留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机场拦阻系统泡沫混凝土海水侵蚀性能劣化规律

曾志军 徐文 谢德擎 缪昌文

曾志军, 徐文, 谢德擎, 缪昌文. 机场拦阻系统泡沫混凝土海水侵蚀性能劣化规律[J]. 交通运输工程学报, 2021, 21(2): 56-65. doi: 10.19818/j.cnki.1671-1637.2021.02.005
引用本文: 曾志军, 徐文, 谢德擎, 缪昌文. 机场拦阻系统泡沫混凝土海水侵蚀性能劣化规律[J]. 交通运输工程学报, 2021, 21(2): 56-65. doi: 10.19818/j.cnki.1671-1637.2021.02.005
ZENG Zhi-jun, XU Wen, XIE De-qing, MIAO Chang-wen. Performance deterioration law of foam concrete in airport arresting system under seawater corrosion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 56-65. doi: 10.19818/j.cnki.1671-1637.2021.02.005
Citation: ZENG Zhi-jun, XU Wen, XIE De-qing, MIAO Chang-wen. Performance deterioration law of foam concrete in airport arresting system under seawater corrosion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 56-65. doi: 10.19818/j.cnki.1671-1637.2021.02.005

机场拦阻系统泡沫混凝土海水侵蚀性能劣化规律

doi: 10.19818/j.cnki.1671-1637.2021.02.005
基金项目: 

国家自然科学基金项目 51890904

总部科研项目 CHJ18C011

详细信息
    作者简介:

    曾志军(1978-),男,湖北孝感人,海军研究院高级工程师,从事机场工程技术研究

    通讯作者:

    缪昌文(1957-),男,江苏泰州人,东南大学教授,中国工程院院士

  • 中图分类号: U416

Performance deterioration law of foam concrete in airport arresting system under seawater corrosion

Funds: 

National Natural Science Foundation of China 51890904

Headquarters Scientific Research Project CHJ18C011

More Information
    Author Bio:

    ZENG Zhi-jun(1978-), male, senior engineer, zeng_zhj@126.com

    Corresponding author: MIAO Chang-wen(1957-), male, professor, academician of Chinese Academy of Engineering, 101011559@seu.edu.cn
  • 摘要: 为评价工程材料拦阻系统(EMAS)在海岛机场的适应性,研究了拦阻系统中泡沫混凝土在高温、高湿和高盐环境中的性能劣化规律;研制了可自动控温、鼓风与补水的全(半)浸泡一体试验装置,分别研究了泡沫混凝土浸泡在30 ℃清水、30 ℃与60 ℃模拟海水中吸水率、变形、压溃强度与半溃缩能等宏观性能的衰变规律;借助X射线断层扫描技术获取了泡沫混凝土的微结构信息,并利用X射线衍射分析技术表征了泡沫混凝土受溶液侵蚀后物相种类与含量的变化。研究结果表明:泡沫混凝土耐海水侵蚀性能较差,在30 ℃清水中浸泡90 d后,其压溃强度降低了11.5%,而浸泡在30 ℃与60 ℃模拟海水中,其压溃强度分别降低了19.9%与52.1%;全浸泡在30 ℃清水与30 ℃模拟海水中时,泡沫混凝土的吸水率性线增大,90 d时约为280%;模拟海水温度升高至60 ℃时,泡沫混凝土浸泡10 d后的吸水率快速增大并稳定在350%左右;泡沫混凝土内部孔隙率为70%,平均孔径为2.0 mm,二维贯穿深度约为8.4 mm,导致溶液极易侵入泡沫混凝土;泡沫混凝土中孔径较大,盐水很难在毛细作用下向上传输,表面未出现盐结晶现象,数次吸水膨胀与风吹干燥收缩循环致使泡沫混凝土表面粉化严重;溶液侵入泡沫混凝土内部,同时引起基体软化、钙溶蚀与离子侵蚀反应,加速了泡沫混凝土的骨架损伤,使其压溃强度降低;工程实践中应尽可能避免海水拍打、礁石撞击单元体,并对单元体及泡沫混凝土做防水处理,以确保EMAS长期稳定有效。

     

  • 图  1  EMAS拦停飞机案例[21]

    Figure  1.  Example of successfully aircraft arrest via EMAS

    图  2  泡沫混凝土受雨水作用溃散冲出

    Figure  2.  Foam concrete bursting out by rain

    图  3  EMAS单元体

    Figure  3.  Unit body of EMAS

    图  4  全(半)浸泡-体化试验装置

    Figure  4.  Integrated full (semi) immersion test device

    图  5  泡沫混凝土切割与处理

    Figure  5.  Cutting and processing of foam concrete

    图  6  全浸泡条件下泡沫混凝土吸水率的演变

    Figure  6.  Water absorption evolutions in fully immersed foam concrete

    图  7  全浸泡条件下泡沫混凝土的变形

    Figure  7.  Length changes of fully immersed foam concrete under full immersion

    图  8  基准组试块应力-压溃度曲线

    Figure  8.  Stress-crushing degree curves of reference specimens

    图  9  基准组试块能量吸收效率-压溃度曲线

    Figure  9.  Energy absorption efficiency-crushing degree curves of reference specimens

    图  10  泡沫混凝土的压溃强度演变

    Figure  10.  Crushing strength evolutions of foam concrete

    图  11  泡沫混凝土的半溃缩能演变

    Figure  11.  Half crushing energy evolutions of foam concrete

    图  12  泡沫混凝土半浸泡破坏状态

    Figure  12.  Damage states of semi immersed foam concrete

    图  13  泡沫混凝土不同深度的微结构

    Figure  13.  Microstructures of foam concrete at different depths

    图  14  不同浸泡方案与侵蚀深度下泡沫混凝土的微观组成

    Figure  14.  Micro-compositions of foam concrete under different immersion schemes and corrosion depths

    表  1  胶凝材料与调凝剂的主要技术性质

    Table  1.   Main technical properties of cementitious material and adjustable solidification agent

    原材料 抗压强度/MPa 抗折强度/MPa 凝结时间/min 比表面积/(m2·kg-1)
    3 d 28 d 3 d 28 d 初凝 终凝
    胶凝材料:P·II 52.5R硅酸盐水泥 40.2 60.1 7.2 9.4 148 206 385
    调凝剂:R.SAC 42.5硫铝酸盐水泥 45.2 50.2 6.4 7.9 35 66 352
    下载: 导出CSV

    表  2  泡沫混凝土性能劣化试验方案

    Table  2.   Test schemes for performance deterioration of foam concrete

    方案编号 浸泡状态 侵蚀溶液 浸泡温度/℃ 风速/(m·s-1)
    Z1 全浸泡 清水 30
    Z2 全浸泡 模拟海水 30
    Z3 全浸泡 模拟海水 60
    Z4 半浸泡 清水 30 5
    Z5 半浸泡 模拟海水 30 5
    Z6 半浸泡 模拟海水 60 5
    下载: 导出CSV

    表  3  泡沫混凝土内部孔结构信息统计结果

    Table  3.   Statistical results of pore structure information in foam concrete

    与侧壁距离/mm 孔隙率/% 平均孔径/mm 不同面积(mm2)的孔数
    1 (1, 100] > 100
    5 60.24 1.26 11 408 1 257 23
    10 71.14 2.09 9 566 748 30
    50 70.06 2.02 9 227 725 32
    下载: 导出CSV
  • [1] HEYMSFIELD E, HALE W M, HALSEY T. Aircraft response in an airfield arrestor system during an overrun[J]. Journal of Transportation Engineering, 2012, 138(3): 284-292. doi: 10.1061/(ASCE)TE.1943-5436.0000331
    [2] YANG Xian-feng, YANG Jia-ling, ZHANG Zhi-qiang, et al. A review of civil aircraft arresting system for runway overruns[J]. Progress in Aerospace Sciences, 2018, 102: 99-121. doi: 10.1016/j.paerosci.2018.07.006
    [3] 盛荣武. 特性材料拦阻系统(EMAS)在西藏林芝高高原机场的首次应用[J]. 科学咨询(科技·管理), 2018(32): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KXZC201808051.htm

    SHENG Rong-wu. First application of engineered material arresting system (EMAS) at Tibet Linzhi High Plateau Airport[J]. Scientific Consulting (Technology and Management), 2018(32): 62-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXZC201808051.htm
    [4] FONT A, SORIANO L, MONZÓ J, et al. Salt slag recycled by-products in high insulation alternative environmentally friendly cellular concrete manufacturing[J]. Construction and Building Materials, 2020, 231: 117114. doi: 10.1016/j.conbuildmat.2019.117114
    [5] KASHANI A, NGO T N, MENDIS P, et al. A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete[J]. Journal of Cleaner Production, 2017, 149: 925-935. doi: 10.1016/j.jclepro.2017.02.154
    [6] PEREIRA M, CARBAJO J, GODINHO J, et al. Improving the sound absorption behaviour of porous concrete using embedded resonant structures[J]. Journal of Building Engineering, 2020, https://doi.org/10.1016/j.jobe.2020.102015.
    [7] STOLZ J, BOLUK Y, BINDIGANAVILE V. Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete[J]. Cement and Concrete Composites, 2018, 94: 24-32. doi: 10.1016/j.cemconcomp.2018.08.004
    [8] SAYADI A A, TAPIA J V, NEITZERT T R, et al. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete[J]. Construction and Building Materials, 2016, 112: 716-724. doi: 10.1016/j.conbuildmat.2016.02.218
    [9] LI Qiang, WANG Hao, ZHANG Zu-hua, et al. Numerical simulation of porosity on thermal properties and fire resistance of foamed concrete[J]. Journal of Sustainable Cement-Based Materials, 2013, 2(1): 13-19. doi: 10.1080/21650373.2012.755748
    [10] BATOOL F, BINDIGANAVILE V. Air-void size distribution of cement based foam and its effect on thermal conductivity[J]. Construction and Building Materials, 2017, 149: 17-28. doi: 10.1016/j.conbuildmat.2017.05.114
    [11] GUO Yu-zhu, CHEN Xu-dong, CHEN Bo, et al. Analysis of foamed concrete pore structure of railway roadbed based on X-ray computed tomography[J]. Construction and Building Materials, 2021, 273: 121773. doi: 10.1016/j.conbuildmat.2020.121773
    [12] KIM J S, CHUNG S Y, HAN T S, et al. Correlation between microstructural characteristics from micro-CT of foamed concrete and mechanical behaviors evaluated by experiments and simulations[J]. Cement and Concrete Composites, 2020, 112: 103657. doi: 10.1016/j.cemconcomp.2020.103657
    [13] HEYMSFIELD E, HALE W M, HALSEY T L. Optimizing low density concrete behavior for soft ground arrestor systems[C]//ASCE. Airfield and Highway Pavements 2008. Reston: ASCE, 2009: 122-133.
    [14] HEYMSFIELD E. Predicting aircraft stopping distances within an EMAS[J]. Journal of Transport Engineering, 2013, 139(12): 1184-1193. doi: 10.1061/(ASCE)TE.1943-5436.0000600
    [15] LEE Y S, KIM C S, HA W J, et al. A study on evaluation of aircraft rapid arresting system using the numerical analysis[J]. International Journal of Highway Engineering, 2011, 13(1): 185-195. doi: 10.7855/IJHE.2011.13.1.185
    [16] XING Yun, YANG Xian-feng, YANG Jia-ling, et al. A theoretical model of honeycomb material arresting system for aircrafts[J]. Applied Mathematical Modelling, 2017, 48: 316-337. doi: 10.1016/j.apm.2017.04.006
    [17] ZHANG Z Q, YANG J L, LI Q M. An analytical model of foamed concrete aircraft arresting system[J]. International Journal of Impact Engineering, 2013, 61: 1-12. doi: 10.1016/j.ijimpeng.2013.05.006
    [18] ZHANG Z Q, YANG J L. Improving safety of runway overrun through foamed concrete aircraft arresting system: an experimental study[J]. International Journal of Crashworthiness, 2015, 20(5): 448-463. doi: 10.1080/13588265.2015.1033971
    [19] JIANG Chun-shui, YAO Hong-yu, XIAO Xian-bo, et al. Phenomena of foamed concrete under rolling of aircraft wheels[J]. Journal of Physics: Conference Series, 2014, 495: 012035. doi: 10.1088/1742-6596/495/1/012035
    [20] MEERA M, GUPTA S. Development of a strength model for foam concrete based on water-cement ratio[J]. Materials Today: Proceedings, 2020, 32: 923-927. doi: 10.1016/j.matpr.2020.04.888
    [21] YAN Shu, ZHANG Fang-yong, WANG Shuai, et al. Crystallization behavior and mechanical properties of high open porosity dolomite hollow microspheres filled hybrid geopolymer foams[J]. Cement and Concrete Composites, 2019, 104: 103376. doi: 10.1016/j.cemconcomp.2019.103376
    [22] JIANG Jun, LU Zhong-yuan, NIU Yun-hui, et al. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement[J]. Materials and Design, 2016, 92: 949-959. doi: 10.1016/j.matdes.2015.12.068
    [23] NGUYEN T T, BUI H H, NGO T D, et al. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete[J]. Materials and Design, 2017, 130: 103-119. doi: 10.1016/j.matdes.2017.05.054
    [24] TIKALSKY P J, POSPISIL J, MACDONALD W. A method for assessment of the freeze-thaw resistance of preformed foam cellular concrete[J]. Cement and Concrete Research, 2004, 34(5): 889-893. doi: 10.1016/j.cemconres.2003.11.005
    [25] FAN Miao-miao, YU Hong-bin. Effect of freezing on the performance of EMAS in different water absorption[C]// Atlantis Press. Proceedings of the 2015 International Conference on Materials Engineering and Information Technology Applications. Amsterdam: Atlantis Press, 2015: 780-784.
    [26] 孙玉美. 冻融环境下EMAS核心层阻滞性能分析研究[D]. 天津: 天津工业大学, 2017.

    SUN Yu-mei. Study on blocking performance of EMAS core layer under freezing-thawing environment[D]. Tianjin: Tianjin Polytechnic University, 2017. (in Chinese)
    [27] GONG Jian-qing, ZHANG Wen-jie. The effects of pozzolanic powder on foam concrete pore structure and frost resistance[J]. Construction and Building Materials, 2019, 208: 135-143. doi: 10.1016/j.conbuildmat.2019.02.021
    [28] LIU Chao, LUO Jian-lin, LI Qiu-li, et al. Water-resistance properties of high-belite sulphoaluminate cement-based ultra-light foamed concrete treated with different water repellents[J]. Construction and Building Materials, 2019, 228: 116798. doi: 10.1016/j.conbuildmat.2019.116798
    [29] YOON H S, LIM T K, JEONG S M, et al. Thermal transfer and moisture resistances of nano-aerogel-embedded foam concrete[J]. Construction and Building Materials, 2020, 236: 117575. doi: 10.1016/j.conbuildmat.2019.117575
    [30] 赵阳, 史亚杰, 李明, 等. 一种硅酸盐基轻质泡沫混凝土及其制备方法: 中国, CN106966670B[P]. 2019-12-20.

    ZHAO Yang, SHI Ya-jie, LI Ming, et al. A silicate-based lightweight foam concrete and its preparing method: China, CN106966670B[P]. 2019-12-20. (in Chinese)
    [31] 余鑫, 于诚, 冉千平, 等. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(7): 2337-2342. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201914013.htm

    YU Xin, YU Cheng, RAN Qian-ping, et al. Quantitative analysis of cement and its hydration product by Rietveld external standard method[J]. Materials Reports, 2019, 33(7): 2337-2342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201914013.htm
    [32] FENG Pan, MIAO Chang-wen, BULLARD J W. A model of phase stability, microstructure and properties during leaching of Portland cement binders[J]. Cement and Concrete Composites, 2014, 49: 9-19. doi: 10.1016/j.cemconcomp.2014.01.006
    [33] FENG Pan, GARBOCZI E J, MIAO Chang-wen, et al. Microstructural origins of cement paste degradation by external sulfate attack[J]. Construction and Building Materials, 2015, 96: 391-403. doi: 10.1016/j.conbuildmat.2015.07.186
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  300
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回