留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光扫描盾构隧道断面变形快速检测

刘新根 陈莹莹 刘学增

刘新根, 陈莹莹, 刘学增. 激光扫描盾构隧道断面变形快速检测[J]. 交通运输工程学报, 2021, 21(2): 107-116. doi: 10.19818/j.cnki.1671-1637.2021.02.009
引用本文: 刘新根, 陈莹莹, 刘学增. 激光扫描盾构隧道断面变形快速检测[J]. 交通运输工程学报, 2021, 21(2): 107-116. doi: 10.19818/j.cnki.1671-1637.2021.02.009
LIU Xin-gen, CHEN Ying-ying, LIU Xue-zeng. Laser scanning-based rapid detection of deformation of shield tunnel section[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 107-116. doi: 10.19818/j.cnki.1671-1637.2021.02.009
Citation: LIU Xin-gen, CHEN Ying-ying, LIU Xue-zeng. Laser scanning-based rapid detection of deformation of shield tunnel section[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 107-116. doi: 10.19818/j.cnki.1671-1637.2021.02.009

激光扫描盾构隧道断面变形快速检测

doi: 10.19818/j.cnki.1671-1637.2021.02.009
基金项目: 

国家重点研发计划项目 2018YFB2101004

国家自然科学基金项目 41827807

详细信息
    作者简介:

    刘新根(1981-),男,江西新余人,上海同岩土木工程科技股份有限公司高级工程师,从事岩土工程数值计算与检测研究

    通讯作者:

    陈莹莹(1990-),女,河南南阳人,上海同岩土木工程科技股份有限公司工程师

  • 中图分类号: U457.5

Laser scanning-based rapid detection of deformation of shield tunnel section

Funds: 

National Key Research and Development Program of China 2018YFB2101004

National Natural Science Foundation of China 41827807

More Information
  • 摘要: 针对人工检测效率低、变形检测车定位不准、噪点剔除困难、数据处理滞后等技术难题,基于盾构隧道管片环缝灰度图像数学形态特征,通过图像滑窗方式,利用直方图均衡化、缩放、阈值判定等方法快速自动识别环缝,并依据环缝已知位置反向修正隧道里程; 基于距离最小二乘法椭圆曲线拟合,建立了盾构隧道激光扫描噪点三次迭代自动剔除方法; 通过对管片环上各单环激光扫描数据拟合椭圆进行均值处理,并与隧道设计参数或上次检测结果比对,确定了隧道断面变形; 以轨检小车为载体,集成断面三维激光扫描仪、倾角仪、编码器、测距轮和计算机等设备,研制了盾构隧道断面变形快速检测车,开发了配套的数据采集和处理软件,并进行了工程试验和实际应用。研究结果表明:检测时速为5 km·h-1时,检测车系统隧道内水平和垂直方向直径复测差值绝对值小于2 mm的占比分别为98.41%和96.21%,小于1 mm的占比分别为82.36%和71.92%,系统复测精度为2 mm,多数可达到1 mm,说明环缝识别、噪点剔除、整环收敛变形算法和检测系统具有较高的稳定性和重现性; 检测车可自动采集和处理数据,检测作业后24 h可输出检测分析报告,结果准确可靠,可为盾构隧道结构健康评定和养护提供参考。

     

  • 图  1  基于激光扫描的隧道断面变形测量

    Figure  1.  Deformation measurement for tunnel section based on laser scanning

    图  2  统计累加灰度

    Figure  2.  Statistical accumulation gray scale

    图  3  环缝判定原理示意

    Figure  3.  Schematic of circumferential seam determination principle

    图  4  环缝快速识别流程

    Figure  4.  Flow of rapid identification of circumferential seam

    图  5  隧道激光扫描噪点示意

    Figure  5.  Schematic of tunnel laser scanning noise

    图  6  扫描点象限分区

    Figure  6.  Quadrant partitioning of scanning points

    图  7  隧道激光扫描噪点剔除

    Figure  7.  Elimination of laser scanning noise in tunnel

    图  8  激光扫描点除噪流程

    Figure  8.  Flow of laser scanning points de-noising

    图  9  单管片环激光扫描示意

    Figure  9.  Schematic of laser scanning of single segment ring

    图  10  变形检测车三维设计

    Figure  10.  3D design of deformation detection vehicle

    图  11  数据采集软件界面

    Figure  11.  Interface of data acquisition software

    图  12  数据处理软件界面

    Figure  12.  Interface of data processing software

    图  13  隧道管片环缝快速自动识别

    Figure  13.  Rapid automatic identification of circumferential seam of tunnel segments

    图  14  隧道点云二维展布

    Figure  14.  2D layout of tunnel point cloud

    图  15  隧道点云三维模型

    Figure  15.  3D model of tunnel point cloud

    图  16  水平内直径复测数据对比

    Figure  16.  Comparison of horizontal internal diameter data from repeat measurements

    图  17  水平收敛变形复测数据差

    Figure  17.  Difference of horizontal convergence deformation data for repeat measurements

    图  18  复测水平和垂直内直径差

    Figure  18.  Horizontal and vertical internal diameter differences obtained from repeat measurements

    图  19  作业现场

    Figure  19.  Field work

    图  20  水平和垂直最大收敛变形断面

    Figure  20.  Sections with maximum horizontal and vertical convergence deformations

    图  21  盾构隧道水平收敛变形分布曲线

    Figure  21.  Horizontal convergence deformation distribution curve of shield tunnel

    图  22  盾构隧道垂直收敛变形分布曲线

    Figure  22.  Vertical convergence deformation distribution curve of shield tunnel

    表  1  隧道管片收敛变形绝对值

    Table  1.   Absolute values of convergence deformations of tunnel segments

    收敛绝对值/mm 水平收敛/环数 占比/% 垂直收敛/环数 占比/%
    < 10 352 51.7 447 65.6
    [10, 20) 259 38.0 179 26.2
    ≥20 70 10.3 55 8.2
    下载: 导出CSV

    表  2  隧道管片水平变形健康度评定结果

    Table  2.   Health assessment results of horizontal deformations of tunnel segments

    项目 评定标准
    1级 2级 3级
    直径变化 [0, 4) [4, 6) [6, 9)
    水平变形 环数 622 58 1
    占比/% 91.33 8.51 0.16
    垂直变形 环数 679 2 0
    占比/% 99.70 0.30 0.00
    下载: 导出CSV
  • [1] 王天宁, 王利宁, 薛亚东, 等. 山岭隧道收敛变形无线感知及预测方法[J]. 岩土工程学报, 2020, 42(增1): 224-228.

    WANG Tian-ning, WANG Li-ning, XUE Ya-dong, et al. Wireless sensing and prediction method for convergence deformation of mountain tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 224-228. (in Chinese)
    [2] 沈圣, 吴智深, 杨才千, 等. 基于分布式光纤应变传感技术的盾构隧道横截面收敛变形监测方法[J]. 土木工程学报, 2013, 46(9): 104-116. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201309017.htm

    SHEN Sheng, WU Zhi-shen, YANG Cai-qian, et al. Convergence deformation monitoring of shield tunnels based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal, 2013, 46(9): 104-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201309017.htm
    [3] 王石磊, 高岩, 齐法琳, 等. 铁路运营隧道检测技术综述[J]. 交通运输工程学报, 2020, 20(5): 41-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005007.htm

    WANG Shi-lei, GAO Yan, QI Fa-lin, et al. Review on inspection technology of railway operation tunnels[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 41-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005007.htm
    [4] 罗彦斌, 陈建勋, 翟宇辉. 全站仪RDM法与3D量测法量测隧道变形精度对比[J]. 交通运输工程学报, 2017, 17(3): 56-64. doi: 10.3969/j.issn.1671-1637.2017.03.006

    LUO Yan-bin, CHEN Jian-xun, ZHAI Yu-hui. Comparison of measuring accuracies of tunnel displacements with RDM method and 3D measurement method based on total station[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 56-64. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.03.006
    [5] XIE Xiong-yao, LU Xiao-zhi. Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning[J]. Underground Space, 2017, 2(1): 16-29. doi: 10.1016/j.undsp.2017.02.001
    [6] XUE Y, ZHANG S, QI Z. A novel method for measuring shield tunnel cross sections[C]//Springer. Proceedings of International Conference on Image and Graphics 2017. Berlin: Springer: 47-57.
    [7] WALTON G, DELALOYE D, DIEDERICHS M S. Development of an elliptical fitting algorithm to improve change detection capabilities with applications for deformation monitoring in circular tunnels and shafts[J]. Tunnelling and Underground Space Technology, 2014, 43: 336-349. doi: 10.1016/j.tust.2014.05.014
    [8] ARASTOUNIA M. Automated as-built model generation of subway tunnels from mobile LiDAR data[J]. Sensors, 2016, 16(9): 1486-1506. doi: 10.3390/s16091486
    [9] YOON J S, SAGONG M, LEE J S, et al. Feature extraction of a concrete tunnel liner from 3D laser scanning data[J]. NDT and E International, 2009, 42(2): 97-105. doi: 10.1016/j.ndteint.2008.10.001
    [10] NUTTENS T, STAL C, DE BACKER H, et al. Methodology for the ovalization monitoring of newly built circular train tunnels based on laser scanning: Liefkenshoek Rail Link (Belgium)[J]. Automation in Construction, 2014, 43: 1-9. doi: 10.1016/j.autcon.2014.02.017
    [11] NUTTENS T, STAL C, DE BACKER H, et al. Terrestrial laser scanning as a key element in the integrated monitoring of tidal influences on a twin-tube concrete tunnel[J]. The Photogrammetric Record, 2014, 29(148): 402-416. doi: 10.1111/phor.12080
    [12] DELALOYE D, DIEDERICHS M S, WALTON G, et al. Sensitivity testing of the newly developed elliptical fitting method for the measurement of convergence in tunnels and shafts[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 651-667. doi: 10.1007/s00603-014-0566-0
    [13] GIKAS V. Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation[J]. Sensors, 2012, 12: 11249-11270. doi: 10.3390/s120811249
    [14] PEJIĆ M. Design and optimisation of laser scanning for tunnels geometry inspection[J]. Tunnelling and Underground Space Technology, 2013, 37: 199-206. doi: 10.1016/j.tust.2013.04.004
    [15] SUN Hai-li, XU Zheng-wen, YAO Lian-bi, et al. Tunnel monitoring and measuring system using mobile laser scanning: design and development[J]. Remote Sensing, 2020, 12(4): 1-19. http://www.researchgate.net/publication/339450163_Tunnel_Monitoring_and_Measuring_System_Using_Mobile_Laser_Scanning_Design_and_Deployment
    [16] SUN Hai-li, LIU Shuang, ZHONG Ruo-fei, et al. Cross-section deformation analysis and visualization of shield tunnel based on mobile tunnel monitoring system[J]. Sensors, 2020, 20(4): 1-21. doi: 10.1109/JSEN.2020.2967986
    [17] ZHANG Z, YIN T, HUANG X, et al. An automatic data processing method for deformation analysis and visualization of tunnel cross sections using laser scanning data[C]//Springer. Proceedings of GeoShanghai 2018 International Conference: Multi-Physics Processes in Soil Mechanics and Advances in Geotechnical Testing. Berlin: Springer, 2018: 436-448.
    [18] 吴勇, 张默爆, 王立峰, 等. 盾构隧道结构三维扫描检测技术及应用研究[J]. 现代隧道技术, 2018, 55(增2): 1304-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2166.htm

    WU Yong, ZHANG Mo-bao, WANG Li-feng, et al. Research on 3D scanning technology and its application to the shield tunnel structure detection[J]. Modern Tunnelling Technology, 2018, 55(S2): 1304-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2166.htm
    [19] 李宗平, 张永涛, 杨钊, 等. 三维激光扫描技术在隧道变形与断面检测中的应用研究[J]. 隧道建设, 2017, 37(3): 336-341. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201703016.htm

    LI Zong-ping, ZHANG Yong-tao, YANG Zhao, et al. Application of 3D laser scanning technology to tunnel deformation monitoring and cross-section detection[J]. Tunnel Construction, 2017, 37(3): 336-341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201703016.htm
    [20] 李攀, 万灵, 王二中. 基于三维激光扫描的盾构隧道横向变形指标研究[J]. 铁道科学与工程学报, 2017, 14(8): 1727-1734. doi: 10.3969/j.issn.1672-7029.2017.08.020

    LI Pan, WAN Ling, WANG Er-zhong. Research on lateral deformation indicator of shield tunnel based on 3D laser scanning[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1727-1734. (in Chinese) doi: 10.3969/j.issn.1672-7029.2017.08.020
    [21] 卢小平, 朱宁宁, 禄丰年. 基于椭圆柱面模型的隧道点云滤波方法[J]. 武汉大学学报·信息科学版, 2016, 41(11): 1476-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201611010.htm

    LU Xiao-ping, ZHU Ning-ning, LU Feng-nian. An elliptic cylindrical model for tunnel filtering[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1476-1482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201611010.htm
    [22] 李珵, 卢小平, 朱宁宁, 等. 基于激光点云的隧道断面连续提取与形变分析方法[J]. 测绘学报, 2015, 44(9): 1056-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509017.htm

    LI Cheng, LU Xiao-ping, ZHU Ning-ning, et al. Continuously extracting section and deformation analysis for subway tunnel based on lidar points[J]. Acta Geodaerica et Cartographica Sinica, 2015, 44(9): 1056-1062. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201509017.htm
    [23] 谢雄耀, 卢晓智, 田海洋, 等. 基于地面三维激光扫描技术的隧道全断面变形测量方法[J]. 岩石力学与工程学报, 2013, 32(11): 2214-2224. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311006.htm

    XIE Xiong-yao, LU Xiao-zhi, TIAN Hai-yang, et al. Development of a modeling method for monitoring tunnel deformation based of terrestrial 3D laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2214-2224. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201311006.htm
    [24] 张立朔, 程效军. 基于激光点云的隧道形变分析方法[J]. 中国激光, 2018, 45(4): 0404004. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201804028.htm

    ZHANG Li-shuo, CHENG Xiao-jun. Tunnel deformation analysis based on lidar points[J]. Chinese Journal of Lasers, 2018, 45(4): 0404004. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201804028.htm
    [25] 高洪, 李凯, 马全明, 等. 移动三维激光测量系统在地铁运营隧道病害监测中的应用研究[J]. 测绘通报, 2019(8): 96-101, 161. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201908020.htm

    GAO Hong, LI Kai, MA Quan-ming, et al. Research on application of mobile 3D laser measurement system in subway operation tunnel disease monitoring[J]. Bulletin of Surveying and Mapping, 2019(8): 96-101, 161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201908020.htm
    [26] 吴昌睿, 黄宏伟. 地铁隧道渗漏水的激光扫描检测方法及应用[J]. 自然灾害学报, 2018, 27(4): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201804008.htm

    WU Chang-rui, HUANG Hong-wei. Laser scanning inspection method and application for metro tunnel leakage[J]. Journal of Natural Disasters, 2018, 27(4): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201804008.htm
    [27] HAO Cui-hao, REN Xiao-chun, MAO Qing-zhou, et al. Shield subway tunnel deformation detection based on mobile laser scanning[J]. Automation in Construction, 2019, 106: 102889. doi: 10.1016/j.autcon.2019.102889
    [28] 张明告, 周顺华, 黄大维, 等. 地表超载对地铁盾构隧道的影响分析[J]. 岩土力学, 2016, 37(8): 2271-2278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608019.htm

    ZHANG Ming-gao, ZHOU Shun-hua, HUANG Da-wei, et al. Analysis of influence of surface surcharge on subway shield tunnel[J]. Rock and Soil Mechanics, 2016, 37(8): 2271-2278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201608019.htm
    [29] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3): 295-298. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200803011.htm

    YAN Bei, WANG Bin, LI Yuan. Optimal ellipse fitting method based on least square principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3): 295-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200803011.htm
    [30] LI Pan, ZHANG Ya-wei, JIANG Fu-yu, et al. Comprehensive health assessment of shield tunnel structure based on prototype experiment[J]. Journal of Central South University, 2018, 25(3): 681-689. doi: 10.1007/s11771-018-3771-2
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  732
  • HTML全文浏览量:  194
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-11
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回