innovation, Science and Engineering, IEEE-ICAMSE 2016. New York: IEEE, 2016: 192-195.
  • 加载中
图(19)
计量
  • 文章访问数:  1238
  • HTML全文浏览量:  825
  • PDF下载量:  1002
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回