留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚丙烯纤维加筋黄土的抗剪强度和崩解特性

卢浩 晏长根 贾卓龙 兰恒星 石玉玲 杨晓华 张志权

卢浩, 晏长根, 贾卓龙, 兰恒星, 石玉玲, 杨晓华, 张志权. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82-92. doi: 10.19818/j.cnki.1671-1637.2021.02.007
引用本文: 卢浩, 晏长根, 贾卓龙, 兰恒星, 石玉玲, 杨晓华, 张志权. 聚丙烯纤维加筋黄土的抗剪强度和崩解特性[J]. 交通运输工程学报, 2021, 21(2): 82-92. doi: 10.19818/j.cnki.1671-1637.2021.02.007
LU Hao, YAN Chang-gen, JIA Zhuo-long, LAN Heng-xing, SHI Yu-ling, YANG Xiao-hua, ZHANG Zhi-quan. Shear strength and disintegration properties of polypropylene fiber-reinforced loess[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82-92. doi: 10.19818/j.cnki.1671-1637.2021.02.007
Citation: LU Hao, YAN Chang-gen, JIA Zhuo-long, LAN Heng-xing, SHI Yu-ling, YANG Xiao-hua, ZHANG Zhi-quan. Shear strength and disintegration properties of polypropylene fiber-reinforced loess[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 82-92. doi: 10.19818/j.cnki.1671-1637.2021.02.007

聚丙烯纤维加筋黄土的抗剪强度和崩解特性

doi: 10.19818/j.cnki.1671-1637.2021.02.007
基金项目: 

国家自然科学基金项目 41927806

国家自然科学基金项目 42077265

甘肃省交通运输厅科技项目 2020-30

广东省交通运输厅科技项目 Science and Technology-2015-03-015

详细信息
    作者简介:

    卢浩(1988-),男,江西赣州人,广东华路交通科技有限公司工程师,工学博士,从事边坡防治研究

    通讯作者:

    晏长根(1975-),男,江西萍乡人,长安大学教授,工学博士

  • 中图分类号: U416.1

Shear strength and disintegration properties of polypropylene fiber-reinforced loess

Funds: 

National Natural Science Foundation of China 41927806

National Natural Science Foundation of China 42077265

Science and Technology Project of Department of Transportation of Gansu Province 2020-30

Science and Technology Project of Department of Transportation of Guangdong Province Science and Technology-2015-03-015

More Information
  • 摘要: 为检验聚丙烯纤维加筋黄土对边坡坡面的防护效果,基于室内直剪试验和崩解试验,研究了纤维含量、纤维长度及含水率对加筋黄土抗剪强度和抗崩解特性的影响,获得了加筋黄土的最佳配比,并以此为基础开展了现场坡面防护试验。研究结果表明:相比于素黄土,聚丙烯纤维加筋黄土的黏聚力最高提升113.8%,内摩擦角最高提升23.3%,崩解速率最高降低87.5%,聚丙烯纤维可有效提高黄土的抗剪强度和抗崩解特性;随着纤维含量和纤维长度的增长,聚丙烯纤维加筋黄土的黏聚力分别呈现先增大后减小和先急剧增大后增幅趋缓的变化趋势,崩解速率分别呈现先减小后增加和持续减小的变化趋势;从抗剪强度方面考虑,聚丙烯纤维加筋黄土的最佳纤维含量为0.3%,最佳纤维长度为15 mm,从崩解特性方面考虑,聚丙烯纤维加筋黄土的最佳纤维含量为0.5%,最佳纤维长度为19 mm,相比较而言,两者崩解速率的相对变化明显小于其抗剪强度的相对变化,故确定聚丙烯纤维加筋黄土的最佳纤维含量为0.3%,最佳纤维长度为15 mm;随着含水率的增加,聚丙烯纤维加筋黄土的黏聚力、内摩擦角和崩解速率均呈现减小趋势,其变化关系符合三次多项式函数或Logistic函数关系;现场测得聚丙烯纤维加筋黄土防护坡面平均侵蚀深度约为3 mm,说明聚丙烯纤维加筋黄土的坡面防护效果明显。

     

  • 图  1  黄土的粒径分布

    Figure  1.  Particle size distribution of loess

    图  2  崩解仪

    Figure  2.  Disintegration tester

    图  3  聚丙烯纤维加筋黄土抗剪强度指标随纤维含量的变化曲线

    Figure  3.  Variation curves of shear strength indexes of PP fiber-reinforced loess with fiber contents

    图  4  不同纤维含量的聚丙烯纤维加筋黄土剪切破坏面

    Figure  4.  Shear failure surfaces of PP fiber-reinforced loess with different fiber contents

    图  5  聚丙烯加筋黄土抗剪强度指标随纤维长度的变化曲线

    Figure  5.  Variation curves of shear strength indexes of PP fiber-reinforced loess with fiber lengths

    图  6  不同纤维长度的聚丙烯纤维加筋黄土的剪切破坏面

    Figure  6.  Shear failure surfaces of PP fiber-reinforced loess with different fiber lengths

    图  7  聚丙烯纤维加筋黄土抗剪强度指标随含水率的变化曲线

    Figure  7.  Variation curves of shear strength indexes of PP fiber-reinforced loess with water contents

    图  8  聚丙烯纤维加筋黄土的崩解过程

    Figure  8.  Disintegration process of PP fiber-reinforced loess

    图  9  聚丙烯纤维加筋黄土的崩解曲线(纤维长度为15 mm)

    Figure  9.  Disintegration curves of PP fiber-reinforced loess (fiber length is 15 mm)

    图  10  聚丙烯纤维加筋黄土的崩解速率随纤维含量的变化曲线

    Figure  10.  Variation curves of disintegration rate of PP fiber-reinforced loess with fiber contents

    图  11  聚丙烯纤维加筋黄土的崩解速率随纤维长度的变化曲线

    Figure  11.  Variation curves of disintegration rate of PP fiber-reinforced loess with fiber lengths

    图  12  聚丙烯纤维加筋黄土的崩解速率随含水率的变化

    Figure  12.  Variation of disintegration rate of PP fiber-reinforced loess with water contents

    图  13  边坡坡面侵蚀针布置

    Figure  13.  Layout of erosion needles on slope surface

    图  14  现场防护

    Figure  14.  Site protection

    图  15  现场坡面侵蚀深度变化

    Figure  15.  Variations in slope surface erosion depth on site

    表  1  黄土的物理力学指标

    Table  1.   Physical-mechanical parameters of loess

    参数 天然含水率/% 干密度/(g·cm-3) 孔隙比 液限/% 塑限/% 最大干密度/(g·cm-3) 最优含水率/%
    数值 14 1.41 0.897 25.3 16.2 1.72 14.5
    下载: 导出CSV

    表  2  聚丙烯纤维的物理力学指标

    Table  2.   Physical-mechanical parameters of PP fiber

    类型 密度/(g·cm-3) 直径/mm 抗拉强度/MPa 弹性模量/MPa 拉伸极限/% 熔点/℃ 燃点/℃
    束状单丝 0.91 0.048 > 358 > 3 500 17 > 165 > 590
    下载: 导出CSV

    表  3  不同纤维配比的聚丙烯纤维加筋黄土抗剪强度指标

    Table  3.   Shear strength indexes of PP fiber-reinforced loess with different fiber mixing ratios

    纤维长度/mm 纤维含量/% 黏聚力/kPa 内摩擦角/(°)
    0 0.0 42.60 28.30
    6 0.1 48.41 30.10
    0.3 76.03 32.10
    0.5 72.50 34.20
    0.7 57.70 34.90
    9 0.1 53.40 30.20
    0.3 77.10 31.10
    0.5 73.12 33.70
    0.7 61.98 34.50
    15 0.1 60.32 30.62
    0.3 91.10 31.90
    0.5 85.60 32.76
    0.7 71.20 33.60
    19 0.1 63.61 30.50
    0.3 89.91 31.60
    0.5 79.41 32.90
    0.7 72.38 33.24
    下载: 导出CSV
  • [1] 唐朝生, 施斌, 蔡奕, 等. 聚丙烯纤维加固软土的试验研究[J]. 岩土力学, 2007, 28(9): 1796-1800. doi: 10.3969/j.issn.1000-7598.2007.09.006

    TANG Chao-sheng, SHI Bin, CAI Yi, et al. Experimental study on polypropylene fiber improving soft soils[J]. Rock and Soil Mechanics, 2007, 28(9): 1796-1800. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.09.006
    [2] SOLANKI P, KHOURY N, ZAMAN M M. Engineering properties and moisture susceptibility of silty clay stabilized with lime, class C fly ash, and cement kiln dust[J]. Journal of Materials in Civil Engineering, 2009, 21(12): 749-757. doi: 10.1061/(ASCE)0899-1561(2009)21:12(749)
    [3] 裴向军, 杨晴雯, 许强, 等. 改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J]. 岩石力学与工程学报, 2016, 35(11): 2316-2327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611016.htm

    PEI Xiang-jun, YANG Qing-wen, XU Qiang, et al. Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2316-2327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611016.htm
    [4] AYELDEEN M, NEGM A, EL-SAWWAF M, et al. Enhancing mechanical behaviors of collapsible soil using two biopolymers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 329-339. doi: 10.1016/j.jrmge.2016.11.007
    [5] 周翠英, 赵珊珊, 杨旭, 等. 生态酯类材料砂土改良及工程护坡应用[J]. 岩土力学, 2019, 40(12): 4828-4837. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912032.htm

    ZHOU Cui-ying, ZHAO Shan-shan, YANG Xu, et al. Improvement of eco-ester materials on sandy soils and engineering slope protection[J]. Rock and Soil Mechanics, 2019, 40(12): 4828-4837. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912032.htm
    [6] VISWANADHAM B V S, PHANIKUMAR B R, MUK-HERJEE R V. Swelling behaviour of a geofiber-reinforced expansive soil[J]. Geotextiles and Geomembranes, 2009, 27(1): 73-76. doi: 10.1016/j.geotexmem.2008.06.002
    [7] MIRZABABAEI M, MIRAFTAB M, MOHAMED M, et al. Unconfined compression strength of reinforced clays with carpet waste fibers[J]. Journal of Geotechnical and Geoenvironmental, 2012, 139(3): 483-493.
    [8] 刘宝生, 唐朝生, 李建, 等. 纤维加筋土工程性质研究进展[J]. 工程地质学报, 2013, 21(4): 540-547. doi: 10.3969/j.issn.1004-9665.2013.04.009

    LIU Bao-sheng, TANG Chao-sheng, LI Jian, et al. Advances in engineering properties of fiber reinforced soil[J]. Journal of Engineering Geology, 2013, 21(4): 540-547. (in Chinese) doi: 10.3969/j.issn.1004-9665.2013.04.009
    [9] WEI Shao, CETIN B, LI Ya-dong, et al. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber[J]. Geotechnical and Geological Engineering, 2014, 32(4): 901-910. doi: 10.1007/s10706-014-9766-3
    [10] KUMAR A, GUPTA D. Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures[J]. Geotextiles and Geomembranes, 2016, 44(3): 466-474. doi: 10.1016/j.geotexmem.2015.07.010
    [11] 卢浩, 晏长根, 杨晓华, 等. 麦秆纤维加筋土的抗冲蚀性及其防护效果试验研究[J]. 铁道科学与工程学报, 2017, 14(10): 2138-2145. doi: 10.3969/j.issn.1672-7029.2017.10.015

    LU Hao, YAN Chang-gen, YANG Xiao-hua, et al. Experimental research on anti-eroding property and protection effect of reinforced soil with straw fiber[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2138-2145. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.10.015
    [12] YETIMOGLU T, INANIR M, INANIR O E. A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay[J]. Geotextiles and Geomembranes, 2005, 23 (2): 174-183. doi: 10.1016/j.geotexmem.2004.09.004
    [13] DIAMBRA A, IBRAIM E, WOOD D M, et al. Fibre reinforced sands: experiments and modelling[J]. Geotextiles and Geomembranes, 2010, 28(3): 238-250. doi: 10.1016/j.geotexmem.2009.09.010
    [14] MOHAMED A E M K. Improvement of swelling clay properties using hayfibers[J]. Construction and Building Materials, 2013, 38: 242-247. doi: 10.1016/j.conbuildmat.2012.08.031
    [15] CHAUHAN M S, MITTAL S, MOHANTY B. Performance evaluation of silty sand subgrade reinforced with fly ash and fibre[J]. Geotextiles and Geomembranes, 2008, 26(5): 429-35. doi: 10.1016/j.geotexmem.2008.02.001
    [16] PRABAKAR J, SRIDHAR R S. Effect of random inclusion of sisal fibre on strength behaviour of soil[J]. Construction and Building Materials, 2002, 16(2): 123-131. doi: 10.1016/S0950-0618(02)00008-9
    [17] 杨继位, 柴寿喜, 王晓燕, 等. 以抗压强度确定麦秸秆加筋盐渍土的加筋条件[J]. 岩土力学, 2010, 31(10): 3260-3264. doi: 10.3969/j.issn.1000-7598.2010.10.037

    YANG Ji-wei, CHAI Shou-xi, WANG Xiao-yan, et al. Suitable reinforcement conditions on the basis of compressive strength of reinforced saline soils with wheat straw[J]. Rock and Soil Mechanics, 2010, 31(10): 3260-3264. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.10.037
    [18] 雷胜友, 丁万涛. 加筋纤维抑制膨胀土膨胀性的试验[J]. 岩土工程学报, 2005, 27(4): 482-485. doi: 10.3321/j.issn:1000-4548.2005.04.024

    LEI Sheng-you, DING Wan-tao. Experimental investigation on restraining the swell of expansive soil with fibre-reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 482-485. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.04.024
    [19] 唐朝生, 施斌, 高玮, 等. 纤维加筋土中单根纤维的拉拔试验及临界加筋长度的确定[J]. 岩土力学, 2009, 30(8): 2225-2230. doi: 10.3969/j.issn.1000-7598.2009.08.004

    TANG Chao-sheng, SHI Bin, GAO Wei, et al. Single-fiber pull-out test and the determination of critical fiber reinforcement length for fiber reinforced soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2225-2230. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.08.004
    [20] 唐朝生, 施斌, 高玮, 等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报, 2007, 26(增1): 2968-2973. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1057.htm

    TANG Chao-sheng, SHI Bin, GAO Wei, et al. Study on effects of sand content on strength of polypropylene fiber reinforced clay soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2968-2973. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S1057.htm
    [21] 陈昌富, 刘怀星, 李亚平. 草根加筋土的室内三轴实验研究[J]. 岩土力学, 2007, 28(10): 2041-2045. doi: 10.3969/j.issn.1000-7598.2007.10.006

    CHEN Chang-fu, LIU Huai-xing, LI Ya-ping. Study on grassroots-reinforced soil by laboratory triaxial test[J]. Rock and Soil Mechanics, 2007, 28(10): 2041-2045. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.10.006
    [22] 蒋定生, 李新华, 范兴科, 等. 黄土高原土壤崩解速率变化规律及影响因素研究[J]. 水土保持通报, 1995, 15(3): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB503.004.htm

    JIANG Ding-sheng, LI Xin-hua, FAN Xing-ke, et al. Research on the law of soil disintegration rate change and its effect factors on the loess plateau[J]. Bulletin of Soil and Water Conservation, 1995, 15(3): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB503.004.htm
    [23] 李家春, 崔世富, 田伟平. 公路边坡降雨侵蚀特征及土的崩解试验[J]. 长安大学学报(自然科学版), 2007, 27(1): 23-26, 49. doi: 10.3321/j.issn:1671-8879.2007.01.006

    LI Jia-chun, CUI Shi-fu, TIAN Wei-ping. Erosion characteristic of road slope and test of soil disintegration[J]. Journal of Chang'an University (Natural Science Edition), 2007, 27(1): 23-26, 49. (in Chinese) doi: 10.3321/j.issn:1671-8879.2007.01.006
    [24] FAULKNER H, ALEXANDER R, TEEUW R, et al. Variations in soil dispersivity across a gully head displaying shallow sub-surface pipes, and the role of shallow pipes in rill initiation[J]. Earth Surface Processes and Landforms, 2004, 29(9): 1143-1160. doi: 10.1002/esp.1109
    [25] BRIVOIS O, BONELLI S, BORGHI R. Soil erosion in the boundary layer flow along a slope: a theoretical study[J]. European Journal of Mechanics—B/Fluids, 2007, 26(6): 707-719. http://www.sciencedirect.com/science/article/pii/S0997754607000337
    [26] BONELLI S, BRIVOIS O, BORGHI R, et al. On the modelling of piping erosion[J]. Comptes Rendus Mécanique, 2006, 334(8/9): 555-559. http://www.sciencedirect.com/science/article/pii/S1631072106001136
    [27] WILSON G V, PERIKETI R K, FOX G A, et al. Soil properties controlling seepage erosion contributions to streambank failure[J]. Earth Surface Processes and Landforms, 2007, 32(3): 447-459. doi: 10.1002/esp.1405
    [28] 曾光, 杨勤科, 姚志宏. 黄土丘陵沟壑区不同土地利用类型土壤抗侵蚀性研究[J]. 水土保持通报, 2008, 28(1): 6-9, 38. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200801004.htm

    ZENG Guang, YANG Qin-ke, YAO Zhi-hong. Soil anti-erodibility under different landuse types in the loess hill and gully area[J]. Bulletin of Soil and Water Conservation, 2008, 28(1): 6-9, 38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STTB200801004.htm
    [29] 程海涛, 刘保健, 谢永利. 重塑黄土变形特性[J]. 长安大学学报(自然科学版), 2008, 28(5): 31-34. doi: 10.3321/j.issn:1671-8879.2008.05.008

    CHENG Hai-tao, LIU Bao-jian, XIE Yong-li. Deformation characteristics of remolded loess[J]. Journal of Chang'an University (Natural Science Edition), 2008, 28(5): 31-34. (in Chinese) doi: 10.3321/j.issn:1671-8879.2008.05.008
    [30] 李喜安, 黄润秋, 彭建兵. 黄土崩解性试验研究[J]. 岩石力学与工程学报, 2009, 28(增1): 3207-3213. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1095.htm

    LI Xi-an, HUANG Run-qiu, PENG Jian-bing. Experimental research on disintegration of loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S1): 3207-3213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S1095.htm
    [31] 蔡云廷. 山西铁路沿线黄土崩解性试验研究[J]. 铁道工程学报, 2016, 33(4): 31-35. doi: 10.3969/j.issn.1006-2106.2016.04.007

    CAI Yun-ting. Research on the loess disintegration test along Shanxi Railway[J]. Journal of Railway Engineering Society, 2016, 33(4): 31-35. (in Chinese) doi: 10.3969/j.issn.1006-2106.2016.04.007
    [32] 唐朝生, 施斌, 顾凯. 纤维加筋土中筋/土界面相互作用的微观研究[J]. 工程地质学报, 2011, 19(4): 610-614. doi: 10.3969/j.issn.1004-9665.2011.04.026

    TANG Chao-sheng, SHI Bin, GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology, 2011, 19(4): 610-614. (in Chinese) doi: 10.3969/j.issn.1004-9665.2011.04.026
    [33] TANG Chao-sheng, SHI Bin, ZHAO Li-zheng. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles and Geomembranes, 2010, 28(1): 54-62. doi: 10.1016/j.geotexmem.2009.10.001
    [34] 王桂尧, 周欢, 夏旖琪, 等. 草类根系对坡面土强度及崩解特性的影响试验[J]. 中国公路学报, 2018, 31(2): 234-241. doi: 10.3969/j.issn.1001-7372.2018.02.025

    WANG Gui-yao, ZHOU Huan, XIA Yi-qi, et al. Experiment on effect of grass root system on slope soil strength and disintegration characteristics[J]. China Journal of Highway and Transport, 2018, 31(2): 234-241. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.02.025
    [35] 张抒, 唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学, 2013, 34(6): 1668-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306023.htm

    ZHANG Shu, TANG Hui-ming. Experimental study of disintegration mechanism for unsaturated granite residual soil[J]. Rock and Soil Mechanics, 2013, 34(6): 1668-1674. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306023.htm
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  253
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回