留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车轮踏面缺陷引起的轮轨动态响应综述

敬霖 刘凯

敬霖, 刘凯. 车轮踏面缺陷引起的轮轨动态响应综述[J]. 交通运输工程学报, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014
引用本文: 敬霖, 刘凯. 车轮踏面缺陷引起的轮轨动态响应综述[J]. 交通运输工程学报, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014
JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014
Citation: JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014

车轮踏面缺陷引起的轮轨动态响应综述

doi: 10.19818/j.cnki.1671-1637.2021.01.014
基金项目: 

国家自然科学基金项目 11772275

国家自然科学基金项目 51475392

四川省科技计划项目 2019YJ0212

牵引动力国家重点实验室自主课题 2019TPL_T11

详细信息
    作者简介:

    敬霖(1984-),男,四川南充人,西南交通大学研究员,工学博士,从事冲击动力学、轮轨动态接触与损伤行为、列车结构轻量化与耐撞性等研究

  • 中图分类号: U270.11

Review on wheel-rail dynamic responses caused by wheel tread defects

Funds: 

National Natural Science Foundation of China 11772275

National Natural Science Foundation of China 51475392

Sichuan Science and Technology Program 2019YJ0212

Independent Project of State Key Laboratory of Traction Power 2019TPL_T11

More Information
  • 摘要: 从滚动接触理论、试验与数值模拟三方面概述了轮轨关系研究现状,强调了轮轨滚动接触行为中轮轨材料动态力学性能的影响;总结了轮轨材料静动态力学性能与本构关系的相关成果;介绍了由车轮扁疤、踏面剥离/剥落、车轮多边形等典型踏面缺陷引起的轮轨动态响应研究,分析了车轮踏面缺陷对轮轨滚动接触行为和列车系统动力学性能的影响,以及车轮踏面缺陷的形成原因、影响规律与演变机理,重点关注了轮轨动态效应对高速轮轨滚动接触行为的影响;概括了车轮踏面缺陷的检测技术与减缓和防治措施。研究结果表明:车轮踏面缺陷致使轮轨冲击力显著增大,导致轮轨部件损伤和车体异常振动,严重影响车辆-轨道系统部件的使用寿命和列车动力学性能,甚至威胁列车运行安全;车轮踏面缺陷的成因与机理仍需进一步探究,车辆异常制动、轮轨低黏着状态均会导致车轮扁疤的产生,轮轨材料特性、轮轨间接触载荷、轮对共振、列车制动系统性能与线路运行条件/环境等均是导致车轮踏面发生剥离的主要影响因素,轮轴共振、轮轨摩擦振动、车轮制造镟修工艺等均与车轮多边形的形成有密切联系;改善轮轨材料的性能,控制轨道系统的支撑刚度/阻尼及轮轨间摩擦因数等均是抑制车轮踏面缺陷产生的有效途径。

     

  • 图  1  整车滚振试验台

    Figure  1.  Rolling and vibration test rig for vehicle

    图  2  轮轨滚动接触仿真模型

    Figure  2.  Simulation models of wheel-rail rolling contact

    图  3  D1车轮钢的应变率与温度依赖性及动态断裂机制

    Figure  3.  Strain rate, temperature dependence and dynamic fracture mechanism of D1 railway wheel steel

    图  4  车轮扁疤

    Figure  4.  Wheel flats

    图  5  轨顶压痕与应变片粘贴位置

    Figure  5.  Rail top's indentation and pasting positions of strain gauges

    图  6  测量轮轨冲击力试验线路与设备

    Figure  6.  Test line and equipment of measuring wheel-rail impact force

    图  7  新扁疤车轮与钢轨滚动接触过程

    Figure  7.  Rolling contact process of wheel-rail with a fresh flat

    图  8  车辆-轨道耦合模型

    Figure  8.  Vehicle-track coupling models

    图  9  车轮踏面剥离

    Figure  9.  Wheel tread spalling

    图  10  车轮材料微观结构

    Figure  10.  Microstructures of wheel material

    图  11  水分对剥离形成的促进过程

    Figure  11.  Promoting process of moisture on spalling forming

    图  12  轮轨接触模拟试验台

    Figure  12.  Wheel-rail contact simulation test rig

    图  13  车轮多边形

    Figure  13.  Wheel polygonizations

    图  14  车轮多边形测试

    Figure  14.  Test of wheel polygonization

    图  15  车轮多边形引起的内部噪声测试结果

    Figure  15.  Measurement results of interior noise caused by wheel polygonization

    图  16  基于车辆-轨道耦合模型的轨道动态性能分析流程

    Figure  16.  Analysis process of track dynamic performance based on vehicle-track coupling model

    图  17  车轮扁疤检测

    Figure  17.  Detection of wheel flat

    图  18  车轮多边形检测

    Figure  18.  Detection of wheel polygonization

    图  19  研磨子消除车轮多边形台架试验

    Figure  19.  Bench test of eliminating wheel polygonization by grinding

    表  1  国内外轮轨试验台及其主要技术参数

    Table  1.   Wheel-rail test rigs and main technical parameters at home and abroad

    设备名称 最高模拟速度/(km·h-1) 模拟工况 轨道轮直径/mm 模拟方式
    德国慕尼黑滚振试验台 500 测试机车车辆转向架、减振器、悬挂装置等参数对列车走行性能及运行品质的影响 1 400.0 轮-轮
    美国IIT-GMEMD轮轨模拟试验机 76 牵引、制动、蛇行运动与冲角模拟 914.4 轮-轮
    日本轮轨实物环形疲劳试验台 260 轮轨疲劳伤损与磨耗机理测试 轮-轨
    日本轮轨滚动试验台 250 不同载荷、润滑介质下,测试轮轨蠕滑特性/蠕滑力随蠕滑率的变化关系 860.0 轮-轮
    日本双筒式滚动试验台 70 模拟轮轨间的摩擦和磨耗 350.0 轮-轮
    日本新型轮轨蠕滑率测试装置 测试不同介质、摇头角对轮轨蠕滑力的影响 轮-轨
    英国Amsler蠕滑-磨耗试验机 测试轮轨磨耗率、轮轨蠕滑率与接触应力的关系 50.0 轮-轮
    德国RASP轮轨系统试验台 300 模拟不同材料下的轮轨磨耗与滚振 2 100.0 轮-轮
    德国道岔通过试验台 测试不同车轮和道岔材料匹配时轮轨磨损情况 轮-轨
    中国西南交通大学整车滚振试验台 600 车辆运行平稳性、稳定性、曲线通过能力、轮轨黏着利用、踏面磨损等试验测试 1 800.0 轮-轮
    中国铁科院高速轮轨关系试验台 500 高速、重载轮轨黏着/蠕滑、磨耗、疲劳等测试 3 000.0 轮-轮
    下载: 导出CSV

    表  2  轮轨接触仿真方法

    Table  2.   Simulation methods of wheel-rail contact

    仿真方法 优点 缺点
    多体动力学法 便于建立完整的列车-轨道耦合模型,方便考虑列车悬挂和动力学性能参数的影响,计算效率高 忽略了动态效应和材料力学性能;求解高频响应时精度降低;不能直接求解轮轨接触应力/应变状态
    静态有限元法 可以分析轮轨局部接触状态和应力/应变分布 不能反映轮轨间滚动接触状态
    多体动力学和有限元联合仿真法 兼具多体动力学法的主要优点,可以考虑轮轨系统及重要部件的柔性特征,计算效率降低 仍无法克服多体动力学法的局限性
    动态有限元法 能够很好地计及轮轨接触非线性和动态效应,可以反映材料力学性能(包括动态力学性能)的影响,能够直接求解轮轨接触应力/应变状态,且求解高频响应精度较高 建模较复杂,计算时间较长
    下载: 导出CSV

    表  3  车轮扁疤引起的轮轨冲击力变化趋势与动态增大系数

    Table  3.   Changing trends and DAFs of wheel-rail impact force caused by wheel flat

    文献 研究方法 扁疤类型 速度范围/(km·h-1) 冲击力随速度的变化趋势 DAF
    [60]、[61] 仿真 新扁疤 100~300 在150 km·h-1时有最大值 3.7
    [89] 仿真 新/旧扁疤 200~350 新扁疤:单调递减;旧扁疤:深度小于0.1 mm时单调递增,深度大于0.1 mm时单调递减 6.0
    [92] 理论/试验 旧扁疤 5~100 在40 km·h-1时出现峰值,在75 km·h-1时出现谷值 7.0
    [93] 理论/试验 旧扁疤 0~120 在20~30 km·h-1时出现峰值,在60 km·h-1时出现谷值 5.5
    [94] 试验 旧扁疤 0~130 在20~30 km·h-1时出现峰值,在40~60 km·h-1时出现谷值 2.7
    [103] 理论 旧扁疤 0~180 在25~40 km·h-1时出现峰值,在40 km·h-1时出现谷值 2.5
    [104] 理论 新/旧扁疤 0~150 新扁疤:在30~50km·h-1时有最大值;旧扁疤:单调递增 4.3
    [105] 理论 新扁疤 5~120 在20 km·h-1时出现峰值,在30 km·h-1时出现谷值 4.0
    [107] 理论 旧扁疤 0~140 在28 km·h-1时出现峰值,在60 km·h-1时出现谷值 5.0
    [109] 理论 旧扁疤 10~160 在30~50 km·h-1时出现峰值,但随扁疤深度增加近似呈线性变化 6.0
    [110] 理论 新/旧扁疤 10~200 近似单调递增 4.5
    [111] 理论 旧扁疤 10~150 在30~60 km·h-1时有最大值 2.7
    [112] 理论 新/旧扁疤 20~300 在35 km·h-1时出现峰值,旧扁疤在85 km·h-1时出现谷值,而新扁疤在55 km·h-1时出现谷值 3.4
    [114] 仿真 旧扁疤 0~160 在30和150 km·h-1时出现峰值,在50 km·h-1时出现谷值 5.4
    [118] 仿真 新/旧扁疤 20~300 新扁疤:在50~100 km·h-1时有最大值;旧扁疤:单调递增 7.5
    [120] 仿真 新扁疤 100~350 在175~250 km·h-1时有最大值 5.6
    [121] 仿真 新扁疤 60~160 在100km·h-1时有最大值 5.0
    [125] 仿真 旧扁疤 10~400 在20和140 km·h-1时出现峰值;在60 km·h-1时出现谷值 3.8
    [127] 仿真 旧扁疤 20~400 在30 km·h-1时有最大值 3.6
    下载: 导出CSV
  • [1] 张雪珊, 肖新标, 金学松. 高速车轮椭圆化问题及其对车辆横向稳定性的影响[J]. 机械工程学报, 2008, 44(3): 50-56. doi: 10.3321/j.issn:0577-6686.2008.03.009

    ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influences of high speed railway wheels ovalization on vehicle lateral stability[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 50-56. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.009
    [2] 刘逍远. 铁路车轮非圆化对车辆一轨道系统动力学行为的影响[D]. 成都: 西南交通大学, 2012.

    LIU Xiao-yuan. Influence of out-of-round railway wheel on vehicle-track system dynamic behavior[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [3] NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Journal of Rail and Rapid Transit, 2000, 214: 79-91. doi: 10.1243/0954409001531351
    [4] TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, DOI: 10.1007/s40534-020-00222-x.
    [5] 闫子全, 孙林林, 肖俊恒, 等. 高速铁路公务工程前沿基础理论与科学问题-轮轨关系[J]. 铁道建筑, 2018, 58(11): 13-19. doi: 10.3969/j.issn.1003-1995.2018.11.03

    YAN Zi-quan, SUN Lin-lin, XIAO Jun-heng, et al. Cutting-edge theory and scientific problems of high speed railway maintenance engineering: wheel-rail interaction[J]. Railway Engineering, 2018, 58(11): 13-19. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.11.03
    [6] HERTZ H. Ueber die Berührung fester elastischer Körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 1882, 92: 156-171. http://www.degruyter.com/view/j/crll.1882.issue-92/crll.1882.92.156/crll.1882.92.156.xml?format=PAP
    [7] KNOTHE K. History of wheel/rail contact mechanics: from Redtenbacher to Kalker[J]. Vehicle System Dynamics, 2008, 46(1/2): 9-26. doi: 10.1080/00423110701586469
    [8] AYASSE J B, CHOLLET H. Wheel-Rail Contact Handbook of Railway Vehicle Dynamics[M]. Boca Raton: FL CRC Press, 2006.
    [9] KALKER J J. Survey of wheel-rail rolling contact theory[J]. Vehicle System Dynamics, 1979, 8(4): 317-358. doi: 10.1080/00423117908968610
    [10] CARTER F W. On the action of locomotive driving wheel[J]. Proceeding of Royal Society of London, 1926, 112(760): 151-157.
    [11] PIOTROWSKI J, CHOLLET H. Wheel-rail contact models for vehicle system dynamics including multi-point contact[J]. Vehicle System Dynamics, 2005, 43(6/7): 455-483. doi: 10.1080/00423110500141144?tab=permissions
    [12] JOHNSON K L. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25(3): 339-346. http://www.ams.org/mathscinet-getitem?mr=102215
    [13] VERMEULEN P L, JOHNSON K L. Contact of non-spherical bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964(31): 338-340. http://adsabs.harvard.edu/abs/1964JAM....31..338V
    [14] 孔祥安, 江晓禹, 金学松. 固体接触力学[M]. 北京: 中国铁道出版社, 1999.

    KONG Xing-an, JIANG Xiao-yu, JIN Xue-song. Solid Contact Mechanics[M]. Beijing: China Railway Publishing House, 1999. (in Chinese)
    [15] 金学松, 张立民. 轮轨蠕滑力分析计算中几种蠕滑动力模型的比较[J]. 铁道学报, 1998, 20(增): 56-61.

    JIN Xue-song, ZHANG Li-min. A comparison of important creep-force models in the analysis of wheel-rail rolling contact[J]. Journal of the China Railway Society, 1998, 20(S): 56-61. (in Chinese)
    [16] KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. Netherlands: Delft University of Technology, 1967.
    [17] 金学松. 轮轨蠕滑理论及其试验研究[D]. 成都: 西南交通大学, 1999.

    JIN Xue-song. Study on creep theory of wheel and rail system and its experiment[D]. Chengdu: Southwest Jiaotong University, 1999. (in Chinese)
    [18] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
    [19] KALKER J J. Wheel-rail rolling contact theory[J]. Wear, 1991, 144(1): 243-261. http://www.sciencedirect.com/science/article/pii/B9780444887740500201
    [20] VOLLEBREGT E, IWNICKI S, SHACKLETON P. Assessing the accuracy of different simplified frictional rolling contact algorithms[J]. Vehicle System Dynamics, 2012, 50(1): 1-17. doi: 10.1080/00423114.2011.552618
    [21] SHEN Z Y, HERDRICK J K, ELKINS J A. A comparison of alternative creep-force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83. doi: 10.1080/00423118308968725
    [22] SHEN Zhi-yun, LI Zi-li. A fast non-steady state creep force model based on the simplified theory[J]. Wear, 1996, 191(1/2): 242-244. http://www.sciencedirect.com/science/article/pii/0043164895066926
    [23] LI Zi-li. Wheel-rail rolling contact and its application to wear simulation[D]. Netherlands: Delft University of Technology, 2002.
    [24] POLACH O. Fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 2000, 33(S1): 728-739. http://www.mendeley.com/research/fast-wheelrail-forces-calculation-computer-code-bt-16th-lavsd-symposium-dynamics-vehicles-roads-trac/
    [25] 金学松, 张卫华. 非赫兹接触轮轨力数表TPLR的研究[J]. 西南交通大学学报, 1996, 31(6): 646-651. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT606.011.htm

    JIN Xue-song, ZHANG Wei-hua. Development of wheel/rail non-Hertzian contact creep force table[J]. Journal of Southwest Jiaotong University, 1996, 31(6): 646-651. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT606.011.htm
    [26] PASCAL J P. About multi-Hertzian-contact hypothesis and equivalent conicity in the case of S1002 and UIC60 analytical wheel/rail profiles[J]. Vehicle System Dynamics, 1993, 22(2): 57-78. doi: 10.1080/00423119308969021
    [27] 丁军君. 基于蠕滑机理的重载货车车轮磨耗研究[D]. 成都: 西南交通大学, 2012.

    DING Jun-jun. Research on wheel wear of heavy haul freight car based on the creep mechanism[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [28] PIOTROWSKI J, CHOLLET H. Wheel-rail contact models for vehicle system dynamics including multi-point contact[J]. Vehicle system dynamics, 2005, 43(6/7): 455-483. doi: 10.1080/00423110500141144?tab=permissions
    [29] LINDER C H. Verschleiß von eisenbahnrädern mit unrundheiten[D]. Zurich: Eidgenössische Technische Hochschule Zürich, 1997.
    [30] PIOTROWSKI J, KIK W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle System Dynamics, 2008, 46(1/2): 27-48. doi: 10.1080/00423110701586444?cookieSet=1
    [31] LIU Bin-bin, BRUNI S, VOLLEBREGT E. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw[J]. Vehicle System Dynamics, 2016, 54(9): 1226-1246. doi: 10.1080/00423114.2016.1196823
    [32] AYASSE J B, CHOLLET H. Determination of the wheel rail contact patch in semi-Hertzian conditions[J]. Vehicle System Dynamics, 2005, 43(3): 161-172. doi: 10.1080/00423110412331327193
    [33] SICHANI M S, ENBLOM R, BERG M. A novel method to model wheel-rail normal contact in vehicle dynamics simulation[J]. Vehicle System Dynamics, 2014, 52(12): 1752-1764. doi: 10.1080/00423114.2014.961932
    [34] SUN Yu, ZHAI Wan-ming, GUO Yu. A robust non-Hertzian contact method for wheel-rail normal contact analysis[J]. Vehicle System Dynamics, 2018, 56(12): 1899-1921. doi: 10.1080/00423114.2018.1439587
    [35] SICHANI M S, ENBLOM R, BERG M. An alternative to FASTSIM for tangential solution of the wheel-rail contact[J]. Vehicle System Dynamics, 2016, 54(6): 748-764. doi: 10.1080/00423114.2016.1156135
    [36] SICHANI M S, ENBLOM R, BERG M. A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation[J]. Wear, 2016, 366/367: 123-130. doi: 10.1016/j.wear.2016.06.015
    [37] PIOTROWSKI J, LIU Bin-bin, BRUNI S. The Kalker book of tables for non-Hertzian contact of wheel and rail[J]. Vehicle System Dynamics, 2017, 55(6): 875-901. doi: 10.1080/00423114.2017.1291980
    [38] 汪登荣. 新型轮轨关系试验台研究[D]. 成都: 西南交通大学, 2012.

    WANG Deng-rong. Research on a new wheel and rail relationship test-rig[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [39] 严隽耄, 王开文, 傅茂海. 机车车辆轮-轮与轮-轨接触关系的比较[J]. 铁道学报, 1994, 16: 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB4S1.002.htm

    YAN Jun-mao, WANG Kai-wen, FU Mao-hai. A comparison of rail vehicle wheel-rail and wheel-roller contact relations[J]. Journal of the China Railway Society, 1994, 16: 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB4S1.002.htm
    [40] MATSUMOTO A, SATO Y, NAKATA M, et al. Wheel-rail contact mechanics at full scale on the test stand[J]. Wear, 1996, 191(1/2): 101-106. http://www.sciencedirect.com/science/article/pii/0043164895067108
    [41] DOIH, MIYAMOTO T, NISHIYAMA Y, et al. A new experimental device to investigate creep forces between wheel and rail[J]. Wear, 2011, 271: 40-46. doi: 10.1016/j.wear.2010.10.026
    [42] CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. An experimental study of high speed wheel-rail adhesion characteristics in wet condition on full scale roller rig[J]. Wear, 2019, 440: 203092. http://www.sciencedirect.com/science/article/pii/S0043164818314455
    [43] BAEK K, KYOGOKU K, NAKAHARA T. An experimental investigation of transient traction characteristics in rolling-sliding wheel/rail contacts under dry-wet conditions[J]. Wear, 2007, 263: 169-179. doi: 10.1016/j.wear.2007.01.067
    [44] ZHU Y, CHEN X, WANG W, et al. A study on iron oxides and surface roughness in dry and wet wheel-rail contacts[J]. Wear, 2015, 328: 241-248. http://www.sciencedirect.com/science/article/pii/S0043164815001349
    [45] CHEN H, BAN T, ISHIDA M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions[J]. Wear, 2008, 265(9/10): 1504-1511. http://www.mendeley.com/research/experimental-investigation-influential-factors-adhesion-between-wheel-rail-under-wet-conditions/
    [46] EGANA J I, VINOLAS J, NEGRETE G N. Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation[J]. Tribology International, 2005, 38(8): 769-774. doi: 10.1016/j.triboint.2004.11.006
    [47] NIELSEN J C O. High-frequency vertical wheel-rail contact forces-Validation of a prediction model by field testing[J]. Wear, 2008, 265(9/10): 1465-1471. http://www.sciencedirect.com/science/article/pii/S0043164808001701
    [48] YE Yun-guang, SHI Da-chuan, KRAUSE P, et al. Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics, 2020, 58(10): 1575-1604. doi: 10.1080/00423114.2019.1636098
    [49] JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834. doi: 10.1080/00423114.2012.695022
    [50] QU Sheng, ZHU Bin, ZENG Jing, et al. Experimental investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1772984.
    [51] 宋志坤, 岳仁法, 胡晓依, 等. 车轮多边形对车辆振动及轮轨力的影响[J]. 北京交通大学学报, 2017, 41(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htm

    SONG Zhi-kun, YUE Ren-fa, HU Xiao-yi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htm
    [52] 张浩然. 车轮多边形对高速列车振动响应和构架疲劳寿命影响研究[D]. 北京: 北京交通大学, 2018.

    ZHANG Hao-ran. Research on the effect of wheel polygon on vibration response and frame fatigue life of high-speed train[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [53] WEI Zi-long, SHEN Chen, LI Zi-li, et al. Wheel-rail impact at crossings: relating dynamic frictional contact to degradation[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 041016. doi: 10.1115/1.4035823
    [54] 宋志坤, 孙琛, 成棣, 等. 车轮型面圆弧参数及其对轮轨接触和车辆动力学影响研究[J]. 中国铁道科学, 2019, 40(6): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906014.htm

    SONG Zhi-kun, SUN Chen, CHENG Di, et al. Research on arc parameters of wheel profile and its influence on wheel-rail contact vehicle dynamics[J]. China Railway Science, 2019, 40(6): 104-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906014.htm
    [55] ANTUNES P, MAGALHAES H, AMBROSIO J, et al. A co-simulation approach to the wheel-rail contact with flexible railway track[J]. Multibody System Dynamics, 2019, 45(2): 245-272. doi: 10.1007/s11044-018-09646-0
    [56] ZHAO Xin, LI Zi-li. The solution of frictional wheel-rail rolling contact with a 3D transient finite element model: Validation and error analysis[J]. Wear, 2011, 271(1/2): 444-452. http://www.sciencedirect.com/science/article/pii/S0043164810003418
    [57] MAGEL E E, LIU Y. On some aspects of the wheel/rail interaction[J]. Wear, 2014, 314(1/2): 132-139.
    [58] WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462. doi: 10.1016/j.applthermaleng.2016.12.136
    [59] 赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318001.htm

    ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318001.htm
    [60] JING Lin, HAN Liang-liang. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress[J]. Vehicle System Dynamics, 2017, 55(12): 1946-1972. doi: 10.1080/00423114.2017.1340651
    [61] HAN Liang-liang, JING Lin, ZHAO Long-mao. Finite element analysis of the wheel-rail impact behavior induced by a wheel flat for high-speed trains: the influence of strain rate[J]. Journal of Rail and Rapid Transit, 2018, 232(4): 990-1004. doi: 10.1177/0954409717704790
    [62] LIU Kai, JING Lin. A finite element analysis-based study on the dynamic wheel-rail contact behavior caused by wheel polygonization[J]. Journal of Rail and Rapid Transit, 2020, 234(10): 1285-1298. doi: 10.1177/0954409719891549
    [63] 寇峻瑜, 赵鑫, 张鹏, 等. 高速滚滑下轮轨表层材料的应变率水平估计[J]. 工程力学, 2019, 36(4): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904027.htm

    KOU Jun-yu, ZHAO Xin, ZHANG Peng, et al. Estimation of strain rates for wheel-rail surface materials under high-speed rolling-sliding contact[J]. Engineering Mechanics, 2019, 36(4): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904027.htm
    [64] AGLAN H A, LIU Z Y, HASSAN M F, et al. Mechanical and fracture behavior of bainitic rail steel[J]. Journal of Materials Processing Technology, 2004, 151(1/2/3): 268-274. http://www.sciencedirect.com/science/article/pii/S0924013604003905
    [65] ZHANG M R, GU H C. Fracture toughness of nanostructured railway wheels[J]. Engineering Fracture Mechanics, 2008, 75(18): 5113-5121. doi: 10.1016/j.engfracmech.2008.07.007
    [66] 张青松, 李国栋, 戴光泽, 等. 1050车轮钢组织和力学性能各向异性的研究[J]. 中国材料进展, 2017, 36(6): 461-466. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201706011.htm

    ZHANG Qing-song, LI Guo-dong, DAI Guang-ze, et al. Investigation on anisotropic microstructure and mechanical properties of 1050 wheel steel[J]. Materials China, 2017, 36(6): 461-466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201706011.htm
    [67] 王强, 赵永翔, 王欢. 铁路D1车轮钢的疲劳可靠性寿命与强度的试验及表征[J]. 机械工程学报, 2014, 37(14): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414007.htm

    WANG Qiang, ZHAO Yong-xiang, WANG Huan. Experiments and characteristic on the probabilistic fatigue lives and strengths of D1 railway wheel steel[J]. Journal of Mechanical Engineering, 2014, 37(14): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414007.htm
    [68] 田越, 程育仁. U71Mn轨钢拉伸应力应变曲线的Ramberg-Osgood模型拟合[J]. 物理测试, 1991(5): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLCS199105014.htm

    TIAN Yue, CHENG Yu-ren. Fitting of tensile stress-strain curves of U71Mn rail steel using the Ramberg-Osgood model[J]. Physics Examination and Testing, 1991(5): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLCS199105014.htm
    [69] 宿皓, 陈林, 郭飞翔, 等. U75V重轨钢的疲劳寿命分析[J]. 内蒙古科技大学学报, 2017, 36(4): 347-350. https://www.cnki.com.cn/Article/CJFDTOTAL-BTGX201704009.htm

    SU Hao, CHEN Lin, GUO Fei-xiang, et al. Fatigue life analysis of U75V heavy rail steel[J]. Journal of Inner Mongolia University of Science and Technology, 2017, 36(4): 347-350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BTGX201704009.htm
    [70] 徐周, 王德永, 陈开来, 等. 微镁处理对车轮钢组织与性能的调控作用[J]. 钢铁研究学报, 2018, 30(8): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201808007.htm

    XU Zhou, WANG De-yong, CHEN Kai-lai, et al. Effect of magnesium addition on microstructure and mechanical properties in wheel steel[J]. Journal of Iron and Steel Research, 2018, 30(8): 633-641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201808007.htm
    [71] 龚帅, 任学冲, 马英霞, 等. 热处理工艺对高速车轮钢显微组织和断裂韧性的影响[J]. 材料热处理学报, 2015, 36(4): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201504026.htm

    GONG Shuai, REN Xue-chong, MA Ying-xia, et al. Effect of heat-treatment on microstructure and fracture toughness of high-speed railway wheel steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(4): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201504026.htm
    [72] DHUA S K, RAY A, SEN S K, et al. Influence of nonmetallic inclusion characteristics on the mechanical properties of rail steel[J]. Journal of Materials Engineering and Performance, 2000, 9(6): 700-709. doi: 10.1361/105994900770345584
    [73] 程育仁, 彭湘, 侯炳麟, 等. 轨钢在冲击载荷作用下表面裂纹的扩展行为[J]. 铁道学报, 1991, 13(4): 87-92. doi: 10.3321/j.issn:1001-8360.1991.04.012

    CHENG Yu-ren, PENG Xiang, HOU Bing-lin, et al. The growth behavior of fatigue surface cracks in rail steel under an impact load[J]. Journal of the China Railway Society, 1991, 13(4): 87-92. (in Chinese) doi: 10.3321/j.issn:1001-8360.1991.04.012
    [74] NAKKALIL R, HOMADAY J R, BASSIM M N. Characterization of the compression properties of rail steels at high temperatures and strain rates[J]. Material Science and Engineering: A, 1991, 141(2): 247-260. doi: 10.1016/0921-5093(91)90774-H
    [75] 田越, 程育仁, 刘学文. 高应变率下U71Mn轨钢动态力学性能研究[J]. 中国铁道科学, 1992, 13(2): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199202004.htm

    TIAN Yue, CHENG Yu-ren, LIU Xue-wen. Studies on the dynamic behavior of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13(2): 34-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199202004.htm
    [76] 汪振兴, 田晓耕, 干聪, 等. 单轴压缩下U75V钢动态力学行为及其修正J-C本构模型[J]. 材料热处理学报, 2019, 40(7): 156-164. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201907029.htm

    WANG Zhen-xing, TIAN Xiao-geng, GAN Cong, et al. Dynamic mechanical behavior of U75V steel under uniaxial compression and its modified J-C constitutive model[J]. Transactions of Materials and Heat Treatment, 2019, 40(7): 156-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201907029.htm
    [77] LIU Pei-jie, QUAN Yan-ming, DING Guo. Dynamic mechanical characteristics and constitutive modeling of rail steel over a wide range of temperatures and strain rates[J]. Advances in Materials Science and Engineering, 2019, 2019: 6862391. http://www.researchgate.net/publication/331578116_Dynamic_Mechanical_Characteristics_and_Constitutive_Modeling_of_Rail_Steel_over_a_Wide_Range_of_Temperatures_and_Strain_Rates
    [78] JING Lin, HAN Liang-liang, ZHAO Long-mao, et al. The dynamic tensile behavior of railway wheel steel at high strain rates[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4959-4966. doi: 10.1007/s11665-016-2359-y
    [79] JING Lin, SU Xing-ya, ZHAO Long-mao. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range strain rates and temperatures[J]. Results in Physics, 2017, 7: 1452-1461. doi: 10.1016/j.rinp.2017.04.015
    [80] 韩亮亮, 张莹, 敬霖, 等. 不同应变速率下D1车轮钢的拉伸性能与断口形貌[J]. 机械工程材料, 2016, 40(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201611005.htm

    HAN Liang-liang, ZHANG Ying, JING Lin, et al. Tensile properties and fractography of D1 wheel steel at different strain rates[J]. Materials for Mechanical Engineering, 2016, 40(11): 16-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201611005.htm
    [81] HAN Liang-liang, JING Lin, WEI Hua-cheng, et al. Experimental characterization of the dynamic compressive properties of railway wheel steel[J]. Materials Science Forum, 2016, 867: 29-33. doi: 10.4028/www.scientific.net/MSF.867.29
    [82] SU Xing-ya, ZHOU Lun, JING Lin. et al. Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015-2025. doi: 10.1007/s11665-020-04720-1
    [83] 苏兴亚. 复杂载荷下高速轮/轨钢的动态力学行为与本构关系[D]. 成都: 西南交通大学, 2019.

    SU Xing-ya. The dynamic mechanical behavior and constitutive relationship of high-speed wheel/rail steels under complex loadings[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [84] 任学冲, 齐冀, 张斌, 等. 温度及应变速率对高速车轮钢形变行为的影响[J]. 中国铁道科学, 2015, 36(3): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503015.htm

    REN Xue-chong, QI Ji, ZHANG Bin, et al. Influence of temperature and strain rate on deformation behavior of high speed wheel steel[J]. China Railway Science, 2015, 36(3): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503015.htm
    [85] 钱利锋, 侯英玮. U75V钢流动应力的试验研究[J]. 锻压技术, 2009, 34(5): 132-135. doi: 10.3969/j.issn.1000-3940.2009.05.035

    QIAN Li-feng, HOU Ying-wei. Experimental research on flow stress of U75V steel[J]. Forging and Stamping Technology, 2009, 34(5): 132-135. (in Chinese) doi: 10.3969/j.issn.1000-3940.2009.05.035
    [86] WANG Jian-jun, GUO Wei-guo, GAO Xiao-sheng, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates[J]. International Journal of Plasticity, 2015, 65: 85-107. doi: 10.1016/j.ijplas.2014.08.017
    [87] OLOFSSON U, SUNDYALL K. Influence of leaf, humidity and applied lubrication on friction in the wheel-rail contact: pin-on-disc experiments[J]. Journal of Rail and Rapid Transit, 2004, 218(3): 235-242. doi: 10.1243/0954409042389364
    [88] KUMAGAI N, ISHIKAWA H, HAGA K, et al. Factors of wheel flats occurrence and preventive measures[J]. Wear, 1991, 144(1): 277-287. http://www.sciencedirect.com/science/article/pii/B9780444887740500225
    [89] 凌亮, 曹亚博, 肖新标, 等. 车轮擦伤对高速轮轨接触行为的影响[J]. 铁道学报, 2015, 37(7): 32-39. doi: 10.3969/j.issn.1001-8360.2015.07.006

    LING Liang, CAO Ya-bo, XIAO Xin-biao, et al. Effect of wheel flats on the high-speed wheel-rail contact behavior[J]. Journal of the China Railway Society, 2015, 37(7): 32-39. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.07.006
    [90] STEENBERGEN M J M M. The role of the contact geometry in wheel-rail impact due to wheel flats: Part Ⅱ[J]. Vehicle System Dynamics, 2008, 46(8): 713-717. doi: 10.1080/00423110701584027
    [91] AAR. Effect of flat wheels on track and equipment[R]. Washington DC: AAR, 1952.
    [92] JOHANSSON A, NIELSEN J C O. Out-of-round railway wheels-wheel rail contact forces and track response derived from field tests and numerical simulations[J]. Journal of Rail and Rapid Transit, 2003, 217(2): 135-146. doi: 10.1243/095440903765762878
    [93] NEWTON S G, CLARK R A. An investigation into the dynamic effects on the track of wheel flats on railway vehicles[J]. Journal of Mechanical Engineering Science, 1979, 21(4): 287-297. doi: 10.1243/JMES_JOUR_1979_021_046_02
    [94] FERMER M, NIELSEN J C O. Wheel/rail contact forces for flexible versus solid wheels due to tread irregularities[J]. Vehicle System Dynamics, 1994, 23(1): 142-157. doi: 10.1080/00423119308969511
    [95] CHEN Y Z, HE C G, ZHAO X J, et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel[J]. Engineering Failure Analysis, 2018, 93: 183-199. doi: 10.1016/j.engfailanal.2018.07.006
    [96] JERJEUS J, ODENMARCK C, LUNDEN R, et al. Full-scale railway wheel flat experiments[J]. Journal of Rail and Rapid Transit, 1998, 213(1): 1-13.
    [97] 翟婉明. 铁路车轮扁疤的动力学效应[J]. 铁道车辆, 1994(7): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htm

    ZHAI Wan-ming. Dynamic effect of railway wheel flat[J]. Rolling Stock, 1994(7): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htm
    [98] VER I L, VENTRES C S, MYLES M M. Wheel/rail noise- Part Ⅲ: impact noise generation by wheel and rail discontinuities[J]. Journal of Sound and Vibration, 1976, 46(3): 395-417. doi: 10.1016/0022-460X(76)90863-4
    [99] 王其昌. 车轮扁疤冲击分析[J]. 西南交通大学学报, 1991, 26(4): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199104006.htm

    WANG Qi-chang. Analysis of impact influence of wheel tread flat spot on railway track[J]. Journal of Southwest Jiaotong University, 1991, 26(4): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199104006.htm
    [100] 王建斌, 邬平波, 唐兆. 车轮扁疤引发附加冲击力对车轴应力谱影响的研究[J]. 铁道学报, 2006, 28(1): 39-43. doi: 10.3321/j.issn:1001-8360.2006.01.009

    WANG Jian-bin, WU Ping-bo, TANG Zhao. Research on the axle stress spectrum considering extra wheelflat impact forces[J]. Journal of the China Railway Society, 2006, 28(1): 39-43. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.01.009
    [101] STEENBERGEN M J M M. The role of the contact geometry in wheel-rail impact due to wheel flats[J]. Vehicle System Dynamics, 2007, 45(12): 1097-1116. doi: 10.1080/00423110701199982
    [102] BOGDEVICIUS M, ZYGIENE R, BUREIKA G, et al. An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel flat[J]. Vehicle System Dynamics, 2016: 689-705. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7c90be3562c76a80c0800ac27c5d092a
    [103] JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic loads[J]. Railway Engineering Journal, 1974, 3(1): 2-16. http://www.researchgate.net/publication/279904808_the_effect_of_track_and_vehicle_parameters_on_wheelrail_vertical_dynamic_loads
    [104] WU T X, THOMPSON D J. A hybrid model for the noise generation due to railway wheel flats[J]. Journal of Sound and Vibration, 2002, 251(1): 115-139. doi: 10.1006/jsvi.2001.3980
    [105] NIELSEN J C O, IGELAND A. Vertical dynamic interaction between train and track influence of wheel and track imperfections[J]. Journal of Sound and Vibration, 1995, 187(5): 825-839. doi: 10.1006/jsvi.1995.0566
    [106] 姜涛, 孙守光, 缪龙秀, 等. 车轮扁疤动力冲击的仿真研究及其检测原理[J]. 铁道车辆, 1998, 36(5): 25-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL805.006.htm

    JIANG Tao, SUN Shou-guang, MIAO Long-xiu, et al. The emulation research for the dynamic impact by the wheel flat and the inspection principles[J]. Rolling Stock, 1998, 36(5): 25-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL805.006.htm
    [107] DUKKIPATI R V, DONG R. Impact loads due to wheel flats and shells[J]. Vehicle System Dynamics, 1999, 31(1): 1-22. doi: 10.1076/vesd.31.1.1.2097
    [108] UZZAL R U A, AHMED A K W, RAKHEJA S. Analysis of pitch plane railway vehicle-track interactions due to single and multiple wheel flats[J]. Journal of Rail and Rapid Transit, 2009, 223(F4): 375-390. http://www.researchgate.net/publication/239407018_Analysis_of_pitch_plane_railway_vehicletrack_interactions_due_to_single_and_multiple_wheel_flats
    [109] UZZAL R U A, AHMED A K W, BHAT R B. Modelling, validation and analysis of a three-dimensional railway vehicle-rack system model with linear and nonlinear track properties in the presence of wheel flats[J]. Vehicle System Dynamics, 2013, 51(11): 1659-1721. doi: 10.1080/00423114.2013.822987
    [110] BAEZA L, RODA A, CARBALLEIRA J, et al. Railway train-track dynamics for wheelflats with improved contact models[J]. Nonlinear Dynamics, 2006, 45(3): 385-397. doi: 10.1007/s11071-005-9014-8
    [111] ZHU J J, AHMED W, RAKHEJA S, et al. Impact load due to railway wheels with multiple flats predicted using an adaptive contact model[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223: 391-403. doi: 10.1243/09544097JRRT258
    [112] PIERINGER A, KROPP W, NIELSEN J C O. The influence of contact modelling on simulated wheel/rail interaction due to wheel flats[J]. Wear, 2014, 314(1): 273-281. http://www.sciencedirect.com/science/article/pii/S0043164813006017
    [113] FORD R A J, THOMPSON D J. Simplified contact filters in wheel rail noise prediction[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 807-818. http://www.sciencedirect.com/science/article/pii/S0022460X05007704
    [114] ZHAI Wan-ming, CAI Cheng-biao, WANG Qi-chang, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds[J]. Journal of Rail and Rapid Transit, 2001, 215(2): 125-135. doi: 10.1243/0954409011531459
    [115] 杨新文, 翟婉明. 高速铁路轮轨噪声理论计算与控制研究[J]. 中国铁道科学, 2011, 32(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201101026.htm

    YANG Xin-wen, ZHAI Wan-ming. Theoretical calculation and control study on the wheel/rail noises of high speed railway[J]. China Railway Science, 2011, 32(1): 133-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201101026.htm
    [116] 张大伟, 王开云, 翟婉明. 30 t轴重货车-重载铁路车轮扁疤动力效应分析[J]. 西南科技大学学报, 2015, 30(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201504004.htm

    ZHANG Da-wei, WANG Kai-yun, ZHAI Wan-ming. Effect of wheel flats on wheel/rail dynamic interaction in 30-ton heavy-haul railway[J]. Journal of Southwest University of Science and Technology, 2015, 30(4): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201504004.htm
    [117] LIU Yang, LIU Jian-xin, GUO Yu-jiang. Study on dynamic simulation input form of locomotive wheel flat[J]. Applied Mechanics and Materials, 2012, 215/216: 946-949. doi: 10.4028/www.scientific.net/AMM.215-216.946
    [118] 王忆佳, 曾京, 高浩, 等. 车轮扁疤引起的轮轨冲击分析[J]. 西南交通大学学报, 2014, 49(4): 700-705. doi: 10.3969/j.issn.0258-2724.2014.04.022

    WANG Yi-jia, ZENG Jing, GAO Hao, et al. Analysis of wheel/rail impact induced by wheel flats[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 700-705. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.04.022
    [119] 张涛, 陈再刚, 翟婉明, 等. 车轮扁疤冲击下重载机车齿轮传动系统动态特性分析[J]. 科学通报, 2019, 64(25): 2566-2572. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925003.htm

    ZHANG Tao, CHEN Zai-gang, ZHAI Wan-ming, et al. Dynamic performance of gear transmission system in a heavy-haul locomotive under wheel flat impact[J]. Chinese Science Bulletin, 2019, 64(25): 2566-2572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925003.htm
    [120] REN Zun-song. An investigation on wheel/rail impact dynamics with a three-dimensional flat model[J]. Vehicle System Dynamics, 2018, 57(3): 369-388. doi: 10.1080/00423114.2018.1469774
    [121] BIAN Jian, GU Yuan-tong, MURRAY M H. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis[J]. Vehicle System Dynamics, 2013, 51(6): 784-797. doi: 10.1080/00423114.2013.774031
    [122] KANOJE N K, SHARMA S C, HARSHA S P. Wheel-rail and wheel-flat as a coupled system: Contact dynamics modeling with finite element analysis[J]. Journal of Coupled Systems and Multiscale Dynamics, 2014, 2(1): 20-27. doi: 10.1166/jcsmd.2014.1036
    [123] JING Lin, LIU Zhuo, LIU Kai. A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1815809.
    [124] 刘卓, 敬霖. 基于位移激励法车轮扁疤引起的轮轨动态响应有限元分析[J]. 机械, 2020, 47(6): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202006006.htm

    LIU Zhuo, JING Lin. Finite element analysis of the dynamic wheel-rail response by wheel flat based on displacement excitation method[J]. Machinery, 2020, 47(6): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202006006.htm
    [125] WU Xing-wen, RAKHEJA S, AHMED A K W, et al. Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat[J]. Journal of Rail and Rapid Transit, 2018, 232(4): 1033-1048. doi: 10.1177/0954409717708895
    [126] 邹航宇, 张卫华, 王志伟. 车轮扁疤对高速列车齿轮箱动态特性影响分析[J]. 铁道机车车辆, 2018, 38(3): 29-33, 40. doi: 10.3969/j.issn.1008-7842.2018.03.06

    ZOU Hang-yu, ZHANG Wei-hua, WANG Zhi-wei. Influence analysis of wheel flat on dynamic characteristics of high-speed train gearbox[J]. Railway Locomotive and Car, 2018, 38(3): 29-33, 40. (in Chinese) doi: 10.3969/j.issn.1008-7842.2018.03.06
    [127] 杨光, 任尊松, 袁雨青. 车轮扁疤伤损对高速列车轮对动力学性能影响[J]. 北京交通大学学报, 2018, 42(3): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201803014.htm

    YANG Guang, REN Zun-song, YUAN Yu-qing. Influence of wheel flat on dynamic performance of high-speed train wheelset[J]. Journal of Beijing Jiaotong University, 2018, 42(3): 103-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201803014.htm
    [128] 张斌, 付秀琴. 铁路车轮、轮箍踏面剥离的类型及形成机理[J]. 中国铁道科学, 2001, 22(2): 73-78. doi: 10.3321/j.issn:1001-4632.2001.02.011

    ZHANG Bin, FU Xiu-qin. Type and formation mechanism of railway wheel and tire tread spall[J]. China Railway Science, 2001, 22(2): 73-78. (in Chinese) doi: 10.3321/j.issn:1001-4632.2001.02.011
    [129] LIU Wei, MA Wei-hua, LUO Shi-hui, et al. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration[J]. Vehicle System Dynamics, 2015, 53(4): 546-567. doi: 10.1080/00423114.2015.1008015
    [130] 张军, 王雪萍, 马贺. 增黏砂对机车车轮踏面剥离影响的试验研究[J]. 机械工程学报, 2018, 54(8): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201808009.htm

    ZHANG Jun, WANG Xue-ping, MA He. Experimental study on influence of sanding on peeling of wheel tread of locomotive[J]. Journal of Mechanical Engineering, 2018, 54(8): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201808009.htm
    [131] 王文健, 刘启跃. 车轮踏面剥离机理研究[J]. 机械, 2004, 31(6): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200406005.htm

    WANG Wen-jian, LIU Qi-Yue. Research review on wheel tread spalling[J]. Machinery, 2004, 31(6): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200406005.htm
    [132] 郭俊, 王文健, 张伟, 等. 车轮踏面剥离试验研[J]. 铁道车辆, 2006, 44(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200604000.htm

    GUO Jun, WANG Wen-jian, ZHANG Wei, et al. Test and research on wheel tread peeling[J]. Rolling Stock, 2006, 44(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200604000.htm
    [133] CUMMINGS S M, LONSDALE C P. Wheel spalling literature review[C]// ASME. ASME Rail Transportation Division Fall Conference. New York: ASME, 2008: 24-25.
    [134] 陶贵闯, 赵秀娟, 潘金芝, 等. D2高速车轮钢在滑动磨损下的白层形成与剥落[J]. 摩擦学学报, 2018, 38(4): 437-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201804008.htm

    TAO Gui-chuang, ZHAO Xiu-juan, PAN Jin-zhi, et al. Formation and exfoliation of the while etching layer of D2 high speed wheel steel under sliding wear[J]. Tribology, 2018, 38(4): 437-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201804008.htm
    [135] 丛韬, 韩建民, 张关震, 等. 铁路车轮轮辋疲劳裂纹和踏面剥离掉块的微观伤损因素分析[J]. 中国铁道科学, 2017, 38(5): 93-99. doi: 10.3969/j.issn.1001-4632.2017.05.13

    CONG Tao, HAN Jian-min, ZHANG Guan-zhen, et al. Analysis of micro damage factors of shattered rim and tread shelling of railway wheel[J]. China Railway Science, 2017, 38(5): 93-99. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.05.13
    [136] 张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组车轮踏面剥离损伤的影响[J]. 中国铁道科学, 2019, 40(5): 80-86. doi: 10.3969/j.issn.1001-4632.2019.05.11

    ZHANG Guan-zhen, REN Rui-ming, WU Si, et al. Influence of non-uniform microstructure on shelling damage of wheel tread for high speed EMU[J]. China Railway Science, 2019, 40(5): 80-86. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.05.11
    [137] WANG Wen-jian, GUO Jun, LIU Qi-yue. Experimental study on wear and spalling behaviors of railway wheel[J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1243-1249. doi: 10.3901/CJME.2013.06.1243
    [138] KATO T, SUGETA A, NAKAYAMA E. Investigation of influence of white layer geometry on spalling property in railway wheel steel[J]. Wear, 2011, 271(1): 400-407. http://www.sciencedirect.com/science/article/pii/S0043164810003583
    [139] ZENG Dong-fang, LU Lian-tao, GONG Yan-hua, et al. Influence of solid solution strengthening on spalling behavior of railway wheel steel[J]. Wear, 2017, 372/373: 158-168.
    [140] STONE D H, CARLSON F G, BACHHUBER C G. Effect of brake-system components on wheel spalling[C]//ASME. Proceedings of the 1999 ASME/IEEE Joint Railroad Conference. New York: ASME, 1999: 177-183.
    [141] 汪洋. 地铁列车车轮踏面环状剥离的分析[J]. 电力机车与城轨车辆, 2003, 26(4): 67-68. doi: 10.3969/j.issn.1672-1187.2003.04.023

    WANG Yang. Analysis of circular spalling of wheel tread for metro train[J]. Electric Locomotives and Mass Transit Vehicles, 2003, 26(4): 67-68. (in Chinese) doi: 10.3969/j.issn.1672-1187.2003.04.023
    [142] CUMMINGS S M, MCCABE T, GOSSELIN D. Brake shoes and thermal mechanical shelling[C]// ASME. ASME Rail Transportation Division Fall Conference. New York: ASME, 2009, 24-25.
    [143] KALOUSEK J, MAGEL E, STRASSER J, et al. Tribological interrelationship of seasonal fluctuations of freight car wheel wear, contact fatigue shelling and composition brakeshoe consumption[J]. Wear, 1996, 191: 210-218. doi: 10.1016/0043-1648(95)06700-0
    [144] 王玉辉. 机车整体车轮踏面剥离原因分析与研究[J]. 铁道机车车辆, 2012, 32(1): 87-88, 112. doi: 10.3969/j.issn.1008-7842.2012.01.023

    WANG Yu-hui. Reason analysis and research for tread peeling on locomotive solid wheel[J]. Railway Locomotive and Car, 2012, 32(1): 87-88, 112. (in Chinese) doi: 10.3969/j.issn.1008-7842.2012.01.023
    [145] 王晨, 罗世辉, 马卫华. 机车轮对纵向振动与踏面剥离研究分析[J]. 内燃机车, 2013(2): 31-34. doi: 10.3969/j.issn.1003-1820.2013.02.009

    WANG Chen, LUO Shi-hui, MA Wei-hua. Research and analysis on longitudinal vibration and tread spalling of locomotive wheelset[J]. Railway Locomotive and Motor Car, 2013(2): 31-34. (in Chinese) doi: 10.3969/j.issn.1003-1820.2013.02.009
    [146] КРАСНОВ О Г. 车轮踏面出现缺陷时转向架承载铸件的承载能力[J]. 国外机车车辆工艺, 2017(5): 30-35, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201705008.htm

    КРАСНОВ О Г. Bearing capacity of bogie bearing castings with defects on wheel tread[J]. Foreign Locomotive and Rolling Stock Technology, 2017(5): 30-35, 40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201705008.htm
    [147] 汪金余. 车轮内部损伤及踏面剥离的研究[D]. 大连: 大连交通大学, 2018.

    WANG Jin-yu. Research on wheel internal damage and tread spelling[D]. Dalian: Dalian Jiaotong University, 2018. (in Chinese)
    [148] 郭鑫. 车轮踏面剥离对轮轨动态接触行为和疲劳寿命的影响[D]. 成都: 西南交通大学, 2020.

    GUO Xin. Influence of tread spalling on dynamic wheel-rail contact behavior and fatigue life[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
    [149] TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899. doi: 10.1080/00423114.2017.1399210
    [150] 金学松, 吴越, 梁树林. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm

    JIN Xue-song, WU Yue, LIANG Shu-lin. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm
    [151] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm

    ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm
    [152] 王忆佳. 车轮踏面伤损对高速列车动力学行为的影响[D]. 成都: 西南交通大学, 2014.

    WANG Yi-jia. Effect of wheel tread damage on dynamic behavior of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [153] KAPER H P. Wheel corrugation on Netherlands railways (NS): origin and effects on "polygonization" in particular[J]. Journal of Sound and Vibration, 1988, 120(2): 267-274. doi: 10.1016/0022-460X(88)90434-8
    [154] BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442. doi: 10.1016/S0093-6413(97)00047-5
    [155] MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055
    [156] 陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003

    CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.01.003
    [157] 崔大宾, 梁树林, 宋春元, 等. 高速车轮非圆化现象及其对轮轨行为的影响[J]. 机械工程学报, 2013, 48(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm

    CUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out-of-round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 48(18): 8-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm
    [158] MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986. doi: 10.1006/jsvi.1999.2590
    [159] MEYWERK M. Polygonalization of railway wheels[J]. Archive of Applied Mechanics, 1999, 69: 105-120. doi: 10.1007/s004190050208
    [160] BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Journal of Rail and Rapid Transit, 2005, 219(3): 151-175. doi: 10.1243/095440905X8853
    [161] DEKKER H. Vibrational resonances of nonrigid vehicles: Polygonization and ripple patterns[J]. Applied Mathematical Modeling, 2009, 33(3): 1349-1355. doi: 10.1016/j.apm.2008.01.025
    [162] WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
    [163] JOHANSSON A, ANDERSSON C. Out-of-round railway wheels-a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649
    [164] PAN Rui, ZHAO Xiu-juan, LIU Peng-tao, et al. Micro-mechanism of polygonization wear on railroad wheels[J]. Wear, 2017, 392/393: 213-220. doi: 10.1016/j.wear.2017.09.017
    [165] 宋春元, 沈文林, 李晓峰, 等. 高速动车组车轮多边形影响因素及抑制措施研究[J]. 中国铁路, 2017, 11: 33-40. doi: 10.3969/j.issn.1007-9971.2017.08.003

    SONG Chun-yuan, SHEN Wen-lin, LI Xiao-feng, et al. On the influencing factors and inhibiting measures of wheel polygons of high-speed EMUs[J]. China Railway, 2017, 11: 33-40. (in Chinese) doi: 10.3969/j.issn.1007-9971.2017.08.003
    [166] CHI Zhe-xiang, LIN Jing, CHEN Ruo-ran, et al. Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China's HSR train[J]. Measurement, 2020, 149: 107022-1-12. http://www.sciencedirect.com/science/article/pii/S0263224119308887
    [167] 翟婉明. 高速铁路轮轨冲击振动的特性及其控制原理[J]. 铁道学报, 1995, 17(3): 28-33. doi: 10.3321/j.issn:1001-8360.1995.03.005

    ZHAI Wan-ming. Characteristics of wheel/rail impact vibrations in high-speed railway operation and their control principles[J]. Journal of the China Railway Society, 1995, 17(3): 28-33. (in Chinese) doi: 10.3321/j.issn:1001-8360.1995.03.005
    [168] LIU Xiao-yuan, ZHAI Wan-ming. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290.
    [169] 刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究[J]. 振动与冲击, 2020, 39(16): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm

    LIU Huan, TAO Gong-quan, CAI Jing, et al. Influence of wheel polygon on locomotive wheel-rail dynamic response[J]. Journal of Vibration and Shock, 2020, 39(16): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm
    [170] WU Xing-wen, CHI Mao-ru, WU Ping-bo. Influence of polygonal wear of railway wheels on the wheel set axle stress[J]. Vehicle System Dynamics, 2015, 53(11): 1535-1554. doi: 10.1080/00423114.2015.1063674
    [171] WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1817-1837. doi: 10.1080/00423114.2018.1439589
    [172] 张浩然. 车轮多边形对高速列车振动响应和构架疲劳寿命影响研究[D]. 北京: 北京交通大学, 2018.

    ZHANG Hao-ran. Research on the effect of wheel polygon on vibration response and frame fatigue life of high-speed train[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [173] 安博洋, 赵鑫, 刘超, 等. 车轮踏面硌伤处的瞬态滚动接触应力分析[J]. 润滑与密封, 2014, 39(12): 69-74. doi: 10.3969/j.issn.0254-0150.2014.12.014

    AN Bo-yang, ZHAO Xin, LIU Chao, et al. Analysis of transient rolling contact stressesat wheel indentation[J]. Lubrication Engineering, 2014, 39(12): 69-74. (in Chinese) doi: 10.3969/j.issn.0254-0150.2014.12.014
    [174] 寇峻瑜. 基于显式有限元法的高速车轮多边形动态响应分析[D]. 成都: 西南交通大学, 2018.

    KOU Jun-yu. Analysis on dynamic responses of polygonized wheel of high-speed train using explicit FE method[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [175] 刘凯. 车轮多边形引起的轮轨动态响应有限元分析[D]. 成都: 西南交通大学, 2019.

    LIU Kai. Finite element analysis of wheel-rail dynamic response caused by wheel polygonization[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [176] 吴磊, 钟硕乔, 金学松. 车轮多边形化对车辆运行安全性能的影响[J]. 交通运输工程学报, 2011, 11(3): 47-49. doi: 10.3969/j.issn.1671-1637.2011.03.009

    WU Lei, ZHONG Shuo-qiao, JIN Xue-song. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-49. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.009
    [177] 李贵宇. 高阶车轮多边形对车辆动力学性能的影响[J]. 机械工程与自动化, 2016(5): 42-44. doi: 10.3969/j.issn.1672-6413.2016.05.015

    LI Gui-yu. Influence of wheel polygonization on vehicles dynamics[J]. Mechanical Engineering and Automation, 2016(5): 42-44. (in Chinese) doi: 10.3969/j.issn.1672-6413.2016.05.015
    [178] 陈伟, 戴焕云, 罗仁. 高速列车车轮高阶多边形对车辆动力学性能的影响[J]. 铁道车辆, 2014, 52(12): 4-9. doi: 10.3969/j.issn.1002-7602.2014.12.002

    CHEN Wei, DAI Huan-yun, LUO Ren. Effect of high order polygons of wheels for high speed trains on dynamics performance of vehicles[J]. Rolling Stock, 2014, 52(12): 4-9. (in Chinese) doi: 10.3969/j.issn.1002-7602.2014.12.002
    [179] 罗仁, 曾京, 邬平波, 等. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报, 2010, 32(5): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005007.htm

    LUO Ren, ZENG Jing, WU Ping-bo, et al. Simulation and analysis of wheel out-of-roundness wear of high-speed train[J]. Journal of the China Railway Society, 2010, 32(5): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005007.htm
    [180] 王红兵, 李国芳, 王泽根, 等. 车轮多边形对车辆动力学性能影响分析[J]. 轨道标准设计, 2020, 64(6): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202006032.htm

    WANG Hong-bing, LI Guo-fang, WANG Ze-gen, et al. Analysis of influence of wheel polygon on vehicle dynamic performance[J]. Railway Standard Design, 2020, 64(6): 165-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202006032.htm
    [181] ZHANG Jie, HAN Guang-xu, XIAO Xin-biao, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A, 2014, 15(12): 1002-1018.
    [182] 李贵宇. 基于轨道振动的车轮多边形机理研究[D]. 成都: 西南交通大学, 2016.

    LI Gui-yu. Study on the form reason of wheel polygonization based on track vibration[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [183] SONG Ying, DU Yan-liang, ZHANG Xue-mei, et al. Evaluating the effect of wheel polygons on dynamic track performance in high-speed railway systems using co-simulation analysis[J]. Applied Sciences, 2019, 9(19): 4165-1-17. http://www.researchgate.net/publication/336272847_Evaluating_the_Effect_of_Wheel_Polygons_on_Dynamic_Track_Performance_in_High-Speed_Railway_Systems_Using_Co-Simulation_Analysis
    [184] CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 426/427: 1820-1827. doi: 10.1016/j.wear.2019.01.020
    [185] 牛牧笛, 冯其波, 陈士谦. 列车轮对在线动态测量方法的评述[J]. 铁道机车车辆, 2006, 26(2): 32-35. doi: 10.3969/j.issn.1008-7842.2006.02.011

    NIU Mu-di, FENG Qi-bo, CHEN Shi-qian. Research of dynamic measurement method to wheelset of trains online[J]. Railway Locomotive and Car, 2006, 26(2): 32-35. (in Chinese) doi: 10.3969/j.issn.1008-7842.2006.02.011
    [186] LI Yi-fan, ZUO M J, LIN Jian-hui, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter[J]. Mechanical Systems and Signal Processing, 2017, 84: 642-658. doi: 10.1016/j.ymssp.2016.07.009
    [187] YE Yun-guang, SHI Da-chuan, KRAUSE P, et al. A data-driven method for estimating wheel flat length[J]. Vehicle System Dynamics, 2020: 58(9): 1329-1347. doi: 10.1080/00423114.2019.1620956
    [188] 高瑞鹏, 尚春阳, 江航. 遗传算法结合小波神经网络的列车车轮扁疤故障检测方法[J]. 西安交通大学学报, 2013, 47(9): 88-91, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309015.htm

    GAO Rui-peng, SHANG Chun-yang, JIANG Hang. A fault detection strategy for wheel flat scars with wavelet neural network and genetic algorithm[J]. Journal of Xi'an Jiaotong University, 2013, 47(9): 88-91, 111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309015.htm
    [189] 史红梅, 赵蓉, 余祖俊, 等. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]. 振动与冲击, 2016, 35(10): 24-28, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201610004.htm

    SHI Hong-mei, ZHAO Rong, YU Zu-jun, et al. Detection method for wheel flats based on rail vibration responses analysis[J]. Journal of Vibration and Shock, 2016, 35(10): 24-28, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201610004.htm
    [190] GAO Run, HE Qi-xin, FENG Qi-bo, et al. Railway wheel flat detection system based on a parallelogram mechanism[J]. Sensors, 2019, 19(16): 3614-1-13. http://www.ncbi.nlm.nih.gov/pubmed/31434249
    [191] CAO Wen-jun, ZHANG Shan-li, BERTOLA N J, et al. Time series data interpretation for 'wheel-flat' identification including uncertainties[J]. Structural Health Monitoring, 2019, DOI: 10.1177/1475921719887117.
    [192] ZHOU Chen-yi, GAO Liang, XIAO Hong, et al. Railway wheel flat recognition and precise positioning method based on multisensor arrays[J]. Applied Sciences, 2020, DOI:org/10. 3390/app10041297.
    [193] 陈刚, 任光胜. 车辆轮对状态在线监测系统研究[J]. 城市轨道交通研究, 2012, 15(10): 79-81. doi: 10.3969/j.issn.1007-869X.2012.10.021

    CHEN Gang, REN Guang-sheng. On-line detecting system of wheel-set state[J]. Urban Mass Transit, 2012, 15(10): 79-81. (in Chinese) doi: 10.3969/j.issn.1007-869X.2012.10.021
    [194] 田丽丽, 方宗德, 赵勇. 铁路货车车轮踏面伤损检测中剥离与擦伤定位方法[J]. 铁道学报, 2009, 31(5): 31-36. doi: 10.3969/j.issn.1001-8360.2009.05.005

    TIAN Li-li, FANG Zong-de, ZHAO Yong. Locating methods of peeling and flat spots in detection of wheel tread damages of railway wagons[J]. Journal of the China Railway Society, 2009, 31(5): 31-36. (in Chinese) doi: 10.3969/j.issn.1001-8360.2009.05.005
    [195] SALZBURGER H J, SCHUPPMANN M, WANG Li, et al. In-motion ultrasonic testing of the tread of high-speed railway wheels using the inspection system AUROPA Ⅲ[J]. Insight-Non- Destructive Testing and Condition Monitoring, 2009, 51(7): 370-372. doi: 10.1784/insi.2009.51.7.370
    [196] ANASTASOPOULOS A, BOLLAS K, PAPASALOUROS D, et al. Acoustic emission inspection of rail wheels[C]//EWGAE. 29th European Conference on Acoustic Emission Testing. London: EWGAE, 2010: 215-228.
    [197] MINORU O. Development of trackside rolling stock monitoring system[J]. Japanese Railway Engineering, 1999(142): 24-28. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWJQ200005000.htm
    [198] BELOTTI V, CRENNAF, MICHLINI R C, et al. Wheel-flat diagnostic tool via wavelet transform[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 1953-1966. doi: 10.1016/j.ymssp.2005.12.012
    [199] ZAKHAROV S M, ZHAROV I A. Criteria of bogie performance and wheel/rail wear prediction based on wayside measurement[J]. Wear, 2005, 258: 1135-1141. doi: 10.1016/j.wear.2004.03.025
    [200] 雷晓燕, 杨天, 刘庆杰. "车体-多边形化车轮-轨道"耦合系统动力分析及多边形车轮识别[J]. 噪声与振动控制, 2019, 39(2): 1-6. doi: 10.3969/j.issn.1006-1355.2019.02.001

    LEI Xiao-yan, YANG Tian, LIU Qing-jie. Dynamic analysis and out-of-round wheel recognition of "body-out-of-round wheel-rail" coupling system[J]. Noise and Vibration Control, 2019, 39(2): 1-6. (in Chinese) doi: 10.3969/j.issn.1006-1355.2019.02.001
    [201] WAUBKE H, THUMMEL T, MAYR G, et al. Track measuring point detects out-of-round wheels for condition-oriented maintenance of rail vehicles[J]. Zev Und Det Glasers Annalen, 2000, 124(9): 496-502. http://www.researchgate.net/publication/297936652_Track_measuring_point_detects_out-of-round_wheels_for_conditionoriented_maintenance_of_rail_vehicles
    [202] 丁建明, 林建辉, 易彩. 车轮不圆顺动态检测的时频特证圈内定位比较法[J]. 振动与冲击, 2013, 32(19): 39-43. doi: 10.3969/j.issn.1000-3835.2013.19.008

    DING Jian-ming, LIN Jian-hui, YI Cai. Dynamic detection of out-of-round wheels using a comparison of time-frequency feature locatings[J]. Journal of Vibration and Shock, 2013, 32(19): 39-43. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.19.008
    [203] 李奕璠, 林建辉, 刘建新. 车轮踏面擦伤识别方法[J]. 振动与冲击, 2013, 32(22): 21-27. doi: 10.3969/j.issn.1000-3835.2013.22.004

    LI Yi-fan, LIN Jian-hui, LIU Jian-xin. Identification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32(22): 21-27. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.22.004
    [204] WANG Zhi-wei, ALLEN P, MEI Gui-ming, et al. Influence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 28(9): 1385-1406. doi: 10.1080/00423114.2019.1626013?scroll=top&needAccess=true&cookieSet=1
    [205] 王瑞乾, 李晔, 储丽霞, 等. 轨道交通车辆车轮显著多边形提取方法[J]. 噪声与振动控制, 2017, 37(1): 82-85, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201701018.htm

    WANG Rui-qian, LI Ye, CHU Li-xia, et al. Method for extracting significant polygons of railway wheels[J]. Noise and Vibration Control, 2017, 37(1): 82-85, 97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201701018.htm
    [206] 方春青. 盘形制动对踏面剥离原因分析及预防措施[J]. 铁道车辆, 2003, 41(7): 44. doi: 10.3969/j.issn.1002-7602.2003.07.018

    FANG Qing-chun. Cause analysis of disc brake on tread spalling and preventive measures[J]. Rolling Stock, 2003, 41(7): 44. (in Chinese) doi: 10.3969/j.issn.1002-7602.2003.07.018
    [207] 张志波. 研磨子对车轮不圆的修形作用[J]. 中国铁路, 2018(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801007.htm

    ZHANG Zhi-bo. Influence of grinder application to profile adjustment of wheel polygon[J]. China Railway, 2018(1): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801007.htm
    [208] ZHAO X N, CHEN G X, LV J Z, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426: 1820-1827. http://www.sciencedirect.com/science/article/pii/S0043164819300341
    [209] 马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm

    MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  1146
  • HTML全文浏览量:  493
  • PDF下载量:  2781
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 刊出日期:  2021-08-27

目录

    /

    返回文章
    返回